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bstract

A new technique, “serial block face scanning electron microscopy” (SBFSEM), allows for automatic sectioning and imaging of biological tissue
ith a scanning electron microscope. Image stacks generated with this technology have a resolution sufficient to distinguish different cellular

ompartments, including synaptic structures, which should make it possible to obtain detailed anatomical knowledge of complete neuronal circuits.
uch an image stack contains several thousands of images and is recorded with a minimal voxel size of 10–20 nm in the x- and y-direction and
0 nm in z-direction. Consequently, a tissue block of 1 mm3(the approximate volume of the Calliphora vicina brain) will produce several hundred
erabytes of data. Therefore, highly automated 3D reconstruction algorithms are needed. As a first step in this direction we have developed semi-

utomated segmentation algorithms for a precise contour tracing of cell membranes. These algorithms were embedded into an easy-to-operate
ser interface, which allows direct 3D observation of the extracted objects during the segmentation of image stacks. Compared to purely manual
racing, processing time is greatly accelerated.
 2007 Elsevier B.V. All rights reserved.
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. Introduction

Serial block-face scanning electron microscopy (SBFSEM)
Denk and Horstmann, 2002) allows for imaging of substantial

olumes of biological tissue at high resolution. Using back-
cattering contrast in low-vacuum conditions combined with
erial sectioning of the specimen inside the vacuum chamber,
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lice thicknesses down to 30 nm and a resolution of 10–20 nm in
he x–y plane can be achieved (Briggman and Denk, 2006). This
esolution is sufficient to trace even thin neuronal processes and
isualize sites of synaptic contact, which opens the possibility
f reconstructing neuronal circuitry in detail.

We set out to develop algorithms to reconstruct parts of the fly
isual ganglia. Although the fly visual system is well described at
resolution accessible with light microscopy (Strausfeld, 1984),
nowledge at the ultrastructural level is necessary in order to
et further insights into the circuits underlying visual motion
rocessing (Borst and Haag, 2002). The methods described here
ere developed with this specific goal in mind, but should be

pplicable to other types of imaging data, too. While it is, in
rinciple, possible to segment three-dimensional image blocks

irectly, we chose to segment each image in sequence, using the
nformation obtained from previous images.

We first describe the preprocessing steps performed before
he actual segmentation. We then introduce the segmentation
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lgorithms. We emphasize the general probabilistic framework
or this task and describe two algorithms in detail. We sketch
ome alternative approaches and possible extensions.

. Preprocessing steps

First, intensity values within each image are normalized
o have the same median and inter-quartile range. Next, each
mage is spatially filtered. For the filtering, our program gives
he user the choice between Gaussian broadening and nonlin-
ar diffusion (Perona and Malik, 1990). Nonlinear diffusion is
oise-removing yet edge preserving filtering technique which,
t each location, makes the degree of filtering dependent on
n estimate of the intensity-gradient at that location. Thereby,
trong edges are preserved, but regions that do not have
trong edges are smoothed substantially. We used a publicly
vailable matlab filtering toolbox (D’Almeida, 2002). Since
he performance of filters can be sensitive to the choice of
arameters, it is advisable to optimize parameters on, or even
earn the filters from (Vollgraf et al., 2004) manually labeled
mages.

As a final preprocessing step, the cross-correlation between
ny two consecutive images is calculated. This allows the detec-
ion and elimination of corrupted images, which can result, for
xample, when debris has gotten onto the block face.

. Segmentation algorithms

.1. General approach

To allow segmentation of large stacks of images, as well
s to enable user interaction, we segment images sequentially
ather than the whole stack at once. We assume that the objects
re continuous across adjacent images—an assumption that can
e problematic for processes that run at a shallow angle to the
licing plane. To ensure continuity, we need to combine the infor-
ation from the pixel-intensities of the current image with that

rom the segmentation of the previous image. Therefore, we use
prior that favors such segmentations or, in other words, the

egmentation of one image is propagated into the next. For the
ery first image, however, we have to use a different strategy,
hich we will described in Section 3.4.

.2. Level set methods

We chose algorithms that do not represent the boundaries
f objects explicitly by using, for example, splines, but rather
mplicitly as the zero-level set of (usually) a signed distance
unction φ. We seek to segment the image I : Ω → R, where
(x) is the gray-scale value of pixel x, into foreground and back-
round regions. In the level set framework (Osher and Fedkiw,
003; Sethian, 1999), one tries to find a function φ : Ω → R,
uch that the set Ω+ = {x : φ(x) > 0} is the foreground, i.e. the

et of pixels that are inside a neuron and Ω− = {x : φ(x) < 0} is
he background. The contour separating objects and background
s given by Γ = {x : φ(x) = 0}. Note that images with multiple
bjects can be segmented with a single segmentation function,

s
o
t

ce Methods  167 (2008) 349–357

, by defining objects to be the connected components of the
oreground regions.

As this embedding is not unique, φ is sometimes constrained
o be a signed distance function (SDF), i.e. such that its absolute
alue gives the distance to the closest boundary. However, this
oes not have to be the case. For example, given a statistical
odel for the segmentation, one could interpret φ(x) + t (where
is a scalar offset) to be the log of the probability that pixel x
elongs to the foreground. In this case, φ(x) indicates not only
hat region a pixel is assigned to, but also represents a measure
f the confidence placed in the assignment.

Compared to an explicit representation, an implicit represen-
ation has the advantage that it can easily deal with changes
n topology (such as splitting or merging of objects), and can
eadily be extended to higher dimensions.

We focus on region-based methods, which do not rely on
etecting edges in the image, but exploit differences in the dis-
ribution of pixel intensities in fore- and background regions. In
ractice, an (artificial) time variable, t, is often introduced and φt

s evolved to minimize some energy function, E(φ, I) (Cremers
t al., 2006).

Algorithms that have been developed for the analysis of
mages obtained from confocal- or multi-photon microscopy are
ften based on the assumption that neuronal structures can be
odeled as tube-like structures (Al-Kofahi et al., 2002; Koh

t al., 2002; Schmitt et al., 2004) with approximately circular
ross-sections. We did not make this assumption, as the pro-
esses observed in our data can have shapes very dissimilar to
ircles.

Level set methods are commonly used for segmenta-
ion of three-dimensional objects for bio-medical applications
Whitaker et al., 2001) as well as in other domains (Huang et al.,
005). Our algorithms differ from existing ones in the way that
nformation is propagated from one image to the next, and in
he exact form of the energy-functions used. Furthermore, many
lgorithms segment the three-dimensional data-blocks directly
nd need time-consuming computations, and are thus not well
uited for online user interaction. Our approach is related to the
ne of (Jurrus et al., 2006), who used a propagation scheme
ased on kalman filters and explicit contours rather than level
ets to represent objects.

.3. Probabilistic framework

.3.1. Statistical model
Let In be image n, and φn the corresponding segmentation

hat is to be found. Also, suppose that we have already segmented
he previous image, such that φn−1 is known. We want to find
he most probable segmentation, φn, given In and φn−1, i.e. one
uch that P(φn|In, φn−1) is maximal (Cremers et al., 2006). By
ayes’ Rule, we obtain

(φn|In, φn−1) ∝ P(In|φn, φn−1)P(φn|φn−1).
P(φn|φn−1) can be interpreted as a prior on the possible
egmentations φn, and can be used to ensure continuity of
bjects between adjacent images. This helps tracing of struc-
ures through multiple images. In addition, other priors can be
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sed to favor smooth contours, or to incorporate prior knowledge
bout the likely shapes of segmented objects. Ideally, these pri-
rs would be learned from manually labeled images, but for lack
f an extensive training set, we had to chose the functional forms
or the prior distributions.

For simplicity, we assume that image, In, is independent of
he segmentation of the previous image, φn−1, given the actual
egmentation, φn, i.e. P(In|φn) = P(In|φn, φn−1). For a given
signed) distance, d, P(In(x)|φn(x) = d) gives the probability
istribution for the intensities of all pixels that are on the outside
or inside, depending on the sign of φ(x)), and have a distance d
o the closest boundary. For convenience, we will from now on
rite φ instead of φn to denote the segmentation function of the

urrent image, n. We use the term φ0 instead of φn−1 to denote
he signed distance function derived from the segmentation of
he previous image.

Maximizing the posterior probability, P(φ|I), is equivalent
o minimizing its negative logarithm, which leads to the energy
unction

(φ|I) = − log(P(I|φ)) − log(P(φ|φ0)) = EI + Eπ.

The total energy is written as a sum of an image-dependent
art EI and a prior-dependent part Eπ. In the following, we
ill specify two possible forms of the probability distributions,
(I|φ) and P(φ|φ0), in detail and also discuss possible alterna-

ives, such as learning the distributions non-parametrically from
ata.

.3.2. A simple algorithm
We assume a normal distribution for the pixel-intensities I(x)

ith mean αφ(x) − β and variance σ2, i.e. on average the inten-
ity of pixels is linearly related to their signed distance to the
oundary. We also assume that the difference of the signed dis-
ance functions of two adjacent images is normally distributed.
s mentioned above, this favors segmentations that are simi-

ar to the segmentation of the previous images, with the aim of
mproving the tracking of structures through multiple images.

The corresponding probability distributions are:

(I|φ) ∝ exp

(
−
∫

Ω

(
I − αφ − β

2σ

)2

dx

)
,

(φ|φ0) ∝ exp

(∥∥∥∥φ − φ0

2η

∥∥∥∥
2
)

= exp

(
−
∫

Ω

(
φ(x) − φ0(x)

2η

)2

dx

)
.

This leads to an energy function of the form:

(φ|I) =
∫

Ω

(
I − αφ − β

σ

)2

+
∫

Ω

(
φ − φ0

η

)2

,

hich attains its minimum for

=
(

α2

σ
+ 1

η

)−1(
α

σ
I + 1

η
φ0 − αβ

σ

)
.

r
p
m
c

ig. 1. Schematic illustration of the algorithm: the segmentation function φ of
he image (red) is the weighted sum of the intensity value of that image (gray)
nd a term that depends on the segmentation of the previous image (blue).

Therefore, the function φ, which characterises the current
egmentation, is merely a linear combination of the intensity
alues of the current image I, the previous segmentation function
0, and a scalar offset (Fig. 1).

Although this model might be too restrictive to provide a good
t to the actual image, using such a simple form has two advan-

ages: Firstly, the minimum of the energy function, min E(φ|I),
as a simple closed-form solution, which permits rapid calcula-
ion of the boundary. Secondly, the parameters α, β, σ and η can
e interpreted and adjusted while the effect on the segmenta-
ion is visually judged. The parameter α re-scales the distances
elative to intensities and β is an offset: If an intensity value
f a pixel is larger than β, then (ignoring the prior), it is more
ikely that the pixel belongs to an object than to the background.
he parameters σ and η control the relative weight of the image
nd the prior-dependent contribution. We also decided to penal-
ze discrepancies between two adjacent segmentations only if
hey exceed a threshold, τ, as small variations between adja-
ent images are to be considered as normal. Thus, the term
φ(x) − φ0(x))2 was replaced by |φ(x) − φ0(x)|2τ , where

|φ(x) − φ0(x)|2τ

=
{

(|φ(x) − φ0(x)| − τ)2 for |φ(x) − φ0(x)| ≥ τ,

0 else.

Then the form of the solution is as before, just with φ0
eplaced by |φ0|τ sign(φ0).

.3.3. An alternative algorithm
The algorithm described above does not attempt to achieve

egmentations with smooth boundaries. In addition, it makes a

ather restrictive assumption about the intensity distribution of
ixels in the image. We therefore implemented a second seg-
entation algorithm with a different energy function that also

ontains a term favoring smooth segmentations.
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tion that is consistent with the given segmentation. For details,
see Osher and Fedkiw (2003) and Sethian (1999).
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This algorithm assumes that the pixel-intensity distributions
f the background and foreground, P− and P+, are different
ut might overlap. Furthermore, we assume that the probability
hat a given pixel has a certain intensity only depends on the
egion that the pixel belongs to, but not on its distance to the
losest boundary. We can estimate P+ and P−, from manually
egmented images. One could use the histograms of intensities
n these images directly (Cremers and Rousson, 2006), but we
hose to approximate them by Gaussians, with specific means
nd variances, �± and σ2±. This has the advantage of specifying
he distribution using a small number of parameters, which can
e manually optimized by the user. We then get

I =
∫

Ω+

1

2
log(σ+)(I(x) − μ+)2 dx

+
∫

Ω−

1

2
log(σ−)(I(x) − μ−)2 dx

= c+
∫

Ω+
(I(x) − μ+)2 dx + c−

∫
Ω−

(I(x) − μ−)2 dx,

here c± = (1/2) log(σ±). The cost function EI is low if the
ixels inside the objects are close to μ+, and the pixels outside
re close to μ−.

The prior-dependent energy Eπ is a sum of the two terms
cont and Esmooth:

π = Econt + Esmooth.

The first term, Econt, ensures that segmentations of adjacent
mages are similar, and is identical to the corresponding term in
he algorithm described in Section 3.3.2:

cont = λcont

∫
Ω

|φ(x) − φ0(x)|2τ dx.

We also include a second term, Esmooth, which penalizes the
ength of the boundary between foreground and background,
avoring smooth boundaries:

smooth = λsmooth

∫
Ω

δ(φ(x))|∇φ| dx.

The choice of the parameters λcont and λsmooth determines
he relative importance of the two energy terms. In particular,
he smoothness term can be switched off by choosing the weight
smooth to be 0.

If λcont = 0, this model is similar to the (piecewise continu-
us) version of the Mumford-Shah functional (Chan and Vese,
001; Mumford and Shah, 1989). In our model, the means, μ±,
re known a priori and do not have to be optimized further.

We are primarily interested in the regions where the actual
egmentation φ is close to 0 rather than in calculating its exact
alue for all x. Therefore, we also add the constraint that, for all
ixels x:
φ(x) − φ0(x)| < τ̂,

here τ̂ is some positive scalar value. This constraint is compu-
ationally convenient, as it allows us to restrict all calculations to
he region of the image where |φ0| < τ̂. The parameter τ̂ is cho-

t
i
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ce Methods  167 (2008) 349–357

en such that it exceeds the largest difference expected between
uccessive images.

.3.4. Solution by gradient descent
We can find a (local) minimum of the energy function E by

n iterative procedure: Starting with an initial guess, φ(0), we
epeatedly update the segmentation function φ via the evolution
quation:

(k+1) = φ(k) + tstep
dφ

dt
,

here tstep is the step-size. The update-direction dφ/dt can be
ound by calculating the gradient of the function E with respect
o the segmentation function φ (Chan and Vese, 2001):

∂E

∂φ
= dφ

dt

= −δ(φ)(log(P+(I)) − log(P−(I))) − ∂

∂φ
log(P(φ|φ0)).

With the particular distributions P± and our energy function
= EI + Econt + Esmooth we obtain

dφ

dt
= δ(φ)(c+(I − μ+)2

−c−(I − μ−)2) + 2λcont|φ − φ0|τ sign(φ − φ0)

+λsmoothδ(φ)∇ ·
( ∇φ

‖∇φ‖
)

.

The gradient dφ/dt is, except for the last two terms in the
um, identical to the one used in (Chan and Vese, 2001). We
mploy the commonly used smooth approximations, Hε and δε,
or the Heaviside- and δ-functions:

Hε(s) = 1

2

(
1 + 2

π
tan−1

( s

ε

))
,

δε(s) = d

ds
Hε(s) = ε

π(ε2 + s2)
,

here ε is a positive parameter.
We initialize the algorithm with the segmentation function

f the previous image, i.e. by φ(0) = φo. Since this initial value
s usually reasonably close to the desired solution, the algo-
ithm converges very quickly. In addition, we only have to
pdate φ close to the boundary Γ , and not on the whole domain
.
Even if the segmentation φ is initialized to be a signed dis-

ance function, this property is not preserved by the update step.
herefore, φ has to be reinitialized every few iterations to ensure
tability of the algorithm. Reinitialization creates a SDF func-
The algorithm described in this section is more flexible than
he one in Section 3.3.2, but also computationally more demand-
ng, as each iteration takes as long as one run of the simple
lgorithm.
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.4. Segmentation of first image

For the segmentation of the very first image in a stack,
e can not rely on information from the preceeding slice, so
slightly different strategy has to be used. We segment the

rst image with one of the two algorithms above (ignoring the
erm Eπ), and define objects to be the connected components
f foreground regions Ω+, which we call o1 . . . on. For each
bject oi, we have to determine whether it actually corresponds
o a neuronal process. We extract three coefficients for each
bject (mean intensity, area, and “roundness”, i.e. area divided
y square of circumference), and perform classification in this
hree-dimensional space with logistic regression, using the man-
ally labeled data as a training set. We also allow adjustment of
he weights of the regression via sliding-bars. With this proce-
ure, a reasonable initialization is obtained quickly, which can
ubsequently be fine-tuned and corrected manually.

. Segmentation software

.1. Graphical user interface

The graphical user interface (GUI) was implemented using
he object-oriented programming language Java. The prepro-
essing steps (Section 2) and the segmentation algorithms
Section 3) were implemented in MATLAB (Mathworks),
nd the matlab-engine is called within the Java-program. Our
oftware includes an easy-to-operate GUI and provides three
mage-processing functionalities:
Image Viewer. The image viewer displays image stacks in
single-image or movie mode and can optionally calculate the
intensity distribution for each image.

n
c
s
v

ig. 2. Segmentation of the first image (screen shots). The overview (A) shows the
een how even small structures can be detected. For each object of the first segmented
ircumference, are extracted (see Section 3.4). The weighted sum of these three coeffi
s used from black for very small values to red for very high values of the weighted s
ence Methods 167 (2008) 349–357 353

Image Preprocessing. The GUI allows selection of the filter
(Section 2), and the setting of user-specified parameters.
Image Segmentation. The GUI allows to choose between
the segmentation algorithms (Section 3) and to set addi-
tional parameters. After the segmentation of the first image,
the resulting boundaries are superimposed on the gray-level
image. The user can now change parameters and select regions
of interest manually. Only the selected regions are used to
calculate the prior for the following image. It is also possible
to interact manually during the segmentation process of later
images by inserting new regions or by adjusting contour lines.
In a last step, contour line information of each image is stored
in an Extensible Markup Language (xml) file that can later be
used for reconstruction and visualization of 3D surfaces.

Regions can be adjusted or added manually by inserting
oints along the desired contour using mouse-clicks, which are
ubsequently interpolated by B-splines. B-splines can easily be
dited and quickly recalculated, because changes in one control
oint only affect the local shape of the curve (de Boor, 1978).
or the implementation we used functions from Matlab’s Spline
oolbox.

The following figure (Fig. 2) displays screenshots of the GUI,
.g. segmentation of the first image (segmentation movies of 100
nd 215 images available as supplementary material).

.2. Visualization

The software was developed to visualize 3D structures of

euronal circuits. The reconstruction of neuronal surfaces from
ontour lines is implemented using a reconstruction method
imilar to that described by Keppel (1975). The software pro-
ides 3D visualization during the segmentation process (Fig. 3).

image and the parameter adjustment GUI. In the zoomed image (B) it can be
image the mean intensity, area, and “roundness”, i.e. area divided by square of
cients is represented by the color of the contour line: a continuous color scale

um. Scale bars 1 �m.
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For both segmentation methods the quality of the segmenta-
tion, and hence the need for user interaction depends mainly on
the contrast between the object and the surround background as
ig. 3. Visualization of axonal structures (size of image stack: 14 �m × 14 �m ×
nd in grey 1.13 �m). (A) Single axonal structure with SBFSEM-images. (B) Tw
C) Zoomed and rotated view of (B). Scale bars: 3 �m (A and B); 1 �m (C).

he reconstructed anatomical data can be exported to differ-
nt 3D visualization programs, such as Amira (2006). To give
n impression of the final visualization of neuronal structures,
ig. 3 displays 3D surfaces of axonal structures in the outer
hiasm of the blowfly Calliphora vicina.

. Quantifying the performance of the algorithms

The performance of the described algorithms depends on the
roperties of the original image stack, e.g. the image contrast
nd number of disrupted images. In particular, we assumed that
bjects are separated from the background by their pixel inten-
ities, and that the objects do not vary to quickly between slices.
hese assumptions have to hold in order for the algorithms to
ork.
To quantify performance we used an image stack from the

alliphora vicina outer chiasm. Osmium tetroxide and uranyl
cetate were used as contrast agents, which made membranes
ppear darker. We filtered the image stack with the Gaussian fil-
er, standard deviation σ = 1 pixel (Section 2) and extracted
n image cube of 512 × 512 × 250 pixels in x-, y- and z-
irection. The extracted image cube covers a tissue volume of
4 �m × 14 �m × 13 �m. To demonstrate the performance of
he algorithm for processes with different properties, we selected
egions with area size ranging from 55 up to 7800 pixels in the
nitial slice, and different “roundness factors” (see Fig. 4).

We analyzed this data set with both methods described in
ection3:
Using the simple algorithm (Section 3.3.2), it took, on aver-
age, 3 s to segment one image. User interaction consisted of
eye-inspection of the segmentation and, if necessary, manual
correction. In the image stack displayed above, the user had
to correct 2% of 2000 regions manually.

F
s
f
i
u

, slice thickness 50 nm, average diameter of process shown in brown is 1.53 �m
nal structures lying close to each other, embedded in a SBFSEM-image block.

Alternative algorithm. Average processing time per image
amounted to 5 s plus user interaction. Out of 2140 regions,
1.5% regions had to be corrected manually.
ig. 4. Quantification of performance. Fifteen regions (labeled in red) were
egmented for the performance test. The number of pixels per region ranges
rom 55 pixels (region 9, labeled in green) up to 7800 pixels (region 15, labeled
n green). The roundness factors range from 0.3217 (region 12, labeled in green)
p to 0.9069 (region 9, labeled in green). Scale bar: 20 pixels (540 nm).
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Fig. 5. Typical errors made by the algorithm. Two typical situations in which the algorithm failed to give a satisfactory segmentation, and had to be corrected
manually. (Left side) Original image section; (right side) segmentation results, labeled in red. Scale bar: 28 pixels (750 nm). (A) Image 120: the structure surrounding
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he black dot (see yellow arrow) has a ragged contour, and is not successfully
egion at the lower left of the region we want to segment is separated by only
efore, the region indicated by the green line is separated into two regions.

ell as the complexity of the contour lines. For example, region
5 (in Fig. 4), which has a high contrast and does not devi-
te from one image to the next, could be segmented and traced
hrough all slices without any user interaction. Regions 3 and 7
n Fig. 4 have complicated contour lines which are very variable
etween images. Much more user interaction was required for
hese two objects than for others, but they could be reconstructed
sing a combination of algorithmic user-interaction and manual
orrections (see Fig. 3 for the three-dimensional reconstruction,
nd Figs. 5 and 6).
Independently of the method used, the total time taken per
mage (algorithmic segmentation plus user interaction) was a
bout 15 s for 15 selected regions. A purely manual tracing of the
elected regions (Fig. 4) takes about 12 min per image. The user

i
a

ig. 6. Splitting of objects. The use of a level set approach makes it possible to segm
plit into two constituents, each of which is tracked in subsequent images. Scale bar:
nted by the algorithm, which splits it up into two regions. (B) Image 129: the
and light line (yellow arrow), and thus wrongly joined to the large region. As

ad to trace the boundaries for each region manually by marking
orner-points with mouse-clicks. We, thus, have a speed-up by
factor of about 50 by algorithmic over manual segmentation.

All performance tests were executed on a 64-bit worksta-
ion (64-Bit-Dual-Core Intel Xeon Processors, operating system:

indows XP64).

. Possible extensions

.1. Including texture information
Instead of using the difference in distributions of single pixel
ntensities, additional information can be obtained by looking
t texture differences between fore- and background regions.

ent splitting objects without reparametrization. In this example, the object is
55 pixels (1.47 �m).
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exture information could be, for example, useful for detec-
ion of mitochondria. To use texture information, we can look
t the neighborhood, N(x), of each pixel x, and estimate the
istributions of these patches inside and outside objects. The
eighborhood could either be taken to be two-dimensional, i.e.
y looking at nearby pixels, or three-dimensional by also includ-
ng pixels from adjacent images. We can train a classification
lgorithm on a training set of patches sampled from labeled
mages, and set L(x) to be the output of the classifier to input

(x). The value of L(x) will then be positive if the neighbor-
ood N(x) is more likely to belong to the foreground than the
ackground, and negative otherwise. This newly constructed
mage, L(x), can be segmented using the algorithms described
bove. This approach can be implemented with any classifier
hat produces real-valued rather than binary output, such as
upport-vector machines (Kim et al., 2002).

.2. Incorporating edge information

Region-based methods are only appropriate if the distribu-
ions of pixels (or textures) in the fore- and background regions
re sufficiently different. In some situations, it might be advan-
ageous to use information about the edges themselves, for
xample when different regions have similar statistical structure,
ut are separated by strong edges.

Edge-based algorithms could be incorporated by including
dditional terms into the evolution-equation for the segmentation
, yielding a level set equation of the form:

dφ

dt
+ VE · ∇φ + (Vn − Vκκ)|∇φ| = 0.

The vector field VE and the scalar field Vn are chosen such
hat the contour Γ moves towards edges of the image, with the
im of making the segmentation-boundary, Γ , consistent with
dges in the image. The coefficient for the curvature-dependent
orce, Vκ (which has to be non-negative for the method to be
table), can be used to ensure smooth boundaries.

.3. Flexible priors for φ

Our prior for the segmentation φn of image n is peaked at
he segmentation φn−1 of the previous image independent of
he segmentation of slices n − k, with k > 1. Given sufficient
raining data, one could drop this rather restrictive assumption,
nd use more than one image in the calculation of the prior
Cremers, 2006). For example, one could assume φn to be sim-
lar to 2φn−1 − φn−2, which is the linear prediction based on
he two previous images. More generally, one could learn the
est prediction of φn (given previous slices), and use both the
rediction and the estimated uncertainty of the prediction for the
egmentation process.

. Conclusion
The described segmentation algorithms in combination with
he developed software allows a comfortable analysis of SBF-
EM image stacks. Images are analyzed in sequence to allow
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rocessing of large amounts of data, and to facilitate user inter-
ction at every stage. Continuity of segmentation, which is
mportant especially for the tracking of fine structure across
mages, is enforced by our algorithms. In addition, simultaneous
econstruction of the resulting 3D structure enables the user to
ocate errors and to interact during the segmentation step. While,
ltimately, algorithms that do not require any or very little user-
nteraction are desirable, the algorithms described here present
first step in this direction. In particular, they can be applied if

n extensively labeled data-set is not available, or as a means of
uickly obtaining such data-sets.
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