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Abstract

Neural responses in visual cortex are influenced by visual stimuli and by ongo-
ing spiking activity in local circuits. An important challenge in computational
neuroscience is to develop models that can account for both of these features in
large multi-neuron recordings and to reveal how stimulus representations interact
with and depend on cortical dynamics. Here we introduce a statistical model of
neural population activity that integrates a nonlinear receptive field model with a
latent dynamical model of ongoing cortical activity. This model captures temporal
dynamics and correlations due to shared stimulus drive as well as common noise.
Moreover, because the nonlinear stimulus inputs are mixed by the ongoing dynam-
ics, the model can account for a multiple idiosyncratic receptive field shapes with
a small number of nonlinear inputs to a low-dimensional dynamical model. We
introduce a fast estimation method using online expectation maximization with
Laplace approximations, for which inference scales linearly in both population
size and recording duration. We test this model to multi-channel recordings from
primary visual cortex and show that it accounts for neural tuning properties as
well as cross-neural correlations.

1 Introduction

Neurons in sensory cortices organize into highly-interconnected circuits that share common input,
dynamics, and function. For example, across a cortical column, neurons may share stimulus de-
pendence as a result of sampling the same location of visual space, having similar orientation
preference [1] or receptive fields with shared sub-units [2]. As a result, a substantial fraction of
stimulus-information can be redundant across neurons [3]. Recent advances in electrophysiology
and functional imaging allow us to simultaneously probe the responses of the neurons in a column.
However, the high dimensionality and (relatively) short duration of the resulting data renders analy-
sis a difficult statistical problem.

Recent approaches to modeling neural activity in visual cortex have focused on characterizing the re-
sponses of individual neurons by linearly projecting the stimulus on a small feature subspace that op-
timally drives the cell [4, 5]. Such “systems-identification” approaches seek to describe the stimulus-
selectivity of single neurons separately, treating each neuron as an independent computational unit.
Other studies have focused on providing probabilistic models of the dynamics of neural populations,
seeking to elucidate the internal dynamics underlying neural responses [6, 7, 8, 9, 10, 11]. These
approaches, however, typically do not model the effect of the stimulus (or do so using only a linear
stimulus drive). To realize the potential of modern recording technologies and to progress our un-
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derstanding of neural population coding, we need methods for extracting both the features that drive
a neural population and the resulting population dynamics [12].

We propose the Quadratic Input Latent Dynamical System (QLDS) model, a statistical model that
combines a low-dimensional representation of population dynamics [9] with a low-dimensional de-
scription of stimulus selectivity [13]. A low-dimensional dynamical system governs the population
response, and receives a nonlinear (quadratic) stimulus-dependent input. We model neural spike
responses as Poisson (conditional on the latent state), with exponential firing rate-nonlinearities. As
a result, population dynamics and stimulus drive interact multiplicatively to modulate neural fir-
ing. By modeling dynamics and stimulus dependence, our method captures correlations in response
variability while also uncovering stimulus selectivity shared across a population.

stimulus

...
quadratic

linear
filters population 

spike
response

intrinsic
noise

linear
update

linear
dynamics

+

A

nonlinear
function noise

Figure 1: Schematic illustrating the Quadratic input latent dynamical system model (QLDS).
The sensory stimulus is filtered by multiple units with quadratic stimulus selectivity (only one of
which is shown) which model the feed-forward input into the population. This stimulus-drive pro-
vides input into a multi-dimensional linear dynamical system model which models recurrent dynam-
ics and shared noise within the population. Finally, each neuron yi in the population is influenced
by the dynamical system via a linear readout. QLDS therefore models both the stimulus selectivity
as well as the spatio-temporal correlations of the population.

2 The Quadratic Input Latent Dynamical System (QLDS) model

2.1 Model

We summarize the collective dynamics of a population using a linear, low-dimensional dynamical
system with an n-dimensional latent state xt. The evolution of xt is given by

xt = Axt−1 + fφ(ht) + εt, (1)
where A is the n × n dynamics matrix and ε is Gaussian innovation noise with covariance matrix
Q, εt ∼ N (0,Q). Each stimulus ht drives some dimensions of xt via a nonlinear function of the
stimulus, fφ, with parameters φ, where the exact form of f(·) will be discussed below. The log
firing rates zt of the population couple to the latent state xt via a loading matrix C,

zt = Cxt + D ∗ st + d. (2)
Here, we also include a second external input st, which is used to model the dependence of the
firing rate of each neuron on its own spiking history [14]. We define D ∗ st to be that vector
whose k-th element is given by (D ∗ st)k ≡

∑Ns

i=1 Dk,isk,t−i. D therefore models single-neuron
properties that are not explained by shared population dynamics, and captures neural properties such
as burstiness or refractory periods. The vector d represents a constant, private spike rate for each
neuron. The vector xt represents the n-dimensional state of m neurons. Typically n < m, so the
model parameterizes a low-dimensional dynamics for the population.

We assume that, conditional on zt, the observed activity yt of m neurons is Poisson-distributed,
yk,t ∼ Poisson(exp(zk,t)). (3)

While the Poisson likelihood provides a realistic probabilistic model for the discrete nature of spik-
ing responses, it makes learning and inference more challenging than it would be for a Gaussian
model. As we discuss in the subsequent section, we rely on computationally-efficient approxima-
tions to perform inference under the Poisson observation model for QLDS.
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2.2 Nonlinear stimulus dependence

Individual neurons in visual cortex respond selectively to only a small subset of stimulus features
[4, 15]. Certain subpopulations of neurons, such as in a cortical column, share substantial receptive
field overlap. We model such a neural subpopulation as sensitive to stimulus variation in a linear
subspace of stimulus space, and seek to characterize this subspace by learning a set of basis vectors,
or receptive fields, wi. In QLDS, a subset of latent states receives a nonlinear stimulus drive, each
of which reflects modulation by a particular receptive field wi. We consider three different forms
of stimulus model: a fully linear model, and two distinct quadratic models. Although it is possi-
ble to incorporate more complicated stimulus models within the QLDS framework, the quadratic
models’ compact parameterization and analytic elegance make them both flexible and computation-
ally tractable. What’s more, quadratic stimulus models appear in many classical models of neural
computation, e.g. the Adelson-Bergen model for motion-selectivity [16]; quadratic models are also
sometimes used in the classification of simple and complex cells in area V1 [4].

We express our stimulus model by the function fφ(ht), where φ represents the set of parameters de-
scribing the stimulus filters wi and mixing parameters ai, bi and ci (in the case of the quadratic mod-
els). When fB(ht) is identically 0 (no stimulus input), the QLDS with Poisson observations reduces
to what has been previously studied as the Poisson Latent Dynamical System (PLDS) [17, 18, 9].
We briefly review three stimulus models we consider, and discuss their computational properties.

Linear: The simplest stimulus model we consider is a linear function of the stimulus,
f(ht) = Bht, (4)

where the rows of B as linear filters, and φ = {B}. This baseline model is identical to [18, 9] and
captures simple cell-like receptive fields since the input to latent states is linear and the observation
process is generalized linear.

Quadratic: Under the linear model, latent dynamics receive linear input from the stimulus along
a single filter dimension, wi. In the quadratic model, we permit the input to each state to be a
quadratic function of wi. We describe the quadratic by including three additional parameters per
latent dimension, so that the stimulus drive takes the form

fB,i(ht) = ai
(
wT
i ht

)2
+ bi

(
wT
i ht

)
+ ci. (5)

Here, the parameters φ = {wi, ai, bi, ci : i = 1, . . . ,m} include multiple stimulus filters wi and
quadratic parameters (ai, bi, ci). Equation 5 might result in a stimulus input that has non-zero mean
with respect to the distribution of the stimulus ht, which may be undesirable. Given the covariance
of ht, it is straightforward to constrain the input to be zero-mean by setting ci = −aiwT

i Σwi, where
Σ is the covariance of ht and we assume the stimulus to have zero mean as well. The quadratic model
enables QLDS to capture phase-invariant responses, like those of complex cells in area V1.

Quadratic with multiplicative interactions: In the above model, there are no interactions be-
tween different stimulus filters, which makes it difficult to model suppressive or facilitating interac-
tions between features [4]. Although contributions from different filters combine in the dynamics
of x, any interactions are linear. Our third stimulus model allows for multiplicative interactions
between r < m stimulus filters, with the i-th dimension of the input given by

fφ,i(ht) =

r∑
j=1

ai,j
(
wi

Tht
) (

wT
j ht

)
+ bi

(
wi

Tht
)

+ ci.

Again, we constrain this function to have zero mean by setting ci = −
∑r
j=1 ai,j

(
wT
i Σwj

)
.

2.3 Learning & Inference

We learn all parameters via the expectation-maximization (EM) algorithm. EM proceeds by alter-
nating between expectation (E) and maximization (M) steps, iteratively maximizing a lower-bound
to the log likelihood [19]. In the E-step, one infers the distribution over trajectories xt, given data
and the parameter estimates from the previous iteration. In the M-step, one updates the current pa-
rameter estimates by maximizing the expectation of the log likelihood, a lower bound on the log
likelihood. EM is a standard method for fitting latent dynamical models; however, the Poisson
observation model complicates computation and requires the use of approximations.
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E-step: With Gaussian latent states xt, posterior inference amounts to computing the posterior
means µt and covariances Qt of the latent states, given data and current parameters. With Pois-
son observations exact inference becomes intractable, so that approximate inference has to be used
[18, 20, 21, 22]. Here, we apply a global Laplace approximation [20, 9] to efficiently (linearly
in experiment duration T ) approximate the posterior distribution by a Gaussian. We note that each
fB(ht) in the E-step is deterministic, making posterior inference identical to standard PLDS models.
We found a small number of iterations of Newton’s method sufficient to perform the E-step.

M-step: In the M-step, each parameter is updated using the means µt and covariances Qt inferred
in the E-step. Given µt and Qt, the parameters A and Q have closed-form update rules that are
derived in standard texts [23]. For the Poisson likelihood, the M-step requires nonlinear optimization
to update the parameters C, D and d [18, 9]. While for linear stimulus functions fφ(ht) the M-
step has a closed-form solution, for nonlinear stimulus functions we optimize φ numerically. The
objective function for φ given by

g(φ) = −1

2

T∑
t=2

[
(µt −Aµt−1 − fφ(ht))

TQ−1(µt −Aµt−1 − fφ(ht))
]

+ const.,

where µt = E[xt|yt−1,ht]. If φ is represented as a vector concatenating all of its parameters, the
gradient of g(φ) takes the form

∂g(φ)

∂φ
= −Q−1

T∑
t=2

(µt −Aµt−1 − fφ(ht))
∂f(ht)

∂φ
. (6)

For the quadratic nonlinearity, the gradients with respect to f(ht) take the form

∂f(ht)

∂wi
= 2

[
ai

(
ht

Twi

)
+ bi

]
ht

T,
∂f(ht)

∂ai
=
(
ht

Twi

)2
, (7)

∂f(ht)

∂bi
= ht

Twi,
∂f(ht)

∂ci
= 1. (8)

Gradients for the quadratic model with multiplicative interactions take a similar form. When con-
strained to be 0-mean, the gradient for ci disappears, and is replaced by an additional term in the
gradients for a and wi (arising from the constraint on c).

We found both computation time and quality of fit for QLDS to depend strongly upon the optimiza-
tion procedure used. For long time series, we split the data into small minibatches. The QLDS E-step
and M-step each naturally parallelize across minibatches. Neurophysiological experiments are often
naturally segmented into separate trials across different stimuli and experimental conditions, making
it possible to select minibatches without boundary effects.

3 Application to simulated data

We illustrate the properties of QLDS using a simulated population recording of 100 neurons, each
responding to a visual stimulus of binary, white spatio-temporal noise of dimensionality 240. We
simulated a recording with T = 50000 samples and a 10-dimensional latent dynamical state. Five of
the latent states received stimulus input from a bank of 5 stimulus filters (see Fig. 2A, top row), and
the remaining latent dimensions only had recurrent dynamics and noise. We aimed to approximate
the properties of real neural populations in early sensory cortex. In particular, we set the dynamics
matrix A by fitting the model to a single neuron recording from V1 [4]. When fitting the model,
we assumed the same dimensionalities (10 latent states, 5 stimulus inputs) as those used to generate
the data. We ran 100 iterations of EM, which—-for the recording length and dimensionality of this
system—took about an hour on a 12–core intel Xeon CPU at 3.5GHz.

The model recovered by EM matched the statistics of the true model well. Linear dynamical system
and quadratic models of stimulus selectivity both commonly have invariances that render a particular
parameterization unidentifiable [4, 15], and QLDS is no exception: the latent state (and its parame-
ters) can be rotated without changing the model’s properties. Hence it is possible only to compare
the subspace recovered by the model, and not the individual filters. In order to visualize subspace
recovery, we computed the best `2 approximation of the 5 “true” filters in the subspace spanned by
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Figure 2: Results on simulated data. Low-dimensional subspace recovery from a population of
100 simulated neurons in response to a white noise stimulus. (A) Simulated neurons receive shared
input from 5 spatio-temporal receptive fields (top row). QLDS recovers a subspace capable of
representing the original 5 filters (bottom row). (B) QLDS permits a more compact representation
than the conventional approach of mapping receptive fields for each neuron. For comparison with
the representation in panel A, we here show the spike-triggered averages of the first 60 neurons in the
population. (C) QLDS also models shared variability across neurons, as visualised here by the three
different measures of correlation. Top: Total correlation coefficients between each pair of neurons.
Values below the diagonal are from the simulated data, above the diagonal correspond to correlations
recovered by the model. Center: Stimulus correlations Bottom: Noise correlations. (D) Eigenvalues
of dynamics matrix A (black is ground truth, red is estimated). (E) In this model, stimulus and noise
correlations are dependent on each other, for the parameters chosen in this stimulation, there is a
linear relationship between them. (F) Distribution of population spike counts, i.e. total number of
spikes in each time bin across the population.
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Figure 3: Recovery of stimulus subspace as a function of population size (A) and experiment dura-
tion (B). Each point represents the best filter reconstruction performance of QLDS over 20 distinct
simulations from the same “true” model, each initialized randomly and fit using the same number
of EM iterations. Models were fit with each of three distinct stimulus nonlinearities, linear s (blue),
quadratic (green), and quadratic with multiplicative interactions (red). Stimulus input of the “true”
was a quadratic with multiplicative interactions, and therefore we expect only the multiplicative
model (red) to each low error rates.

the estimated ŵi (see Fig. 2 A bottom row). In QLDS, different neurons share different filters, and
therefore these 5 filters provide a compact description of the stimulus selectivity of the population
[24]. In contrast, for traditional single-neuron analyses [4] ‘fully-connected’ models such as GLMs
[14] one would estimate the receptive fields of each of the 100 filters in the population, resulting in a
much less compact representation with an order of magnitude more parameters for the stimulus-part
alone (see Fig. 2B).
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QLDS captures both the stimulus-selectivity of a population and correlations across neurons. In
studies of neural coding, correlations between neurons (Fig. 2C, top) are often divided into stimulus-
correlations and noise-correlations. Stimulus correlations capture correlations explainable by sim-
ilarity in stimulus dependence (and are calculated by shuffling trials), whereas noise-correlations
capture correlations not explainable by shared stimulus drive (which are calculated by correlating
residuals after subtracting the mean firing rate across multiple presentations of the same stimulus).
The QLDS-model was able to recover both the total, stimulus and noise correlations in our simula-
tion (Fig. 2C), although it was fit only to a single recording without stimulus repeats. Finally, the
model also recovered the eigenvalues of the dynamics (Fig. 2D), the relationship between noise and
stimulus correlations (Fig. 2E) and the distribution of population spike counts (Fig. 2F).

We assume that all stimulus dependence is captured by the subspace parameterized by the filters
of the stimulus model. If this assumption holds, increasing the size of the population increases
statistical power and makes identification of the stimulus selectivity easier rather than harder, in
a manner similar to that of increasing the duration of the experiment. To illustrate this point, we
generated multiple data-sets with larger population sizes, or with longer recording times, and show
that both scenarios lead to improvements in subspace-recovery (see Fig. 3).

4 Applications to Neural Data

Cat V1 with white noise stimulus We evaluate the performance of the QLDS on multi-electrode
recordings from cat primary visual cortex. Data were recorded from anaesthetized cats in response to
a single repeat of a 20 minute long, full-field binary noise movie, presented at 30 frames per second,
and 60 repeats of a 30s long natural movie presented at 150 frames per second. Spiking activity
was binned at the frame rate (33 ms for noise, 6.6 ms for natural movies). For noise, we used the
first 18000 samples for training, and 5000 samples for model validation. For the natural movie, 40
repeats were used for training and 20 for validation. Silicon polytrodes (Neuronexus) were employed
to record multi-unit activity (MUA) from a single cortical column, spanning all cortical layers with
32 channels. Details of the recording procedure are described elsewhere [25]. For our analyses, we
used MUA without further spike-sorting from 22 channels for noise data and 25 channels for natural
movies. We fit a QLDS with 3 stimulus filters, and in each case a 10-dimensional latent state, i.e. 7
of the latent dimensions received no stimulus drive.

Spike trains in this data-set exhibited “burst-like” events in which multiple units were simultaneously
active (Fig. 4A). The model captured these events by using a dimension of the latent state with
substantial innovation noise, leading substantial variability in population activity across repeated
stimulus presentations. We also calculated pairwise (time-lagged) cross-correlations for each unit
pair, as well as the auto-correlation function for each unit in the data (Fig. 4B, 7 out of 22 neurons
shown, results for other units are qualitatively similar.). We found that samples from the model
(Fig. 4B, red) closely matched the correlations of the data for most units and unit-pairs, indicating
the QLDS provided an accurate representation of the spatio-temporal correlation structure of the
population recording. The instantaneous correlation matrix across all 22 cells was very similar
between the physiological and sampled data (Fig. 4C). We note that receptive fields (Fig. 4F) in this
data did not have spatio-temporal profiles typical of neurons in cat V1 (this was also found when
using conventional analyses such as spike-triggered covariance). Upon inspection, this was likely a
consequence of an LGN afferent also being included in the raw MUA. In our analysis, a 3-feature
model captured stimulus correlations (in held out data) more accurately than 1- and 2- filter models.
However, 10-fold cross validation revealed that 2- and 3- filter models do not improve upon a 1-filter
model in terms of one-step-ahead prediction performance (i.e. trying to predict neural activity on
the next time-step using past observations of population activity and the stimulus).

Macaque V1 with drifting grating stimulus: We wanted to evaluate the ability of the model to
capture the correlation structure (i.e. noise and signal correlations) of a data-set containing multiple
repetitions of each stimulus. To this end, we fit QLDS with a Poisson observation model to the
population activity of 113 V1 neurons from an anaesthetized macaque, as described in [26]. Drift-
ing grating stimuli were presented for 1280ms, followed by a 1280ms blank period, with each of
72 grating orientations repeated 50 times. We fit a QLDS with a 20-dimensional latent state and 15
stimulus filters, where the stimulus was paramterized as a set of phase-shifted sinusoids at the appro-
priate spatial and temporal frequency (making ht 112-dimensional). We fit the QLDS to 35 repeats,
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Figure 4: QLDS fit to V1 cells with noise stimuli. We fit QLDS to T = 18000 samples of 22
neurons responding to a white noise stimulus, data binned at 33 ms. We used the quadratic with
multiplicative interactions as the stimulus nonlinearity. The QLDS has a 10-dimensional latent state
with 3 stimulus inputs. All results shown here are compared against T = 5000 samples of test-data,
not used to train the model. (A) Top row: Rasters from recordings from 22 cells in cat visual cortex,
where cell index appears on the y axis, and time in seconds on the x. Second and third row: Two in-
dependent samples from the QLDS model responding to the same noise stimuli. Note that responses
are highly variable across trials. (B) Auto- and cross-correlations for data (black) and model (red)
cells. For the model, we average across 60 independent samples, thickness of red curves reflects 1
standard deviation from the mean. Panel (i, j) corresponds to cross-correlation between units with
indices i and j, panels along the diagonal show auto-correlations. (C) Total correlations for the true
(lower diagonal) and model (upper diagonal) populations. (D) Noise correlations scattered against
stimulus correlations for the model. As we did not have repeat data for this population, we were not
able to reliably estimate noise correlations, and thereby evaluate the accuracy of this model-based
prediction. (E) Eigenvalues of the dynamics matrix A. (F) Three stimulus filters recovered by
QLDS. We selected the 3-filter QLDS by inspection, having observed that fitting with larger number
of stimulus filters did not improve the fit. We note that although two of the filters appear similar,
that they drive separate latent dimensions with distinct mixing weights ai, bi and ci.

and held out 15 for validation. The QLDS accurately captured the stimulus and noise correlations of
the full population (Fig. 5A). Further, a QLDS with 15 shared receptive fields captured simple and
complex cell behavior of all 113 cells, as well as response variation across orientation (Fig. 5B).

5 Discussion

We presented QLDS, a statistical model for neural population recordings from sensory cortex that
combines low-dimensional, quadratic stimulus dependence with a linear dynamical system model.
The stimulus model can capture simple and complex cell responses, while the linear dynamics cap-
ture temporal dynamics of the population and shared variability between neurons. We applied QLDS
to population recordings from primary visual cortex (V1). The cortical microcircuit in V1 consists of
highly-interconnected cells that share receptive field properties such as orientation preference [27],
with a well-studied laminar organization [1]. Layer IV cells have simple cell receptive field proper-
ties, sending excitatory connections to complex cells in the deep and superficial layers. Quadratic
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Figure 5: QLDS fit to 113 V1 cells across 35 repeats of each of 72 grating orientations. (A)
Comparison of total correlations in the data and generated from the model, (B) For two cells (cells
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we show the posterior mean prediction performance (red traces) in in comparison to the average
across 15 held-out trials (black traces). In each block, we show predicted and actual spike rate
(y-axis) over time binned at 10 ms (x-axis). Stimulus offset is denoted by a vertical blue line.

stimulus models such as the classical “energy model” [16] of complex cells reflect this structure.
The motivation of QLDS is to provide a statistical description of receptive fields in the different
cortical layers, and to parsimoniously capture both stimulus dependence and correlations across an
entire population.

Another prominent neural population model is the GLM (Generalized Linear Model, e.g. [14]; or
the “common input model”, [28]), which includes a separate receptive field for each neuron, as
well as spike coupling terms between neurons. While the GLM is a successful model of a popula-
tion’s statistical response properties, its fully–connected parameterization scales quadratically with
population size. Furthermore, the GLM supposes direct couplings between pairs of neurons, while
monosynaptic couplings are statistically unlikely for recordings from a small number of neurons
embedded in a large network.

In QLDS, latent dynamics mediate both stimulus and noise correlations. This reflects the structure
of the cortex, where recurrent connectivity gives rise to both stimulus-dependent and independent
correlations. Without modeling a separate receptive field for each neuron, the model complexity of
QLDS grows only linearly in population size, rather than quadratically as in fully-connected models
such as the GLM [14]. Conceptually, our modeling approach treats the entire recorded population
as a single “computational unit”, and aims to characterize its joint feature-selectivity and dynamics.
Neurophysiology and neural coding are progressing toward recording and analyzing datasets of ever
larger scale. Population-level parameterizations, such as QLDS, provide a scalable strategy for
representing and analyzing the collective computational properties of neural populations.
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