
Electrophysiology Analysis, Bayesian

Jakob H. Macke*
Max Planck Institute for Biological Cybernetics and Bernstein Center for Computational Neuroscience, T€ubingen,
Germany

Synonyms

Bayesian modelling of neural recordings; Bayesian neural data analysis

Definition

Bayesian analysis of electrophysiological data refers to the statistical processing of data obtained in
electrophysiological experiments (i.e., recordings of action potentials or voltage measurements with
electrodes or imaging devices) which utilize methods from Bayesian statistics. Bayesian statistics is
a framework for describing and modelling empirical data using the mathematical language of
probability to model uncertainty. Bayesian statistics provides a principled and flexible framework
for combining empirical observations with prior knowledge and for quantifying uncertainty. These
features are especially useful for analysis questions in which the dataset sizes are small in compar-
ison to the complexity of the model, which is often the case in neurophysiological data analysis.

Detailed Description

Overview
The Bayesian approach to statistics has become an established framework for analysis of empirical
data (Gelman et al. 2013; Spiegelhalter and Rice 2009). While originating as a subdiscipline of
statistics, Bayesian techniques also have become associated with the field of machine learning
(Bishop 2006; Barber 2012). Bayesian statistics is well suited for the analysis of neurophysiological
data (Brown et al. 2004; Kass et al. 2005; Chen 2013): It provides a principled framework for
incorporating a priori knowledge about the system by using prior distributions, as well as for
quantifying the residual (or posterior) uncertainty about the parameters after observing the data. For
many analysis questions in neurophysiology, one needs to make inferences based on datasets which
are small in comparison to the dimensionality or complexity of the model of interest. First, this
makes it important to regularize the parameter estimates such that they favor explanations of the data
which are consistent with prior knowledge. The use of priors also makes it possible to automatically
control the complexity of the model inferred from data. Second, the fact that the data sizes are small
also implies the need to quantify and visualize to what extent the parameters of the model are well
constrained by the data. Third, in Bayesian statistics the parameters of the model are themselves
treated as stochastic variables. This provides means of defining richer models by using simple
models as building blocks of hierarchically defined models. Fourth, Bayesian statistics provides
powerful machinery for dealing with the presence of unobserved processes in the model (so-called
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latent variables), which are ubiquitous in neurophysiological applications, e.g., arising from internal
states or inputs that cannot be measured directly.

In Bayesian statistics, one starts by writing down a probabilistic model P(Y|y) of how data
Y collected in an experiment are related to an underlying parameter y. Regarded as a function of
y, P(Y|y) is sometimes referred to as the likelihood. Prior knowledge about the possible values of y is
encoded by a prior distribution P(y). Taken together, the prior and the model P(Y|y) define
a generative model of the data – one models the process of data generation as first picking a set of
parameters from P(y), and then data as being generated from the likelihood model P(Y|y). In
Bayesian inference, one then tries to invert this process: Given empirical data Y, which values of y
are consistent both with Y and with the prior assumptions encoded in P(y)? The trade-off between
prior and likelihood will be determined by the amount of available data: For small dataset sizes, the
prior will have a strong influence, but for large datasets, the likelihood term which depends on the
observed data will dominate. Thus, the use of prior distributions can be seen as a form of
regularization which protects the model against overfitting to the observed data.

The posterior distribution P(y|Y) is calculated via Bayes rule

P yjYð Þ ¼ P Y jyð ÞP yð Þ
P Yð Þ : (1)

The posterior distribution P(y|Y) can then be used to make statements about the parameter values
y. For example, the posterior mean E(y|Y) ¼ Ð

yP(y|Y)dy is often reported and visualized in analyses
of neurophysiological data as a point estimate of the parameters. In addition, the posterior distribu-
tion also gives insight into which properties of y are well or less well constrained by the data. If, for
example, the posterior variance Var(y|Y) is small, this implies that the posterior distribution is
concentrated around the posterior mean and thus that y is well constrained by the data. In general,
Bayesian estimators are derived from the posterior distribution, and the focus of Bayesian
approaches is always to characterize the distribution parameters y given a particular dataset. This
is in contrast to classical (or frequentist) statistical approaches, which generally focus on making
statements about what will happen – or what is unlikely to happen – if one repeatedly sampled
dataset given a particular parameter setting.

The denominator P(Y) in Eq. 1 has to be such that the posterior distribution is normalized, i.e.,
P(Y) ¼ Ð

P(Y|y0)P(y0)dy0. As P(Y) is the likelihood of the data after marginalizing out (i.e.,
integrating) the parameters y, P(Y) is sometimes referred to as the marginal likelihood or evidence.
The evidence provides an estimate of how likely the observed data are for a given model and prior. It
is a useful quantity for setting so-called hyperparameters as well as for calculating Bayes factors.
A Bayes factor is the ratio of the marginal likelihoods of two models and can be used for hypothesis
testing and model selection, i.e., for deciding which of two possible models provides a better
explanation of some observed data Y (Gelman et al. 2013; Spiegelhalter and Rice 2009). While
the use of Bayes factors is gaining popularity in the field of neuroscience, publishing conventions
imply that the majority of statistical reporting of results in neurophysiological studies is based on
classical, frequentist tests and definitions of p-values.

Example: Receptive Field Estimation
We illustrate the utility of Bayesian approaches for neural data analysis using the example of
receptive field estimation for stochastic stimuli using linear models. In a linear encoding model
(Paninski et al. 2007), it is assumed that mean firing rate m(s) of a neuron in response to a given
D-dimensional stimulus can be modelled as being a linear function of the stimulus m(s)¼∑ i ¼ 1

D yisi.
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In the simplest case, the variability around the mean response is then assumed to be given by
a Gaussian distributionY ¼ yjs � N m sð Þ, s2ð Þwith variance s2. The parameter vector y is called the
receptive field, and one tries to estimate y from the responses y1 . . . yn of the neuron to multiple
stimuli s1 . . . sn. In classical approaches, one would not place any prior distribution on the values of
the parameters y, and this approach would yield receptive field estimates which overfit and therefore
give noisy estimates especially for small datasets (see Fig. 1a, left column).

In Bayesian approaches one places a prior distribution P(y) on y. A popular choice for P(y) is to
chose multivariate normal distribution P yð Þ � expð � 1

2

X
i, jyiyjQij

�
on y, where Q is the inverse-

covariance matrix of the distribution, and different choices of Q correspond to different priors. Q is
sometimes chosen to be proportional to an identity matrix. In this case, the Bayesian estimate of y
penalizes solutions for which the square deviations ∑ jyi

2 are big. However, as this simple prior does
not well capture the structure of receptive fields, it only yields slightly improved estimates (Fig. 1a,
middle column). It has generally been assumed that receptive fields are smooth and localized, and
covariance matrices which reflect these properties have been developed (Sahani and Linden 2003;
Park and Pillow 2011). Figure 1b and c shows that using the Bayesian approach developed by Park
and Pillow (which favors solutions that are localized and smooth) yields receptive field estimates
which have superior quality to those obtained using maximum likelihood and which are identifiable
on smaller dataset sizes. It is worth noting this prior (and any appropriately constructed Bayesian
prior) only favors but does not enforce receptive fields which are consistent with its assumptions and
therefore would still leave open the possibility of being “overruled” if the data provide strong
evidence for a solution which violates the assumptions.

Algorithmic Challenges
One of the key challenges and practical drawbacks of Bayesian statistics is the fact that computation
of the posterior distribution P(y|Y) is often hard. Exact solutions are only available in a small number
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Fig. 1 Illustration of a Bayesian approach for estimating receptive fields (RFs) (Modified, with permission, from Park
and Pillow, Plos Computational Biology (2011) (Park and Pillow 2011)). (a) Spatiotemporal RFs of neurons in primary
visual cortex. A light pixel indicates that the neuron is excited by a dark stimulus at a given spatiotemporal position,
a dark pixel that its firing is suppressed, and gray that its firing rate is not modulated.ML: RFs estimated usingmaximum
likelihood (i.e., with a “non-Bayesian” approach) using 1, 2, or 4 min of data. Ridge: RF estimated with a simple prior
that favors solutions with small weights.Localized:RFs estimated with Bayesian method developed by Park and Pillow
which incorporates the prior knowledge that receptive fields are localized and smooth. Localized estimator achieves
better receptive field estimates (as indicated by a cross-validation error metric, red numbers). (b) Advantage of localized
estimator persists across different dataset sizes. (c) On average, the non-Bayesian method (ML) requires five times more
data than localized estimator to achieve a similar cross-validation error
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of cases (e.g., when the likelihood of the model is in the exponential family and the prior distribution
is conjugate to the likelihood (Gelman et al. 2013) ), but not for most models of interest in
neurophysiological data analysis. Therefore, in general, approximate methods have to be used to
characterize the posterior distribution and its properties (Chen 2013).

Approximate methods can be broadly characterized as being either deterministic or stochastic. In
deterministic approximations, the posterior distribution is approximated by a distribution which has
a simpler functional form, and various approaches exist for finding a “good” approximation (such as
the Laplace approximation, Expectation Propagation, Variational Inference; see Bishop (2006) for
details). In stochastic (orMonte Carlo) methods, sampling algorithms are used to generate samples
from the posterior distribution P(y|Y), and these samples can then be used to perform analyses such
as calculating the mean and other moments of the distribution or calculating its marginals. While
Monte Carlo methods are typically more flexible than deterministic approximations, sampling
algorithms such as Markov Chain Monte Carlo methods can be computationally intensive (Kass
et al. 1998; Gelman et al. 2013; Cronin et al. 2010).

Example Applications
Bayesian statistical methods have been used extensively on a wide range of analysis questions
within neurophysiology, including the following examples:

Neural Characterization: To describe how neural spiking activity depends on external stimuli, on
its own spiking history as well as on the activity of other neurons, Bayesian methods can be used
to estimate receptive fields (Sahani and Linden 2003; Gerwinn et al. 2010; Park and Pillow 2011),
tuning curves (Cronin et al. 2010), and spike-history filters (Paninski et al. 2007).

Spike Sorting and Detection: Inference in hierarchical Bayesian models has been used to extract
putative spikes of single neurons from extracellular recordings (Wood et al. 2004) or calcium
measurements (Vogelstein et al. 2009 Jul 22).

Stimulus Reconstruction and Decoding: To reconstruct external stimuli and behavior from
population activity or to decode intended movements for brain-machine interface applications,
Bayesian time series models have been developed (Wu et al. 2006; Gerwinn et al. 2009).

Estimation of Information-Theoretic Quantities: Priors over histograms have been proposed in
order to reduce the bias in estimating information-theoretic quantities such as entropy or mutual
information (Nemenman et al. 2004; Archer et al. 2012).

Functional Connectivity across Brain Areas: Functional connections across brain areas have been
estimated with a range of different Bayesian approaches. In particular,Dynamical Causal Models
have enjoyed popularity especially for modelling fMRI and EEG data (Marreiros et al. 2010).

Cross-References

▶ Imaging Analysis, Bayesian
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