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Modern recording techniques such as multi-electrode arrays and 2-photon imaging are 
capable of simultaneously monitoring the activity of large neuronal ensembles at single cell 
resolution. This makes it possible to study the dynamics of neural populations of considerable 
size, and to gain insights into their computations and functional organization. The key 
challenge with multi-electrode recordings is their high-dimensional nature. Understanding 
this kind of data requires powerful statistical techniques for capturing the structure of 
the neural population responses and their relation with external stimuli or behavioral 
observations. 

Contributions to this Research Topic should advance statistical modeling of neural 
populations. Questions of particular interest include: 

1. What classes of statistical methods are most useful for modeling population activity?
2.  What are the main limitations of current approaches, and what can be done to overcome 

them?
3.  How can statistical methods be used to empirically test existing models of (probabilistic) 

population coding?
4.  What role can statistical methods play in formulating novel hypotheses about the principles 

of information processing in neural populations?
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Modern recording techniques such as 
 multi-electrode arrays and two-photon 
imaging methods are capable of simulta-
neously monitoring the activity of large 
neuronal ensembles at single cell resolu-
tion. These methods finally give us the 
means to address some of the most crucial 
questions in systems neuroscience: what are 
the dynamics of neural population activ-
ity? How do populations of neurons per-
form computations? What is the functional 
organization of neural ensembles?

While the wealth of new experimental 
data generated by these techniques pro-
vides exciting opportunities to test ideas 
about how neural ensembles operate, it 
also provides major challenges: multi-cell 
recordings necessarily yield data which is 
high-dimensional in nature. Understanding 
this kind of data requires powerful statisti-
cal techniques for capturing the structure 
of the neural population responses, as well 
as their relationship with external stimuli 
or behavioral observations. Furthermore, 
linking recorded neural population activ-
ity to the predictions of theoretical models 
of population coding has turned out not to 
be straightforward.

These challenges motivated us to organ-
ize a workshop at the 2009 Computational 
Neuroscience Meeting in Berlin to discuss 
these issues. In order to collect some of the 
recent progress in this field, and to foster 
discussion on the most important direc-
tions and most pressing questions, we 
issued a call for papers for this Research 
Topic. We asked authors to address the fol-
lowing four questions:

1. What classes of statistical methods are 
most useful for modeling population 
activity?

2. What are the main limitations of cur-
rent approaches, and what can be done 
to overcome them?

3. How can statistical methods be used 
to empirically test existing models of 
(probabilistic) population coding?

4. What role can statistical methods play 
in formulating novel hypotheses about 
the principles of information proces-
sing in neural populations?

A total of 15 papers addressing ques-
tions related to these themes are now col-
lected in this Research Topic. Three of these 
articles have resulted in “Focused reviews” 
in Frontiers in Neuroscience (Crumiller 
et al., 2011; Rosenbaum et al., 2011; 
Tchumatchenko et al., 2011), illustrating the 
great interest in the topic. Many of the arti-
cles are devoted to a better understanding 
of how correlations arise in neural circuits, 
and how they can be detected, modeled, 
and interpreted. For example, by modeling 
how pairwise correlations are transformed 
by spiking non-linearities in simple neural 
circuits, Tchumatchenko et al. (2010) show 
that pairwise correlation coefficients have to 
be interpreted with care, since their magni-
tude can depend strongly on the temporal 
statistics of their input-correlations. In a 
similar spirit, Rosenbaum et al. (2010) study 
how correlations can arise and accumulate 
in feed-forward circuits as a result of pool-
ing of correlated inputs.

Lyamzin et al. (2010) and Krumin 
et al. (2010) present methods for simu-
lating correlated population activity and 
extend previous work to more general set-
tings. The method of Lyamzin et al. (2010) 
allows one to generate synthetic spike 
trains which match commonly reported 
statistical properties, such as time varying 
firing rates as well signal and noise correla-
tions. The Hawkes framework presented 
by Krumin et al. (2010) allows one to fit 
models of recurrent population activity to 
the correlation-structure of experimental 
data. Louis et al. (2010) present a novel 

method for generating surrogate spike 
trains which can be useful when trying to 
assess the significance and time-scale of 
correlations in neural spike trains. Finally, 
Pipa and Munk (2011) study spike syn-
chronization in prefrontal cortex during 
working memory.

A number of studies are also devoted 
to advancing our methodological toolkit 
for analyzing various aspects of popu-
lation activity (Gerwinn et al., 2010; 
Machens, 2010; Staude et al., 2010; Yu 
et al., 2010). For example, Gerwinn et al. 
(2010) explain how full probabilistic 
inference can be performed in the popular 
model class of generalized linear models 
(GLMs), and study the effect of using 
prior distributions on the parameters of 
the stimulus and coupling filters. Staude 
et al. (2010) extend a method for detect-
ing higher-order correlations between 
neurons via population spike counts to 
non-stationary settings. Yu et al. (2010) 
describe a new technique for estimating 
the information rate of a population of 
neurons using frequency-domain meth-
ods. Machens (2010) introduces a novel 
extension of principal component analy-
sis for separating the variability of a neu-
ral response into different sources.

Focusing less on the spike responses of 
neural populations but on aggregate signals 
of population activity, Boatman-Reich et al. 
(2010) and Hoerzer et al. (2010) describe 
methods for a quantitative analysis of field 
potential recordings. While Boatman-Reich 
et al. (2010) discuss a number of existing 
techniques in a unified framework and 
highlight the potential pitfalls associated 
with such approaches, Hoerzer et al. (2010) 
demonstrate how multivariate autoregres-
sive models and the concept of Granger 
causality can be used to infer local func-
tional connectivity in area V4 of behaving 
macaques.
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mon in the future and encourage authors 
and  editors of Research Topics to make as 
much code available as possible, ideally in 
a format that can be easily integrated with 
existing software sharing initiatives (Herz 
et al., 2008; Goldberg et al., 2009).
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A final group of studies is devoted to 
understanding experimental data in light 
of computational models (Galán et al., 
2010; Pandarinath et al., 2010; Shteingart 
et al., 2010). Pandarinath et al. (2010) pre-
sent a novel mechanism that may explain 
how neural networks in the retina switch 
from one state to another by a change in gap 
junction coupling, and conjecture that this 
mechanism might also be found in other 
neural circuits. Galán et al. (2010) present 
a model of how hypoxia may change the 
network structure in the respiratory net-
works in the brainstem, and analyze neural 
correlations in multi-electrode recordings 
in light of this model. Finally, Shteingart 
et al. (2010) show that the spontaneous 
activation sequences they find in cultured 
networks cannot be explained by Zipf ’s law, 
but rather require a wrestling model.

The papers of this Research Topic thus 
span a wide range of topics in the statistical 
modeling of multi-cell recordings. Together 
with other recent advances, they provide us 
with a useful toolkit to tackle the challenges 
presented by the vast amount of data col-
lected with modern recording techniques. 
The impact of novel statistical methods on 
the field and their potential to generate scien-
tific progress, however, depends critically on 
how readily they can be adopted and applied 
by laboratories and researchers working 
with experimental data. An important step 
toward this goal is to also publish computer 
code along with the articles (Barnes, 2010) 
as a successful implementation of advanced 
methods also relies on many details which 
are hard to communicate in the article itself. 
In this way it becomes much more likely 
that other researchers can actually use the 
methods, and unnecessary re-implementa-
tions can be avoided. Some of the papers 
in this Research Topic already follow this 
goal (Gerwinn et al., 2010; Louis et al., 
2010; Lyamzin et al., 2010). We hope that 
this practice becomes more and more com-
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potential effects of pooling on recordings from large populations 
obtained using VSD or MUA recording techniques. These tech-
niques are believed to refl ect the pooled postsynpatic activity of 
groups of cells. We extend earlier models introduced to examine 
the impact of pooling on correlations (Bedenbaugh and Gerstein, 
1997; Chen et al., 2006; Nunez and Srinivasan, 2006), and show that 
heterogeneities in the presynaptic pools can have subtle effects on 
correlations between pooled signals.

Since neurons respond to input from large presynaptic popula-
tions, pooling also impacts the activity of single cells and cell pairs. As 
observed in Figure 1C, pooling can infl ate weak correlations between 
afferents. However, excitatory–inhibitory correlations (Okun and 
Lampl, 2008) can counteract this amplifi cation, as shown in Figure 1D 
(Hertz, 2010; Renart et al., 2010). We examine these effects analytically 
by modeling the subthreshold activity of postsynaptic cells as a fi ltered 
version of the inputs received (Tetzlaff et al., 2008). The impact of 
correlated subthreshold activity on the output spiking statistics is a 
nontrivial question which we address only briefl y (Moreno-Bote and 
Parga, 2006; de la Rocha et al., 2007; Ostojić et al., 2009).

The effects of pooling provide a simple explanation for certain 
aspects of the dynamics of feedforward chains. Simulations and 
in vitro experiments show that layered feedforward architectures 
give rise to a robust increase in synchronous spiking from layer 
to layer (Diesmann et al., 1999; Litvak et al., 2003; Reyes, 2003; 
Doiron et al., 2006; Kumar et al., 2008). We describe how output 
correlations in one layer impact correlations between the pooled 
inputs to the next layer. This approach is used to derive a map-
ping that describes how correlations develop across layers (Tetzlaff 
et al., 2003; Renart et al., 2010), and to illustrate that the pooling 
of correlated inputs is the primary mechanism responsible for the 
development of synchrony in feedforward chains. Examining how 
correlations are mapped between layers also helps explain why asyn-
chronous states are rarely observed in feedforward networks in 
the absence of strong background noise (van Rossum et al., 2002; 

INTRODUCTION
Cortical neurons integrate inputs from thousands of afferents. 
Similarly, a variety of experimental techniques record the pooled 
activity of large populations of cells. It is therefore important to 
understand how the structured response of a neuronal network is 
refl ected in the pooled activity of cell groups.

It is known that weak dependencies between the response of 
cell pairs in a population can have a signifi cant impact on the vari-
ability and signal-to-noise ratio of the pooled signal (Shadlen and 
Newsome, 1998; Salinas and Sejnowski, 2000; Moreno-Bote et al., 
2008). It has also been observed that weak correlations between cells 
in two populations can cause much stronger correlations between 
the pooled activity of the populations (Bedenbaugh and Gerstein, 
1997; Chen et al., 2006; Gutnisky and Josic´, 2010; Renart et al., 
2010). We give a simple example of this effect in Figure 1C: Weak 
correlations were introduced between the spiking activity of cells 
in two non-overlapping presynaptic pools each providing input to 
a postsynaptic cell (see diagram in Figure 1B). The activity between 
pairs of excitatory, and pairs of inhibitory cells was correlated, but 
excitatory–inhibitory pairs were uncorrelated. Even without shared 
inputs and with background noise, pooling resulted in strong cor-
relations in postsynaptic membrane voltages. The connectivity in 
the presynaptic network was irrelevant – it only mattered that the 
inputs to the downstream neurons refl ected the pooled activity of 
the afferent populations. A similar effect can cause large correlations 
between recordings of multiunit activity (MUA) or recordings of 
voltage sensitive dyes (VSD), even when correlations between cells 
in the recorded populations are small (Bedenbaugh and Gerstein, 
1997; Chen et al., 2006; Stark et al., 2008). The effect is the same, but 
in this case pooling occurs at the level of a recording device rather 
than a downstream neuron (compare Figures 1A,B).

We present a systematic overview, as well as extensions and 
applications of a number of previous observations related to this 
phenomenon. Using a linear model, we start by examining the 
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Vogels and Abbott, 2005). This is in contrast to recurrent networks 
which can display stable asynchronous states (Hertz, 2010; Renart 
et al., 2010) similar to those observed in vivo (Ecker et al., 2010).

MATERIALS AND METHODS
CORRELATIONS BETWEEN STOCHASTIC PROCESSES
The cross-covariance of a pair of stationary stochastic processes, 
x(t) and y(t), is C

xy
(t) = cov(x(s), y(s + t)). The auto-covariance 

function, C
xx

(t), is the cross-covariance between a process and itself. 
The cross- and auto-covariance functions measure second order 
dependencies at time lag t between two processes, or a process and 
itself. We quantify the total magnitude of interactions over all time 
using the asymptotic statistics,

γ σ γ ρ
γ

σ σxy xy x xx xy
xy

x y

C t dt= = =
−∞

∞

∫ ( ) , , .2

 
(1)

While the asymptotic correlation, ρ
xy,

, measures correlations between 
x(t) and y(t) over large timescales, the auto- and cross- covariance 
functions determine the timescale of these dependencies.

CORRELATIONS BETWEEN SUMS OF RANDOM VARIABLES
Given two collections of correlated random variables { }xi i

nx
=1 and 

{ } ,y j j
ny

=1  defi ne the pooled variables, X xi i= Σ  and Y yi i= Σ . Since 
covariance is bilinear ( ( , ) ( , ))cov covΣ Σ Σi i j j ij i jx y x y=  the variance 
and covariance of the pooled variables are
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and similarly for σY
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Using these expressions along with some algebraic manipula-
tion, the correlation coeffi cient, ρ γ σ σXY XY X Y= / , between the 
pooled variables can be written as
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and similarly for w
y
, v

y
, σ σy y , and ρyy . In deriving Eq. (3) we 

assumed that all pairwise statistics are uniformly bounded away 
from zero in the asymptotic limit.

Each overlined term above is a population average. Notably, ρxy 
represents the average correlation between x

i
 and y

j
 pairs, weighted 

by the product of their standard deviations, and similarly for ρxx  and 
ρyy . Correlation between weighted sums can be obtained by substi-
tuting x w xi x ii

→  and y w yj y jj
→  for weights wxi

 and wy j
 and making 

the appropriate changes to the terms in the equation above (e.g., 
σ σ ρ ρx x x x y i j x yi i i i j i j

w w w→ →| | , ( )sign ). Overlap between the two 
populations can be modeled by taking ρx yi j

= 1 for some pairs.
Assuming that variances are homogeneous within each popula-

tion, that is σ σx xi
=  and σ σy yj

=  for i = 1,…,n
x
 and j = 1, ...,n

y
, 

simplifi es these expressions. In particular, vx x x x= =σ σ σ2 ,  
σ σ σ σx y x y= , and
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Assuming further that the populations are symmetric, 
σ

x
 = σ

y
 = σ, n

x
 = n

y
 = n, and ρ ρxx yy= , the expression above sim-

plifi es to
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where ρ ρb
xy=  is the average pairwise correlation between the two 

populations and ρ ρ ρw
xx yy= =  is the average pairwise correlation 

within each population. Eq. (5) was derived in Bedenbaugh and 
Gerstein (1997) in an examination of correlations between mul-
tiunit recordings. In Chen et al. (2006), a version of Eq. (5) with 
ρw = ρb is derived in the context of correlations between two VSD 
signals. The asymptotic, ρ

xy
 → 0, limit when ρw = ρb is discussed 

in Renart et al. (2010).
Note that the results above hold for correlations computed over 

arbitrary time windows. We concentrate on infi nite windows, and 
discuss extensions in the Appendix.

NEURON MODEL
In the second part of the presentation we consider two excitatory 
and two inhibitory input populations projecting to two postsyn-
aptic cells. The jth excitatory input to cell k is labeled e

j,k
(t) (k = 1 

or 2). Similarly, i
j,k

(t) denotes the jth inhibitory input to cell k. Each 
cell receives n

e
 excitatory and n

i
 inhibitory inputs with individual 

rates ν
e
 and ν

i
 respectively.

Each of the excitatory and inhibitory inputs to cell k, are station-
ary spike trains modeled by point processes, e j k i j k

it t t, ,( ) ( )= −Σ δ  
and i j k i j k

it t s, ,( ) ( )= −Σ δ  where { },t j k
i  and { },s j k

i  are input spike times. 
We assume that the spike trains are stationary in a multivariate sense 
(Stratonovich, 1963). The pooled excitatory and inhibitory inputs 
to neuron k are E t tk j

n
j k

ek( ) ( ),,= =Σ 1e  and I t tk j
n

j k
k( ) ( ).,= =Σ 1

i i
To generate correlated inputs to cells, we used the multiple inter-

action process (MIP) method (Kuhn et al., 2003), then jittered each 
spike time independently by a random value drawn from an expo-
nential distribution with mean 5ms. The resulting processes are 
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Poisson with cross-covariance functions proportional to a double 
exponential, C

xy
(t) ∼ e− |t| /5. Note that since each input is Poisson, 

σ νe e
2 =  and σ νi i

2 = .
While the dynamics of the afferent population were not mod-

eled explicitly, the response of the two downstream neurons was 
obtained using a conductance-based IF model. The membrane 
potentials of the neurons were described by

C
dV

dt
g V V g t V V g t V Vm

k
L k L E k E I k Ik k

= − − − − − −( ) ( )( ) ( )( ),
 

(6)

with excitatory and inhibitory conductances determined by 
g t tE kk

( ) ( )( )= ∗E eα  and g t t
k kI iI( ) ( )( )= ∗α  where ∗  denotes 

convolution. We used synaptic responses of the form 
α τ τ

e e e e( ) ( )/t t tt= − −E 2 Θ  and α τ τ
i i

i( ) ( )/t t tt= − −I 2 e Θ  where Θ(t) is the 
Heaviside function. The area of a single excitatory or inhibitory 
postsynaptic conductance (EPSC or IPSC) is therefore equal to 
the synaptic weight, E or I, with units nS·ms. This analysis can 
easily be extended to situations where each input, e

j,k
 or i

j,k
, has 

a distinct synaptic weight.
When examining spiking activity, we assume that when V

k
 

crosses a threshold voltage, Vth, an output spike is produced and 
V

k
 is reset to V

L
. When examining sub-threshold dynamics, we 

considered the free membrane potential without threshold.
As a measure of balance between excitation and inhibition we 

used (Troyer and Miller, 1997; Salinas and Sejnowski, 2000)

β
ν
ν

=
−
−

V V n

V V n
L

L i i

E e e

I

E
I

.

When β = 1, the net excitation and inhibition are balanced and 
the mean free membrane potential equals V

L
. In simulations, we 

set V
L
 = −60 mV, V

E
 = 0 mV, V

I
 = −90 mV, τ

e
 = 10 ms, τ

i
 = 20 ms, 

C
m
 = 114 pF, and g

L
 = 4.086 nS, giving a membrane time constant, 

τ
m
 = C

m
/g

L
 = 27.9 ms. In all simulations except those in Figure 7, 

the cells are balanced (β = 1).
The conductance-based IF neuron behaves as a nonlinear fi lter 

in the sense that membrane potentials cannot be written as a lin-
ear transformation of the inputs. However, following Kuhn et al. 
(2004) and Coombes et al. (2007), we derive a linear approxima-
tion to the conductance based model. Let U = V

k
 − V

L
 so that Eq. 

(6) becomes

C
dU

dt
g g t g t U g t V V g t V Vm L L L= − − −( ) − −( )− −( )E I E E I I( ) ( ) ( ) ( ) .

Defi ne the effective membrane time constant,τ
eff

=C
m
/

(E[g
L 
+ gE

(t)
 
+ gL

(t)]) = C
m
/(g

L 
+ ne

v
e
E

 
+ ni

v
i
I Substituting this aver-

age value in the previous equation yields the linear approximation 
to the conductance based model,

dU

dt
U J tk= − +1

τeff

( ),
 

(7)

where J t g t V V g t V V Ck L L mk k
( ) ( ( )( ) ( )( ))/= − − − −E E I I  is the total 

input current to cell k. Solving and reverting to the original vari-
ables gives the linear approximation V

k
(t) = (J

k
∗K)(t) + V

L
, where 

K t t t( ) ( ) /= −Θ e effτ  is the kernel of the linear fi lter induced by Eq. (7).

RESULTS
The pooling of signals from groups of neurons can impact both 
recordings of population activity and the structure of inputs to 
postsynaptic cells. We start by discussing correlations in pooled 
recordings using a simple linear model. A similar model is then 
used to examine the impact of pooling on the statistics of inputs 
to cells. For simplicity we assume that all spike trains are station-
ary. However, non-stationary results can be obtained using similar 
methods as outlined in the Section “Discussion.” Though all param-
eters are defi ned in the Meterials and Methods, Tables 1 and 2 in 
the Appendix contain brief descriptions of parameters for quick 
reference.  Also, Tables 3 and 4 summarize the values of parameters 
used for simulations throughout the article.

CORRELATIONS BETWEEN POOLED RECORDINGS
Pooling can impact correlations between recordings of population 
activity obtained from voltage sensitive dyes (VSDs), multi-unit 
recordings and other techniques. Such signals might each repre-
sent the summed activity of hundreds or thousands of neurons. 
Let two recorded signals, X

1
(t) and X

2
(t), represent the weighted 

activity of cells in two populations (see diagram in Figure 1A). If 
we assume homogeneity in the input variances and equal size of 
the recorded populations, Eq. (4) gives the correlation between 
the recorded signals

ρ ρ

ρ ρ ρ ρ

ρ
ρ ρX X

n n

1 2

12

11 11 22 22

12

11 221
1

1
1

=
+ −( )
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= +OO 1
n
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(8)

Here n represents the number of neurons recorded, ρkk , k = 1,2 
represents the average correlation between cells contributing to 
signal X

k
(t), and ρ12 represents the average correlation between 

cells contributing to different signals. The averages are weighted 
so that cells that contribute more strongly to the recording, such 
as those closer to the recording site, contribute more to the average 
correlations (see Materials and Methods). Cells common to both 
recorded populations can be modeled by setting the corresponding 
correlation coeffi cients to unity. A form of Eq. (8) with ρ ρ11 22=  
was derived by Bedenbaugh and Gerstein (1997).

When the two recording sites are nearby, so that ρ ρ ρ12 11 22≈ ≈ , 
even small correlations between individual cells are amplifi ed by 
pooling so that the correlations between the recorded signals can 
be close to 1. This effect was observed in experiments and explained 
in similar terms in Stark et al. (2008).

A signifi cant stimulus-dependent change in correlations 
between individual cells might be refl ected only weakly in the 
 correlation between the pooled signals. This can occur, for 
instance, in  recordings of large populations when ρ12 , ρ11, and ρ22 
are increased by the same factor when a stimulus is presented. 
Similarly, an increase in  correlations between cells can actually lead 
to a decrease in  correlations between recorded signals when ρ11 and 
ρ22 increase by a larger factor than ρ12.

To illustrate these effects, we construct a simple model of stimulus 
dependent correlations motivated by the experiments in Chen et al. 
(2006), in which VSDs were used to record the population response 
in visual area V1 during an attention task. In their experiments, 
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the imaged area is divided into 64 pixels, each 0.25 mm × .25 mm 
in size. The signal recorded from each pixel represents the pooled 
activity of n ≈ 1.25 × 104 neurons.

We model correlations between the signals, X
1
(t) and X

2
(t), 

recorded from two pixels in the presence or absence of a stimulus 
(see Figure 2B), using a simplifi ed model of stimulus dependent 
rates and correlations. The fi ring rate of a cell located at distance d 
from the center of the retinotopic image of a stimulus is

r d
B

B d

B
( )

( )( cos( ))
= + − +


1 1

2
π λ

stimulus present

stimulus absent.



  

(9)

Here, B ∈ [0,1] represents baseline activity and λ ≥ 1 controls 
the rate at which activity decays with d. Both d and r were scaled 
so that their maximum value is 1 (see Figure 2A).

We assume that the correlation between the responses of two 
neurons is proportional to the geometric mean of their fi ring 
rates (de la Rocha et al., 2007; Shea-Brown et al., 2008), and that 

correlations decay exponentially with cell distance (Smith and 
Kohn, 2008; see however Poort and Roelfsema, 2009; Ecker et al., 
2010). We therefore model the correlation between two cells as 
ρ α

jk j k
DS r d r d j k= −( ) ( ) ,e  where d

j
 and d

k
 are the distances from 

each cell to the center of the retinotopic image of the stimu-
lus, D

j,k
 is the distance between cells j and k, α is the rate at 

which correlations decay with distance, and S ≤ 1 is a constant 
of proportionality.

If pixels are small compared to the scales at which correlations are 
assumed to decay, then the average correlation between cells within 
the same pixel are ρ11 1= Sr d( ) and ρ22 2= Sr d( ). The average correla-
tion between cells in different pixels is ρ α

12 1 2
1 2= −S r d r d D( ) ( ) .,e

In this case, whether a stimulus is present or not, the correlation 
between the pooled signals is of the form ρ α

X X
D n

1 2

1 2 1= +−e , ( / ).O  
Thus, even signifi cant stimulus dependent changes in correlations 
would be invisible in the recorded signals. This overall trend is consist-
ent with the results in Chen et al. (2006) (compare Figure 2C to their 
Figure 2f). In such settings, it is diffi cult to conclude whether pairwise 
correlations are stimulus dependent or not from the pooled data.

FIGURE 1 | Models of pooled recordings and the effects of pooling on 
correlations. (A) Pooling in experimental recordings. Cells from different 
populations are correlated with average correlation coeffi cient ρ12 and cells from 
the same population have average correlation coeffi cient ρ11 or ρ22. We examine 
correlations between the pooled signals, X1 and X2. (B) Pooled inputs to cell pairs. 
Individual excitatory (e) and inhibitory (i) inputs are correlated with coeffi cient ρee, 
ρii, and ρei, respectively. The total input to a cell is the summed activity of its 
excitatory (EK) and inhibitory (IK) presynaptic population. The membrane potentials, 
V1 and V2, are obtained by fi ltering these inputs. (C) A simulation of the setup in 
(B) with background noise. Correlations between excitatory and between 

inhibitory cells were uniform (ρee = ρii = 0.05), but excitatory–inhibitory correlations 
were absent (ρei = 0). The raster plot shows the activity in a subset of the input 
population. The correlation coeffi cient between the sub-threshold activity of the 
postsynpatic cells was ρvv = 0.768 ± 0.001 s.e. Each cell receives 250 correlated 
and 250 uncorrelated excitatory Poisson inputs as well as 84 correlated and 84 
uncorrelated inhibitory Poisson inputs (ne = 250 and ni = 84, qe = qi = 1, νe = 5 Hz, 
νi = 7.5 Hz, I = 4E, and E≈2.3 nS·ms – see Materials and Methods and Figure 3A 
for notation and precise model description). (D) Same as (B), but with ρei = 0.05, 
νe = νi=5 Hz, I = 6E to maintain balance. In this case ρVV = 0.0085 ± 0.0024 s.e.. 
The simulations were run 8000 times at 10 s each.
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However, in Supplementary Figure 3 of Chen et al. (2006) the 
presence of a stimulus apparently results in a slight decrease in 
correlations between more distant pixels. In Figure 2D this effect 
was reproduced using the alternative model described above, with 
the additional assumption that baseline activity, B, decreases in the 
presence of a stimulus (Mitchell et al., 2009). The effect can also be 
reproduced by assuming that spatial correlation decay, α, increases 
when a stimulus is present.

As this example shows, care needs to be taken when inferring 
underlying correlation structures from pooled activity. The sta-
tistical structure of the recordings can depend on pairwise cor-
relations between individual cells in a subtle way, and different 
underlying correlation structures may be diffi cult to distinguish 
from the pooled signals. However, downstream neurons may also 
be insensitive to the precise structure of pairwise correlations, as 
they are driven by the pooled input from many afferents.

CORRELATIONS BETWEEN THE POOLED INPUTS TO CELLS
We next examine the effects of pooling by relating the correla-
tions between the activity of downstream cells to the pairwise cor-
relations between cells in the input populations (see Figure 1B). 
The idea that pooling amplifi es correlations carries over from the 
previous section. However, the presence of inhibition and non-
 instantaneous synaptic responses introduces new issues.

A homogeneous population with overlapping and independent inputs
For simplicity, we fi rst consider a homogeneous population model 
(see Figure 3A). Each cell receives n

e
 inputs from a homogeneous 

pool of inputs with pairwise correlation coeffi cients ρ
ee

 and an 
additional q

e
n

e
 inputs from an outside pool of independent inputs. 

The two cells share p
e
n

e
 of the inputs drawn from the correlated 

pool. Processes in the independent pool are uncorrelated with all 
other processes. All excitatory inputs have variance σe

2.
The correlation between the pooled excitatory inputs is given 

by (see Appendix)

ρ
ρ ρ

ρ ρ
E E

ee
e

e
ee

ee
e

ee e

1 2

1

1
1

=
+ −( )

+ − +( )

p
n

n
q

.

 

(10)

A form of this equation, with p
e
 = 0 and q

e
 = 0, is derived in Chen 

et al. (2006). In the absence of correlations between processes in the 
input pools, ρ

ee
 = 0, the correlation between the pooled signals is 

just the proportion of shared inputs, ρE E e1 2
= p . When ρ

ee
 > 0 and n

e
 

is large, pooled excitatory inputs are highly correlated, even when 
pairwise correlations in the presynaptic pool, ρ

ee
, are small, and the 

neurons do not share inputs (p
e
 = 0). Even when most inputs to the 

downstream cells are independent (q
e
 > 1), correlations between 

the pooled signals will be nearly 1 for suffi ciently large input pools 
(see Figure 4A).

Under analogous homogeneity assumptions for the inhibitory 
pools, the correlation, ρI I1 2

, between the pooled inhibitory inputs 
is given by an equation identical to Eq. (10), and the correlation 
between the pooled excitatory and inhibitory inputs is given by

ρ ρ ρ

ρ ρ ρ ρ
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ee
e

ee e ii
i
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1
1

1
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= =
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Interestingly, since | | ,ρE I1 2
1≤  pairwise excitatory– inhibitory 

 correlations obey the bound | | ( / ).ρ ρ ρei ee ii e i≤ +O 1 n n  
Combining this inequality with Eq. (10) and the analogous equa-
tion for ρI I1 2

, it follows that | |ρ ρ ρE I E E I I e i1 2 1 2 1 2
1≤ +O( / )n n  for 

homogeneous populations. These are a result of the non-negative 
defi niteness of covariance matrices.

Heterogeneity and the effects of spatially dependent correlations
We next discuss how heterogeneity can dampen the amplifi cation 
of correlations due to pooling. In the absence of any homogeneity 
assumptions on the excitatory input population (see the popula-
tion model in the Materials and Methods), Eq. (3) gives the pooled 
excitatory signals, ρ ρ ρ ρE E e e e e e e e e1 2 1 2 1 1 2 2 1 2

1= +/ ( / ).O n n  The term 
ρe e1 2

 is a weighted average of the correlation coeffi cients between the 
two excitatory populations, and ρe e1 1

 and ρe e2 2
 are weighted averages 

of the correlations within each excitatory input population.
To illuminate this result, we assume symmetry between the 

populations: Let n n
ke e=  and σ σ

e e
k
j =  for k = 1,2 and j = 1,2,…,n

e
, 

and assume ρ ρe e e e1 1 2 2
= . The average “within” and “between” correla-

tions, are ρ ρ ρee
w

e e e e= =
1 1 2 2

 and ρ ρee
b

e e=
1 2

 respectively (see Figure 3B). 
Under these assumptions, Eq. (5) can be applied to obtain (See also 
Bedenbaugh and Gerstein, 1997)
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FIGURE 2 | The effect of pooling on recordings of stimulus dependent 
correlations. (A) The response amplitude of a model neuron as a function of its 
distance from the retinotopic image of a stimulus [Eq. (9)] with B = 0.05 and 
λ = 10. (B) A diagram of our model. Signals X1(t) and X2(t) are recorded from two 
pixels (red and blue squares). The activity in response to a stimulus is shown as 
a gradient centered at some pixel (the center of the retinotopic image of the 
stimulus). (C) The prediction of the correlation between two pixels obtained 
using the stimulus-dependent model considered in the text with stimulus 
present (red) and absent (green). We assumed that one pixel is located at the 
stimulus center (d1 = 0). Parameters are as in (A) with α = 1, S = 0.1, and 
n = 1.25×104. A stimulus dependent change in correlations is undetectable. (D) 
Same as in (C), except that baseline activity, B, was scaled by 0.5 in the 
presence of a stimulus. Compare to Figure 2f in Chen et al., 2006.
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which is plotted in Figure 4A (green line) and Figure 4B. For 
large n

e
, the correlation between the pooled signals is the ratio of 

“between” and “within” correlations.
This observation has implications for a situation ubiquitous in 

the cortex. A neuron is likely to receive afferents from cells that are 
physically close. The activity of nearby cells may be more strongly 
correlated than the activity of more distant cells (Chen et al., 2006; 
Smith and Kohn, 2008). We therefore expect that pairwise correla-
tions within each input pool are on average larger than correlations 
between two input pools, that is, ρ ρee

w
ee
b> . This reduces the correla-

tion between the inputs, regardless of the input population size.
An increase in correlations in the presynaptic pool can also decor-

relate the pooled signals. If correlations within each input pool increase 
by a greater amount than correlations between the two pools, then the 

variance in the input to each cell will increased by a larger amount than 
the covariance between the inputs. As a consequence the correlations 
between the pooled inputs will be reduced. Modulations in correla-
tion have been observed as a consequence of attention in V4 (Cohen 
and Maunsell, 2009; Mitchell et al., 2009; but apparently not in V1, 
Roelfsema et al., 2004). Such changes may be, in part, a consequence 
of small changes in “within” correlations between neurons in V1.

Equation 12 implies that correlations between large populations 
cannot be signifi cantly larger than the correlations within each 
 population. Since | | ,ρE E1 2

1≤  it follows that | | | | ( / ).ρ ρee
b

ee
w

e≤ +O 1 n
The correlation, ρI I1 2

, between the pooled inhibitory inputs 
is given by an identical equation to Eq. (12) and the correlation 
between the pooled excitatory and inhibitory inputs is given by
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Correlations between the free membrane potentials
We now look at the correlation between the free membrane poten-
tials of two downstream neurons. The free membrane  potentials are 
obtained by assuming an absence of threshold or spiking activity. 
For simplicity we assume symmetry in the statistics of the inputs to 
the postsynaptic cells: σ σE Ek

= , σ σI Ik
= , ρ ρE I E I1 2 2 1

= , ρ ρE I E I1 1 2 2
= , 

ρ ρE E E E1 1 2 2
=  and ρ ρI I I I1 1 2 2

= . The analysis is similar in the asymmet-
ric case.

In the Section “Materials and Methods”, we derive a linear 
approximation of the free membrane potentials,

V t J K t Vk k L( ) ( ) ,= ∗( ) +

where J t g t V V g t V V Ck L L mk k
( ) ( ( )( ) ( )( ))/= − − + −E E I I  are the total 

input currents and K t t t( ) ( ) /= −Θ e effτ  for k = 1,2. Under this approxi-
mation, the correlation, ρV V1 2

,  between the membrane potentials is 

FIGURE 3 | Two population models considered in the text. (A) 
Homogeneous population with overlap and independent inputs: 
A homogeneous pool of correlated inputs (large black circle) with correlation 
coeffi cient between any pair of processes equal to ρee. Each cell draws ne 
inputs (larger red and blue circles) from this homogeneous input pool. Of 
these ne correlated inputs, pene are shared between the two neurons (purple 
dots). In addition, each cell receives qene independent inputs (smaller red and 
blue circles), for a total of ne + qene inputs. All inputs have variance σe

2. (B) A 
population model with distinct “within” and “between” correlations: Each cell 
receives ne inputs. The average correlation between two inputs to the 
same cell is ρee

w , and between inputs to different cells is ρee
b .

FIGURE 4 | The effect of pooling on correlations between summed input 
spike trains. (A) The correlation coeffi cient between the pooled excitatory spike 
trains (ρEE) is shown as a function of the size of the correlated excitatory input 
pool (ne) for various parameter settings. The solid blue line was obtained by 
setting ρee = 0.05 for the population model in Figure 3A in the absence of shared 
or independent inputs (pe = qe = 0). The dashed line illustrates the decorrelating 
effects of the addition of ne independent inputs (qe = 1, qe = 0, ρee = 0.05). The 
dotted blue line shows that shared inputs increase correlations, but have a 
diminishing effect on ρEE with increasing input population size (pe = 0.2, qe = 0, 

ρee = 0.05). The solid pink line shows the effect of reducing the pairwise input 
correlations (ρee = 0.005, pe = qe = 0). The dashed tan line was obtained with 
uncorrelated inputs so that correlations refl ected shared inputs alone (pe = 0.2, 
ρee = qe = 0). The green line was obtained with disparity in the “within” and 
“between” correlations (ρe

b = 0 05.  and ρe
w = 0 1. ) using the model in Figure 3B. 

(B) The correlations coeffi cient, ρEE, between the pooled inputs as a function of 
the within and between correlations (ρe

b
 and ρe

w
) for ne = 50. Note that the pooled 

correlation is relatively constant along lines through the origin. Thus, changing ρe
b
 

and ρe
w
 by the same proportion does not affect the pooled correlation.
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equal to the correlation, ρ ρin = J J1 2
,  between the total input currents 

and can be written as a weighted average of the pooled excitatory 
and inhibitory spike train correlations (see Appendix),

ρ ρ
ρ ρ ρ

ρV V

W W W W

W W W W1 2

2

2
≈ =

+ −
+ −in

E
2

E E I
2

I I E I E I

E
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I
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E I E I

1 2 1 2 1 2

1 1  
(13)

where ρ ρ ρE E E I I I1 2 1 2 1 2
, ,  and ρE I1 1

 are derived above, and 
W

E
 = E|V

E
 − V

L
|σ

E
 and W

I
 = I|V

I
 − V

L
|σ

I
 are weights for the exci-

tatory and inhibitory contributions to the correlation. In Figure 5, 
we compare this approximation with simulations.

The correlation between the membrane potentials has positive 
contributions from the correlation between the excitatory inputs 
( ),ρE E1 2

 and between the inhibitory inputs ( ).ρI I1 2
 Contributions 

coming from excitatory–inhibitory correlations (ρE I1 2
 and ρE I2 1

) are 
negative, and can thus decorrelate the activity of downstream cells. 
This “cancellation” of correlations is observed in Figures 1D and 5, 
and can lead to asynchrony in recurrent networks (Hertz, 2010; 
Renart et al., 2010).

IMPLICATIONS FOR SYNCHRONIZATION IN FEEDFORWARD CHAINS
Feedforward chains, like that depicted in Figure 6A, have been 
studied extensively (Diesmann et al., 1999; van Rossum et al., 2002; 
Litvak et al., 2003; Reyes, 2003; Tetzlaff et al., 2003; Câteau and 
Reyes, 2006; Doiron et al., 2006; Kumar et al., 2008). In such net-
works, cells in a layer necessarily share some of their inputs, leading 
to correlations in their spiking activity (Shadlen and Newsome, 
1998). Frequently, spiking in deeper layers is highly synchronous 
(Reyes, 2003; Tetzlaff et al., 2003). However, in the presence of back-
ground noise, correlations can remain negligible (van Rossum et al., 
2002; Vogels and Abbott, 2005).

Feedforward chains amplify correlations as follows: When inputs 
to the network are independent, small correlations are introduced 
in the second layer by overlapping inputs. The inputs to each sub-
sequent layer are pooled from the previous layer. The amplifi ca-
tion of correlations by pooling is the primary mechanism for the 
development of synchrony (Compare solid and dotted blue lines 
in Figure 4A). Overlapping inputs serve primarily to “seed” syn-
chrony in early layers. The internal dynamics of the neurons and 
background noise can decorrelate the output of a layer, and compete 
with the correlation amplifi cation due to pooling.

We develop this explanation by considering a feedforward net-
work with each layer containing N

e
 excitatory and N

i
 inhibitory 

cells. Each cell in layer k + 1 receives n
e
 excitatory and n

i
 inhibitory 

inputs selected randomly from layer k. For simplicity we assume 
that all excitatory and inhibitory cells are dynamically identical 
and E|V

E
 − V

L
| = I|V

E
 − V

L
|. Spike trains driving the fi rst layer are 

statistically homogeneous with pairwise correlations ρ
0
.

FIGURE 5 | The effects of pooling on correlations between postsynaptic 
membrane potentials. Results of the linear approximation (solid, dotted, and 
dashed lines) match simulations (points). For the solid blue line, 
ρee = ρii = 0.05, and ρei = pe = pi = qe = qi = 0. The total number of excitatory 
and inhibitory inputs to each cell was n = ne + qene, and ni + qini respectively. 
Here ni = ne/3, with other parameters given in the Section “Materials and 
Methods.” The dotted blue line was obtained by including independent 
inputs, qe = qi = 1. The pink line was obtained by decreasing input correlations 
to ρee = ρii = 0.005. The solid green line was obtained by including excitatory–
inhibitory correlations, ρei = 0.05, so that total input correlations canceled. The 
dashed tan line was obtained by setting ρee = ρii = ρei = qe = qi = 0 and 
pe = pi = 0.2 so that correlations are due to input overlap alone. In all cases, 

E= 590
n

nS ms,·  and I = 4E. Standard errors are smaller than twice the radii of 
the points.

FIGURE 6 | The development of synchrony in a feedforward chain can be 
understood using a model dynamical system (Tetzlaff et al., 2003). 
(A) Schematic diagram of the network. Each layer consists of Ne excitatory 
and Ni inhibitory cells. Each cell in layer k receives precisely ne excitatory and 
ni inhibitory, randomly selected inputs from layer k − 1. (B) Stages of 
processing in the feedforward network. Inputs from layer k − 1 are pooled 
with overlap, and drive the cells in layer k. (C) The correlation transfer map 
described by the pooling function, P(ρ) (blue dotted line), is composed with 
the decorrelating transfer function, S(ρ) = ρ2 (red dotted line), to obtain the 
mapping, T = SºP (solid blue line). Cobwebs show the development of 
correlations in the discrete dynamical system defi ned by ρ ρk kT+ =1

out out( ) with 
ρ0 = 0. Nearly perfect correlations develop by the fi fth layer. The identity is 
shown as a dashed line. (D) Closer to balance (β≈1), the correlating effects of 
pooling are weakened, and the model develops a stable fi xed point close to 
ρ = 0. However, cells may no longer decorrelate their inputs in the balanced 
regime, and fl uctuations in the input statistics due to random connectivity 
can destabilize the fi xed point and lead to synchrony. The shaded region in the 
inset represents the region two standard deviations away from the mean 
(blue line) when randomness in the overlap is taken into account (see 
Appendix). The standard deviations were calculated using Monte Carlo 
simulations. In C and D, Ne = 12000 and ne = 600. In C, Ni = 8000 and 
ni = 400. In D, Ni = 10500 and ni = 525 to obtain approximate balance 
(β = 600/525). Filled black circles represent stable fi xed points and open black 
circles represent unstable fi xed points.
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To explain the development of correlations, we consider a sim-
plifi ed model of correlation propagation (See also Renart et al., 
2010 for a recurrent version). In the model, any two cells in a layer 
share the expected proportion p

e
 = n

e
/N

e
 of their excitatory inputs 

and p
i
 = n

i
/N

i
 of their inhibitory inputs (the expected proportions 

are taken with respect to random connectivity). We also assume 
that inputs are statistically identical across a layer.

For a pair of cells in layer k ≥ 1, let ρk
in  and ρk

out represent the 
correlation coeffi cient between the total input currents and out-
put spike trains respectively. The outputs from layer k are pooled 
(with overlap) to obtain the inputs to layer k + 1. Using the results 
developed above, ρ ρin

1
0= P( ) and ρ ρk kP+ =1

in out( ), for k ≥ 1, where (see 
Appendix and Tetzlaff et al., 2003 for a similar derivation)

P
n

p p

n

( )
( ) ( )

( ) ( )( )
.ρ

ρ β ρ β

ρ β ρ β
=

− + − +( )

− + − +

1
1

1

1
1

1 1

2

2

i
e i

i  

(14)

Here β measures the balance between excitation and inhibi-
tion (see Materials and Methods). From our assumptions, β = n

e
/n

i
. 

With imbalance (β ≠ 1) and a large number of cells in a layer, pool-
ing amplifi es small correlations, P(ρ) > ρ, as discussed earlier.

To complete the description of correlation transfer from layer 
to layer, we relate the correlations between inputs to a pair of cells, 
ρk

in , to correlations in their output spike trains, ρk
out . We assume that 

there is a transfer function, S, so that ρ ρk kSout in= ( ) at each layer k. 
We additionally assume that S(0) = 0 and S(1) = 1, that is uncor-
related (perfectly correlated) inputs result in uncorrelated (perfectly 
correlated) outputs. We also assume that the cells are decorrelat-
ing, |ρ| > |S(ρ)| > 0 for ρ ≠ 0,1 (Shea-Brown et al., 2008). This is 
an idealized model of correlation transfer, as output correlations 
depend on cell dynamics and higher order statistics of the inputs 
(Moreno-Bote and Parga, 2006; de la Rocha et al., 2007; Barreiro 
et al., 2009; Ostojić et al., 2009).

Correlations between the spiking activity of cells in layers k + 1 
are related to correlations in layer k by the layer-to-layer trans-
fer function, T = S ◦ P. The development of correlations across 
layers is modeled by the dynamical system, ρ ρk kT+ =1

out out( ), with 
ρ ρ1 0

out = S( ).

When the network is not balanced (β ≠ 1), pooling amplifi es 
correlations at each layer and the activity between cells in deeper 
layers can become highly correlated (see Figure 6C). The output of 
the fi rst layer is uncorrelated if the individual inputs are independ-
ent (ρ

0
 = 0). In this case all of the correlations between the total 

inputs to the second layer come from shared inputs,

ρ2 0in e e i i

e i

= = +
+

P
n p n p

n n
( ) .

These correlations are then reduced by the second layer of cells, 
ρ ρ2 2 0 0out in= = >S T( ) ( ) , and subsequently amplifi ed by pooling and 
input sharing before being received by layer 3, ρ ρ3

in
2
out= P( ). This 

process continues in subsequent layers. If the correlating effects 
of pooling and input sharing dominate the decorrelating effects 
of internal cell dynamics, correlations will increase from layer to 
layer (see Figure 6C).

When ρ
0
 = 0, overlapping inputs increase the input correlation 

to layer 2, but have a negligible effect on the mapping once correla-
tions have developed since the effects of pooling dominate [see Eq. 
(14) and the dashed blue line in Figure 4A which shows that the 
effects of input overlaps are small when n

e
 is large, ρ > 0 and β ≠ 1]. 

Therefore, shared inputs seed correlated activity at the fi rst layer, 
and pooling drives the development of larger correlations. When 
ρ

0
 = 0, we cannot expect large correlations before layer 3, but when 

ρ
0
 > 0 large correlations can develop by layer 2.
To verify this conclusion, we constructed a two-layer feed-

forward network with no overlap between inputs (P
e
 = P

i
 = 0). 

In Figure 7A, the inputs to layer 1 were independent (ρ
0
 = 0), 

and the fi ring of cells in layer 2 was uncorrelated. In Figure 7B, 
we introduced small correlations (ρ

0
 = 0.05) between inputs to 

layer 1. These correlations were amplifi ed by pooling so that 
strong synchrony is observed between cells in layer 2. We com-
pared these results with a standard feedforward network with 
overlap in cell inputs (Figure 7C, where P

e
 = P

i
 = 0.05). Inputs 

to layer 1 were independent (ρ
0
 = 0), and hence outputs from 

layer 1 uncorrelated. Dependencies between inputs to layer 2 
were weak and due to overlap alone, ρ2

in = =P( ) . .0 0 05  Cells in 
layer 3 received pooled inputs from layer 2, and their output 
was highly correlated.

These results predict that correlations between spike trains 
develop in deeper layers, but they do not not directly address 
the timescale of the correlated behavior. In simulations, spiking 
becomes tightly synchronized in deeper layers (see for instance 
Litvak et al., 2003; Reyes, 2003; and Figure 7). This can be under-
stood using results in Maršálek et al. (1997) and Diesmann et al. 
(1999) where it is shown that the response of cells to volleys of 
spikes is tighter than the volley itself. The fi ring of individual cells in 
the network becomes bursty in deeper layers and large correlations 
are manifested in tightly synchronized spiking events. Alternatively, 
one can predict the emergence of synchrony by observing that 
pooling increases correlations over fi nite time windows (see next 
section and Appendix) and therefore the analysis developed above 
can be adapted to correlations over small windows.

Balanced feedforward networks
In the simplifi ed feedforward model above, when excitation balances 
inhibition, that is β ≈ 1, correlations between the pooled inputs to 
a layer are due to overlap alone, ρ ρk

in out
e i= ≈ +−P p pk( ) ( )/1 2 for all k. 

The correlating effects of this map are weak, and this would seem 
to imply that cells in balanced feedforward chains remain asyn-
chronous. Indeed, our model of correlation propagation displays 
a stable fi xed point at low values of ρ when β ≈ 1 (see Figure 6D). 
However, in practice, synchrony is diffi cult to avoid without careful 
fi ne-tuning (Tetzlaff et al., 2003), and almost always develops in 
feedforward chains (Litvak et al., 2003). We provide some reasons 
for this discrepancy.

Our focus so far has been on correlations over infi nitely large 
time windows (see Materials and Methods where we defi ne ρ

xy
). 

Even when the membrane potentials are nearly uncorrelated over 
large time windows, differences between the excitatory and inhib-
itory synaptic time constants can cause larger correlations over 
smaller time windows (Renart et al., 2010). This can, in turn, lead to 
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signifi cant correlations between the output spike trains. We discuss 
this effect further in the Appendix and give an example in Figure 8. 
In this example, the correlations between the membrane poten-
tials over long windows are nearly zero due to cancellation (see 
Figure 8A where ρ

VV
 = 0.0174 ± 0.0024 s.e. with threshold present), 

but positive over shorter timescales. The cross- covariance func-
tion between the output spike trains is primarily positive, yielding 
signifi cant spike train correlations (ρ

spikes
 = 0.1570 ± 0.0033 s.e.). 

Therefore, the assumption that pairs of cells decorrelate their inputs 
may not be valid in the balanced case.

Another source of discrepancies between the idealized model 
and simulations of feedforward networks are inhomogeneities, 
which become important when balance is exact. Note that Eq. (14) 
is an approximation obtained by ignoring fl uctuations in connec-
tivity from layer to layer. In a random network, inhomogeneities 
will be introduced by variability in input population overlaps. To 
fully describe the development of correlations in a feedforward 
network, it is necessary to include such fl uctuations in a model of 

correlation propagation. The asynchronous fi xed point that appears 
in the balanced case has a small basin of attraction and fl uctuations 
induced by input inhomogeneities could destroy its stability (see 
Figure 6D). Other sources of heterogeneity can further destabilize 
the asynchronous state (see Appendix).

It has been shown that asynchronous states can be stabilized 
through the decorrelating effects of background noise (van Rossum 
et al., 2002; Vogels and Abbott, 2005). To emulate these effects, a 
third transfer function, N, can be added to our model. The cor-
relation transfer map then becomes T(ρ) = S °N°P(ρ). Suffi ciently 
strong background noise can increase decorrelation from input to 
output of a layer, and stabilize the asynchronous fi xed point.

DISCUSSION
We have illustrated how pooling and shared inputs can impact cor-
relations between the inputs and free membrane voltages of post-
synaptic cells in a feedforward setting. The increase in correlation 
due to pooling was discussed in a simpler setting in (Bedenbaugh 

FIGURE 7 | Development of synchrony in feedforward networks. (A) A 
feedforward network with no overlap and independent, Poisson input. For 
excitatory cells, we set E ≈ 1.55nS·ms, and I ≈ 4.67nS·ms. For inhibitory cells, 
E ≈ 3.61nS·ms, and I ≈ 10.82nS·ms. (B) Same as A, except inputs to layer 1 are 
correlated with coeffi cient ρ0 = 0.05. The network is highly synchronized in the 

second layer, even though inputs do not overlap. (C) Same as A, except for the 
presence of overlapping inputs (pe = pi = 0.05). Correlations due to overlap in the 
input to layer 2 result in average correlations of 0.05 between input currents. Layer 
3 cells in C synchronize (Compare with layer 2 in B). In all three fi gures, each cell in 
the fi rst layer was driven by excitatory Poisson inputs with rate ν0 = 100 Hz.

FIGURE 8 | Cross-covariance functions between membrane potentials 
and output spike trains. (A) The cross-covariance function between 
membrane potentials, scaled so that its maximum is 1. The linear 
approximation in Eq. (16) (blue, shaded) agrees with simulations of the full 
conductance-based model (black dashed line). Differences between 
simulations with and without threshold are too small to be observable (8000 
simulations 10s each; simulations with and without threshold are shown). 
Parameters are as in Figure 1D. The cells are balanced with 

ρee = ρii = ρei = 0.05 so that the correlation between the membrane potentials 
over long time windows is essentially zero (ρvv = 0.0085 ± 0.0024 s.e. 
unthresholded, and ρvv = 0.0174 ± 0.0024 s.e. thresholded). However, 
correlations over shorter time windows are positive as indicated by the central 
peak in the cross-covariance function. (B) The cross-covariance between the 
output spike trains is mostly positive. The correlation between the output spike 
trains was ρspikes = 0.1570 ± 0.0033 s.e. (500 simulations of 100s each with 
same parameters as in A.
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and Gerstein, 1997; Super and Roelfsema, 2005; Chen et al., 2006; 
Stark et al., 2008), and similar ideas were also developed for the 
variance alone in (Salinas and Sejnowski, 2000; Moreno-Bote et al., 
2008). The saturation of the signal-to-noise ratio with increasing 
population size observed in (Zohary et al., 1994) has a similar ori-
gin. Our aim was to present a unifi ed discussion of these results, 
with several generalizations.

Other mechanisms, such as recurrent connectivity between cells 
receiving the inputs, can modulate correlated activity (Schneider 
et al., 2006; Ostojić et al., 2009). Importantly, the cancellation of 
correlations may be a dynamic phenomenon in recurrent net-
works, as observed in (Hertz, 2010; Renart et al., 2010). On the 
other hand, neurons may become entrained to network oscilla-
tions, resulting in more synchronous fi ring (Womelsdorf et al., 
2007). A full understanding of the statistics of population activity 
in neuronal networks will require an understanding of how these 
mechanisms interact to shape the spatiotemporal properties of the 
neural response.

The results we presented relied on the assumption of linearity at 
the different levels of input integration. These assumptions can be 
expected to hold at least approximately. For instance, there is evi-
dence that membrane conductances are tuned to produce a linear 
response in the subthreshold regime (Morel and Levy, 2009). The 
assumptions we make are likely to break down at the level of single 
dendrites where nonlinear effects may be much stronger (Johnston 
and Narayanan, 2008). The effects of correlated inputs to a single 
dendritic branch deserve further theoretical study (Gasparini and 
Magee, 2006; Li and Ascoli, 2006).

We demonstrated that the structure of correlations in a popula-
tion may be diffi cult to infer from pooled activity. For instance, a 
change in pairwise correlations between individual cells in two pop-
ulations causes a much smaller change in the correlation between 
the pooled signals. With a large number of inputs, the change in 
correlations between the pooled signals might not be detectable 
even when the change in the pairwise correlations is signifi cant.

While we discussed the growth of second order correlations only, 
higher order correlations also saturate with increasing population 
size. For example, in a 3-variable generalization of the homogene-
ous model from Figure 3A, it can be shown that ρE E E e1 2 3

= −1 1O( / )n  
where n

e
 is the size of each population and ρE E E1 2 3

 is the triple correla-
tion coeffi cient (Stratonovich, 1963) between the pooled signals E

1
, 

E
2
, and E

3
. The reason that higher order correlations also saturate fol-

lows from the generalization of the following observation at second 
order: Pooling amplifi es correlations because the variance and covari-
ance grow asymptotically with the same rate in n

e
. In particular σE

2  
and γ E E1 2

 both behave asymptotically like n ne
2

ee e eρ σ2 +O( ), and their 
ratio, ρ γ σE E E E E

2

1 2 1 2
= / , approaches unity (Bedenbaugh and Gerstein, 

1997; Salinas and Sejnowski, 2000; Moreno-Bote et al., 2008).
We concentrated on correlations over infi nitely long time win-

dows (see Materials and Methods where we defi ne ρ
xy

). However, 
pooling amplifi es correlations over fi nite time windows in exactly 
the same way as correlations over large time windows. Due to 
the fi ltering properties of the cells, the timescale of correlations 
between downstream membrane potentials may not refl ect that of 
the inputs. We discuss this further in the Appendix where the auto- 
and cross-covariance functions between the membrane potentials 
are derived.

To simplify the presentation, we have so far assumed stationary. 
However, since Eq. (2) applies to the Pearson correlation between any 
pooled data, all of the results on pooling can easily be extended to the 
non-stationary case. In the non-stationary setting, the cross- covariance 
function has the form R

xy
(s, t) = cov (x(s), y(s + t)), but there is no nat-

ural generalization of the asymptotic statistics defi ned in Eq. (1).
Correlated neural activity has been observed in a variety of neu-

ral populations (Gawne and Richmond, 1993; Zohary et al., 1994; 
Vaadia et al., 1995), and has been implicated in the propagation and 
processing of information (Oram et al., 1998; Maynard et al., 1999; 
Romo et al., 2003; Tiesinga et al., 2004; Womelsdorf et al., 2007; 
Stark et al., 2008), and attention (Steinmetz et al., 2000; Mitchell 
et al., 2009). However, correlations can also introduce redundancy 
and decrease the effi ciency with which networks of neurons repre-
sent information (Zohary et al., 1994; Gutnisky and Dragoi, 2008; 
Goard and Dan, 2009). Since the joint response of cells and recorded 
signals can refl ect the activity of large neuronal populations, it will 
be important to understand the effects of pooling to understand 
the neural code (Chen et al., 2006).

APPENDIX
DERIVATION OF EQ. (10)
Equation (10) can be derived from Eq. (2). However, we fi nd that 
it is more easily derived directly. We will calculate the variance, 
σ σE

2
E
2

1 2
= , and covariance γ E E1 2

 between the pooled signals.
The covariance is given by the sum of all pairwise covariances 

between the populations, γ σ σ ρE E e E ,e E e e e e1 2 1 1 2 2 1 2
= ∈ ∈Σ

1 2
. Each cell 

receives n q ne e e+  inputs so that there are (n
e
 + q

e
n

e
)2 terms that 

appear in this sum. However, the q
e
n

e
 “independent” inputs from 

each pool are uncorrelated with all other inputs and therefore don’t 
contribute to the sum. Of the remaining ne

2  pairs, n
e
p

e
 are shared 

and therefore have correlation ρe e1 2
= 1. These shared processes 

therefore collectively contribute n pe e eσ2 to γ E E1 2
. The remaining 

n n pe
2

e e−  processes are correlated with coeffi cient ρ
ee

 and collec-
tively contribute ( ) .n n pe e e ee e

2 2− ρ σ  The pooled covariance is thus

γ ρ σ σE E e
2

e e ee e

Correlated

e e e
2

Shared

1 2
= − +( ) .n p n n p2

1 244 344 123

The variance is given by the sum of all pairwise covariances within 
a population, σ σ σ ρE

2
e E e E e e e e1 1 1 2 1

= ∈ ∈Σ , .
1 2 1 2

 As above, there are n
e
 + q

e
n

e
 

neurons in the population, so that the sum has (n
e
 + q

e
n

e
)2 terms. 

Of these, n
e
 + q

e
n

e
 are “diagonal” terms (e

1
 = e

2
), each contributing 

σe
2 , for a total contribution of ( )n q ne e e e+ σ2  to σE1

2 . The processes 
from the independent pool do not contribute any additional terms. 
This leaves n

e
(n

e
 − 1) correlated pairs which each contribute σ ρe ee

2  
for a collective contribution of n ne e e ee( ) ,−1 2σ ρ  giving

σ σ σ ρ σE E e e e ee

Correlated

e e e e

Diagon

1 2
1 2 2= = − + +n n n n q( ) ( )

1 244 344
aal

1 244 344
.

Now, ρ γ σE E E E E1 2 1 2
= /

1
 can be simplifi ed to give Eq. (10). Equations 

for ρI I1 2
 and ρ ρE I I E1 2 1 2

=  can be derived identically.

FINITE-TIME CORRELATIONS AND CROSS-COVARIANCES
Throughout the text, we concentrated on correlations over large time 
windows. However, the effects of pooling described by Eq. (2) apply to 
the correlation, ρ

xy
(t), between spike counts over any time window of 
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size t, defi ned by ρxy x y x yt N t N t N t N t( ) cov( ( ), ( ))/ var( ( ))var( ( ))=  
where N t x s sx

t( ) ( )= ∫0 d  is the spike count over [0,t] for the spike 
train x(t). The equation also applies to the instantaneous correla-
tion at time t, defi ned by R t C t C t C txy xy xx yy( ) ( )/ ( ) ( ).=  Thus pool-
ing increases correlations over all timescales equally.

However, the cell fi lters the pooled inputs to obtain the mem-
brane potentials and, as a result, the correlations between mem-
brane potentials is “spread out” in time (Tetzlaff et al., 2008). To 
quantify this effect, we derive an approximation to the auto- and 
cross-covariance functions between the membrane potentials.

The pooled input spike trains are obtained from from a weighted 
sum of the individual excitatory and inhibitory spike trains (see 
Materials and Methods). As a result cross-covariance functions 
between the pooled spike trains are just sums of the individual cross-
covariance functions, C t C tXY x X y Y xy( ) ( ),= ∈ ∈Σ  for X, Y = E

1
, E

2
, I

1
, I

2
 

and x, y = e, i accordingly. Thus only the magnitude of the cross-
 covariance functions is affected by pooling. The change in magni-
tude is quadratic in n

e
 or n

i
. This is consistent with the observation 

that pooling amplifi es correlations equally over all timescales.
The conductances are obtained by convolving the total inputs 

with the synaptic fi lter kernels,

g t t g t t k
k kk k iE e IE and I( ) ( )( ), ( ) ( )( ); , .= ∗ = ∗ =α α 1 2

The cross-covariance between the conductances can therefore be 
written as a convolution of the cross-covariance function between 
the input signals and the deterministic cross-covariance between 
the synaptic kernels (Tetzlaff et al., 2008). In particular,

C t C tg g XY x yX Y
( ) ( ( ))( )= ∗ α α!

 
(15)

for X, Y = E
1
, E

2
, I

1
, I

2
 and x, y = e, i accordingly, where 

( )( ) ( ) ( )α α α αx y x yt s t s s! = ∫ +−∞
∞ d  is the deterministic cross-

 covariance between the synaptic fi lters, α
x
 and α

y
. Note that total 

correlations remain unchanged by convolution of the input spike 
trains with the synaptic fi lters, since the integral of a convolution 
will be equal to the product of the integrals (Tetzlaff et al., 2008).

The total input currents, J
K
(t) = –( ( )g tEk

(V
L
–V

I
))/C

m
, obtained 

from the linearization of the conductance-based model described 
in the Section “Materials and Methods” are simply linear combina-
tions of the individual conductances. The cross-covariance function 
between the input currents is therefore a linear combination of 
those between the conductances,

C t V V C t V V C t

V V V

J J L g g L g g

L

h k h k h k
( ) | | ( ) | | ( )

| ||

= − + −

− −
E I

E I

E E I I

2 2

2 −−V C tL g g
h k

| ( ).
I E

Combining this result with Eq. (1), yields the correlation, 
ρ ρin = J J1 2

,  between the total input currents given in Eq. (13).
Using the solution of the linearized equations described in the 

Section “Materials and Methods”, we obtain a linear approximation 
to the cross-covariance functions,

C t C K K tV V J Jh k h k
( ) ( ( ))( )≈ ∗1

2τeff

!
 

(16)

for h,k = 1,2 where ( )( ) | |/K K t e t! = −τ τeff eff

2
 is the cross-covariance 

between the linear kernel, K, and itself. The convolution with 
(K!K)(t) scales the area of both the auto- and cross-covariance 

functions by a factor of τeff
2 , and therefore leaves the ratio of the 

areas, ρV V1 2
 unchanged. Thus, the linear approximation predicts 

that ρ ρV V1 2
≈ in .

When the total inputs are strong, τ
eff

 is small and we can simplify 
Eq. (16) by approximating (K!K)(t) with a delta function with 
mass τeff

2  so that C t C tV V J J1 2 1 2
2( ) ( )/≈ τeff  and similarly for C tV V1 1

( ). 
This approximation is valid when the synaptic time constants are 
signifi cantly larger than τ

eff
, which is likely to hold in high conduct-

ance states. We compare this approximation to cross-covariance 
functions obtained from simulations in Figure 8.

In all examples considered, the cross-covariance functions have 
exponentially decaying tails. We defi ne the correlation time con-
stant, τxy

t
xyt C t= −

→∞
lim / ln( ( )), as a measure of the decay rate of the 

exponential tail. If t " τ
xy

, then x(s) and y(s + t) can be regarded 
as approximately uncorrelated and γ xy t

t
xyt s t C s s≈ ∫ −− ( | | / ) ( )d  

(Stratonovich, 1963).
The time constant of a convolution between two exponen-

tially decaying functions is just the maximum time constant of 
the two functions. Thus, from the results above, the correlation 
time constant between the membrane potentials is the maximum 
of the correlation time constants between the inputs, the syn-
aptic time constants, and the effective membrane time constant 
τ τ τ τ τ τ τ τV V1 2 1 2 1 2 1 2 2 1

= max{ , , , , , , }E E I I E I E I e i eff  where τE E1 2
, τI I1 2

, τE I1 2
, and 

τE I2 1
 are the time constants of the input spike trains and τ

e
 and τ

i
 

are synaptic time constants. Thus the cross-covariances functions 
between the membrane potentials are generally broader than the 
cross-covariance functions between the spike train inputs.

DERIVATION OF EQ. (14)
Consider a feedforward network where each layer consists of N

e
 

excitatory cells and N
i
 inhibitory cells; each cell in layer k receives n

e
 

excitatory and n
i
 inhibitory inputs from layer (k − 1), and these con-

nections are chosen randomly and independently across neurons in 
layer k. Then the degree of overlap in the excitatory and inhibitory 
inputs to a pair of cells in layer k is a random variable. Following 
the derivation in Derivation of Eq. (10) in Appendix,

ρ
γ
σ

σ ρ σ
σ ρ σE E

E E

E

e e e e ee e

e e e e ee e
1 2

1 2= = + −
+ −2

2 2 2

2 2 2

s n s

n n n

( )

( )
,

where s
e
 denotes the number of common excitatory inputs between 

the two cells. To understand the origin of s
e
, suppose the n

e
 excita-

tory inputs to cell 1 have been selected. Then the selection of the n
e
 

excitatory inputs to cell 2 involves choosing, without replacement, 
from two pools: the fi rst, of size n

e
, projects to cell 1, and the second, 

of size (N
e
 − n

e
), does not. Therefore, s

e
 is follows a hyper-geometric 

distribution with parameters (N
e
, n

e
, n

e
), and has mean n N n pe

2
e e e/ .=  

In addition, this random variable is independently selected amongst 
each pair in layer k. Using the mean value of s

e
, we obtain Eq. (10).

For simplicity, we assume that E |V
E
 − V

L
| = I |V

I
 − V

L
|, so that 

β = n
i
/n

e
. If we assume that the statistics in the (k − 1)st layer are uniform 

across all cells and cell types (i.e., ρ ρ ρ ρ ρ= = = = −ee ii ei
out
k 1 and σ

e
 = σ

i
) 

then by substituting Eq. (10) and the equivalent forms for ρ
II
, ρ

EI
 in to 

Eq. (13), we may write the input correlations to the kth layer as

ρ
γ γ γ

in
E E E I I I E I

E

1 2 1 2=
− + − − − −
−

| | | | | || |

|

V V V V V V V V

V V
L L L L E I

L

2 2 2
1 2

|| | | | || |
.2 2 2 2 2σ σ γE I I E I E I1 1

+ − − − −V V V V V VL L L
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Substituting the values of the covariances and variances, and 
dividing the numerator and denominator by (E|V

E
 − V

L
|σ

e
)2, 

we get

ρ ρ ρ ρ
ρin

e e
2

e i i
2

i e i

e e
2

e i i
2 = + − + + − −

+ − + + −
s n s s n s n n

n n n n n

( ) ( )

( ) (

2

nn n ni e i  )
.

ρ ρ− 2

Rearranging terms and dividing numerator and denominator 
by ni

2 , along with the substitution β = n
e
/n

i
, we have

ρ
ρ β ρ

ρ β ρ
in

i
e i

i
e i

=
− + +( ) −

− + + −

( ) ( )

( ) ( )( )

1
1

1

1
1

1

2
2

2
2

n
s s

n
n n

 

(17)

This equation takes into account the variations in overlap due 
to fi nite size effects since s

e
 and s

i
 are random variables. Eq. (14) 

in the text represents the expected value P(ρ) = 〈ρ
in
〉 which can 

be obtained by replacing the variables s
e
 and s

i
 in Eq. (17) with 

their respective means, 〈s
e
〉 = n

e
p

e
 and 〈s

i
〉 = n

i
p

i
. The expectation 

above is taken over realizations of the random connectivity of the 
feedforward network.

To calculate the standard deviation for the inset in Figure 6D, 
we ran Monte Carlo simulations, drawing s

e
 and s

i
 from a hyper-

geometric distribution and calculating the resulting transfer, 
S( )ρ ρin in

2=  using Eq. (17). Note, however, that Eq. (17) and the inset 
in Figure 6D, do not account for all of the effects of randomness 
which may destabilize the balanced network. In deriving Eq. (17), 
we assumed that the statistics in the second layer were uniform. 
However, variations in the degree of overlap in one layer will cause 
inhomogeneities in the variances and rates at the next layer. In 
a feedforward setting, these inhomogeneities are compounded at 
each layer to destabilize the asynchronous fi xed point.

DEFINITIONS AND VALUES OF VARIABLES USED IN THE TEXT

Table 1 | Defi nitions of variables pertaining to recordings.

X1(t), X2(t) Signals from two populations.
ρX X1 2

 Correlation between the signals.
ρjk  Average pairwise correlation between a cell in population j
 and a cell in population k.
r(d ) Firing rate of a cell at distance d from the center of a stimulus.

Table 2 | Defi nitions of variables pertaining to downstream cells. 
Subscripts e and E (i and I) denote excitation (inhibition).

ne, ni Number of correlated inputs to a cell.
νe, νi Input rates. 
E, I Synaptic weights.
qe, qi Neurons received neqe(niqi) independent excitatory
 (inhibitory) inputs.
ρee, ρii, ρei Correlations between pairs of afferents. 
ρ ρxy xy

w b,  Correlations within or between two non-overlapping 
 populations (x,y = e,i). 
pe, pi Proportion of shared input to the post-synaptic pair. 
Ne, Ni Number of cells per layer in feed-forward network model.
Ej, Ij Pooled input spike trains to cell j. 
σE, σI Standard deviation of pooled excitatory 
 or inhibitory spike trains. 
γ γ γE E E I I I, ,

j k j k j k  Covariance between pooled spike trains. 
ρ ρ ρE E E I I I, ,

j k j k j k  Correlations between pooled spike trains. 
β Measure of balance between excitation and
 inhibition in the inputs. 
ρ ρk k

in out,  Correlations between inputs to or outputs from cell
 pairs in a feedforward network. 
CXY(t) Cross-covariance function between processes X and Y. 
P(ρ) Correlations between the pooled inputs to cells in
 the feedforward model. 
S(ρ) Correlation between output spike trains in
 terms of input current correlations between 
 cell pairs in the feedforward model. 

Table 3 | Parameter values for simulations of two downstream cells. For 
fi elds with “var,” various values of the indicated parameters were used and 
are described in the captions. For all simulations, VL = −60 mV, VE = 0 mV, 
VI = −90 mV, Cm = 114 pF, gL = 4.086 nS, τe = 10 ms, τi = 20 ms.

 ρee, ρii ρei ne, ni pe, pi qe, qi νe, νi (Hz) E,I (nS·ms)

Figure 1C 0.05 0 250, 84 0 1 5, 7.5 2.3, 9.2
Figure 1D 0.05 0.05 250, 84 0 1 5 2.3, 13.8
Figure 5 var var var, ne/3 var var 5, 7.5 590/ne, 4E
Figure 8 0.05 0.05 250, 84 0 1 5 2.3, 13.8

Table 4 | Parameter values for simulations of feedforward networks. The parameter ν0 is the input rate to the fi rst layer, (E, I)e indicates synaptic weights 
for excitatory cells, and (E, I)i for inhibitory cells. For all simulations, VL = −60 mV, VE = 0 mV, VI = −90 mV, Cm = 114 pF, gL = 4.086 nS, τe = 10 ms, τi = 20 ms. 
For Figure 6, theoretical values were obtained under the assumption that νe = νi and E|VE − VL| = I|VI − VL|.

 ne, ni Ne, Ni pe, pi ν0 (Hz) ρ0 (E, I)e, (E, I)i (nS·ms)

Figure 6C 600, 400 12000, 8000 0.05 NA 0 NA
Figure 6D 600, 525 12000, 10500 0.05 NA 0 NA
Figure 7A 225, 75 NA 0 100 0 (1.55,5.67),(3.61,10.82)
Figure 7B 225, 75 NA 0 100 0.05 (1.55,5.67),(3.61,10.82)
Figure 7C 225, 75 4500, 1500 0.05 100 0 (1.55,5.67),(3.61,10.82)
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In particular, count correlations computed for time bins larger than 
the intrinsic temporal scale of correlations can vanish for some 
functional forms of input correlations. These potential ambigui-
ties were not reported in previous studies of leaky integrate and 
fi re models which focused on the analytically accessible choice of 
white noise input currents (de la Rocha et al., 2007; Shea-Brown 
et al., 2008).

The paper is organized as follows: we fi rst introduce several 
common spike count measures (Section “Materials and Methods”) 
and the statistical framework (Section “Results”). Then we study the 
zero time lag correlations (Section “Spike Correlations with Zero 
Time Lag”) and the infl uence of the temporal structure of input 
correlations on measures of spike correlations (Section “Temporal 
Scale of Spike Correlations”). We show that spike count correla-
tions can vanish despite the presence of input cross correlations 
(Section “Vanishing Count Covariance in the Presence of Cross 
Correlations”). Finally, we discuss potential consequences of our 
fi ndings for the design of population models and the experimen-
tally measured spike correlations.

MATERIALS AND METHODS
MEASURES OF CORRELATION
The spike train s

i
(t) of a neuron i is completely described by the 

sequence of spike times t
i
. This description is often simplifi ed using 

discrete bins of size T (Figure 1). To describe pairwise spike correla-
tions, several competing measures are used (Perkel et al., 1967; Svirskis 
and Hounsgaard, 2003; Schneidman et al., 2006; de la Rocha et al., 
2007; Shea-Brown et al., 2008; Roudi et al., 2009). Here, we focus on 
the most commonly used measures of spike correlations: conditional 

INTRODUCTION
Coordinated activity of neural ensembles contributes a multitude 
of cognitive functions, e.g., attention (Steinmetz et al., 2000), 
encoding of sensory information (Stopfer et al., 1997; Galan et al., 
2006), stimulus anticipation and discrimination (Zohary et al., 
1994; Vaadia et al., 1995). Novel experimental techniques allow 
simultaneous recording of activity from a large number of neurons 
(Greenberg et al., 2008) and offer new possibilities to relate the 
activity of neuronal populations to sensory processing and behav-
ior. Yet, understanding the function of neural assembles requires 
reliable tools for quantifi cation, analysis and interpretation of mul-
tiple simultaneously recorded spike trains in terms of underlying 
connectivity and interactions between neurons.

As a fi rst step beyond the analysis of single neurons in isola-
tion, much attention has focused on the pairwise spike correlations 
(Schneidman et al., 2006; Macke et al., 2009; Roudi et al., 2009), their 
temporal structure and the infl uence of topology (Kass and Ventura, 
2006; Kriener et al., 2009; Ostojic et al., 2009; Tchumatchenko et al., 
2010). Pairwise neuronal correlations are traditionally quantifi ed 
using count correlations, e.g., correlation coeffi cients (Perkel et al., 
1967). However, it remains largely elusive how correlations present 
in the input to pairs of neurons are refl ected in the count correlations 
of their spike trains. What are the signatures of input correlations 
in the count correlations? And vice versa, what conclusions about 
input correlations and interactions can be drawn on the basis of 
count correlations and their changes?

Here we address these questions using a framework of Gaussian 
random functions. We fi nd that correlation coeffi cients can be a poor 
indicator of input synchrony for some cases of input  correlations. 
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fi ring rate, correlation coeffi cient, normalized correlation coeffi cient 
and count covariance. We will consider the relation between these 
measures and their dependence on (1) the underlying input correla-
tion strength, (2) fi ring rate, (3) temporal structure of spike trains, 
and (4) size of the time bin used to compute count correlations.

The spike timing correlations of two spike trains s
i
(t) and s

j
(t) are 

often quantifi ed using the conditional fi ring rate function ν
cond,ij

(τ) 
(Binder and Powers, 2001; Tchumatchenko et al., 2010):

ν ν νcond,ij i j i js t s t( ) ( ) ( ) /τ τ= 〈 + 〉  (1)

ν τ ν τ τ νcond cond,( ) ( ) ( ) ( ) / .= = 〈 + 〉ii i i is t s t  (2)

Here ν
i
 and ν

j
 are the mean fi ring rates of neurons i and j, respec-

tively. Correlations within a spike train are described by the auto 
conditional fi ring rate ν

cond
(τ).

An alternative measure based on count correlations is the 
 correlation coeffi cient ρ

ij
 (Perkel et al., 1967; de la Rocha et al., 

2007; Greenberg et al., 2008; Shea-Brown et al., 2008; Tetzlaff 
et al., 2008):

ρ =
⋅

ij

i j

i i j j

n T n T

n T n T n T n T

Cov ( ), ( )

Var ( ), ( ) Var ( ), ( )
,

( )
( ) ( )

 

(3)

where n
i
(T) and n

j
(T) are spike counts of neuron i and j measured in 

synchronous time bins of width T, see Figure 1. A related measure 
of pairwise correlations is the normalized correlation coeffi cient 
c

ij
 (Roudi et al., 2009). It determines pairwise interactions J

ij
 in 

maximum entropy models of networks of N neurons with average 
fi ring rate ν (Schneidman et al., 2006; Roudi et al., 2009):

c
n T n T

n T n T

n T n T

Tij

i j

i j

i j

i j

=
( )

=
( )Cov Cov( ), ( )

( ) ( )

( ), ( )

ν ν 2

 

(4)

J c O N Tij ij= +( ) +log ( ).1 ν  (5)

Covariance can be obtained via the integration of cross condi-
tional fi ring rate ν

cond,ij
 (τ) over the time bin T:

Cov n T n T n T n n T n

s x dx

i j i j i j

T
i

( ), ( ) ( ), ( ) ( ) ( )

( )

( ) = 〈 〉 − 〈 〉 〈 〉

= 〈∫

T T

0 1 11 0 2 2
2∫ 〉 −T

j i js x dx T( ) ν ν
 

(6)

       

= −( ) −
−∫ ν ν ν ν νi j ij i jT

T
t T t dtcond, ( ) ( | |) .  (7)

The count variance can be obtained from the auto conditional 
fi ring rate ν

cond
(τ):

Var condn T n T T t T t dti i i i i

T

( ), ( ) ( ) ( | |) .( ) = ⋅ + ⋅ −( ) −∫ν ν ν ν2
0

 (8)

For bin sizes smaller than the intrinsic time constant (T < τ
s
, see 

Eq. 14), we can directly relate conditional fi ring rate ν
cond,ij

(τ) and 
the correlation coeffi cient ρ

ij

ρ
ν ν ν ν ν

ν ν ν ν
ντij T

i j ij i j

i j i i
s

T

T T T
,

, ( )
< ≈

⋅ −( )
− ⋅( ) − ⋅( )

=cond

c
1

0

1

2

oond  , ( )ij i j T0 −( )ν ν  (9)

c
T

Tij T

i j ij i j

i j

ij i j

s,

cond,
2

2

cond,
(0) (0)

<
( ) −

τ ≈
⋅ ν −

=
νν ν ν ν

ν ν
ν ν

νii jν
.  (10)

In this limit, the properties of ρ
ij
, c

ij
 are largely determined 

by ν
cond,ij

(0). Several experimental studies used bin sizes ranging 
from T = 0.1 to 1 ms, which are compatible with this T-regime 
of  correlation coeffi cients (e.g., Lampl et al., 1999; Takahashi and 
Sakurai, 2006).

time [s]

ψ
0

ψ
0

T

nj(T,t)
1 1 0  1  0 1 1  0 0 0 0 0 0 0 0
0 1 1  0  0 0 0  0  0   0 0 0 0 0 1

ni(T,t)0
1 0 0  1 0 0

0 0  000
0

A

B

0

Threshold model

C

I 0

Threshold model

<V (t)>=02

<V (t)>=01

FIGURE 1 | Generation of spike trains and transformation to spike counts. 
(A) Generation of spike trains from correlated voltage traces of two neurons 
with common presynaptic partners. (B) Red and blue vertical bars indicate the 
spike trains of two neurons. Squares show the boundaries of bins with duration 

T. ni(T,t) and nj(T,t) illustrate corresponding binned spike trains. (C) Firing rate vs. 
input current in the LIF model (fi rst order solution) and the threshold model 
(Eq. 11) computed for σI = 0.25 (top), I0 = 0.6 (bottom) and ψ0 = 1, Vr = 0, 
τM = 15 ms and τI = 5 ms.
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The quantities presented here all measure different aspects of 
spike correlations and can potentially have different computational 
properties. Furthermore, each of the quantities can exhibit a non-
linear dependence on fi ring rate, input statistics or bin size. Below, 
we consider these measures of spike correlations, as well as their 
dependence on fi ring rate, input statistics and bin size.

RESULTS
To access spike correlations in a pair of neurons, we use the frame-
work of correlated, stationary Gaussian processes to model the voltage 
potential V(t) of each neuron. This approach generates voltage traces 
with statistical properties consistent with cortical neurons (Azouz and 
Gray, 1999; Destexhe et al., 2003). The simplest conceivable model of 
spike generation from a fl uctuating voltage V(t) identifi es the spike 
times t

j
 with upward crossings of a threshold voltage (Rice, 1954; Jung, 

1995; Burak et al., 2009). The times t
j
 determine the spike train:

s t t t V t V t V tj j( ) ( ) | ( )| ( ) ,= ∑ −( ) = −( ) ( )δ δ ψ θ0
& &  (11)

where ψ
0
 is the threshold voltage, and δ(·) and θ(·) are the Dirac delta 

and Heaviside theta functions, respectively. Each neuron has a sta-
tionary fi ring rate ν = 〈s(t)〉. We model V(t) by a random realization 
of a stationary continuous correlated Gaussian process V(t) (Azouz 
and Gray, 1999; Destexhe et al., 2003) with zero mean and a temporal 
correlation function C(τ), which decays for larger time lags τ.

C V t V t V V V t( ) ( ) ( ) ( ) ( ) , ( )τ τ τ= + = =0 0  (12)

〈·〉 denotes the ensemble average. We assume a smooth C(τ) such 
that Cn(0) exist for n ≤ 6 and the rate of threshold crossings is 
fi nite (Stratonovich, 1964). All other properties of C(τ) can be 
freely chosen. This makes our formal description applicable to a 
large class of models, each of which is characterized by a particular 
choice C(τ). For simulations using digitally synthesized Gaussian 
processes (Prichard and Theiler, 1994) and numerical integration 
of Gaussian integrals (e.g., Wolfram Research, 2009) we used a cor-
relation function compatible with power spectra of cortical neurons 
(Destexhe et al., 2003):

C V s( ) cosh / .τ σ τ τ= ( )−2 1  (13)

In cortical neurons in vivo the temporal width of C(τ) can from 10 
to 100 ms (Azouz and Gray, 1999; Lampl et al., 1999). We characterize 
the temporal width of C(τ) using the correlation time constant τ

s
:

τs C C= ′′( )/ | ( )|.0 0  (14)

Note, that the correlation time τ
s
 as defi ned in Eq. 14 is close to a 

commonly used defi nition of autocorrelation time τ τ σa VC= ∫∞0
2( )/ .  

For C(τ) as in Eq. 13 τ
a
 = πτ

s
/2. The correlation time τ

s
 and the 

threshold ψ
0
 determine the fi ring rate ν:

ν
ψ σ
πτ

=
− ( ) exp /

.
0
2 2

2

2 V

s  
(15)

The fi ring rate ν is the rate of positive threshold crossings, 
which is equivalent to half of the Rice rate of a Gaussian proc-
ess (Rice, 1954). For non-Gaussian processes the rate of threshold 

 crossings can deviate from Eq. 15 and there is no general approach 
for  obtaining ν in this case (Leadbetter et al., 1983). We note, that 
the fi ring rate ν of a neuron depends only on two parameters: the 
correlation time and the threshold-to-variance ratio, but not on 
the specifi c functional choice of the correlation function. Hence, 
processes with the same correlation time but with a different func-
tional form of C(τ) will have the same mean rate of spikes, though 
their spike auto and cross correlations can differ signifi cantly. Our 
framework can be expected to capture neural activity in the regime 
where the mean time between the subsequent spikes is much longer 
than the decay time of the spike triggered currents. This occurs if the 
spikes are suffi ciently far apart and the spike decision is primarily 
determined by the stationary voltage statistics rather than spike 
evoked currents. Therefore, this model should only be used in the 
fl uctuation driven, low fi ring rate ν < 1/(2πτ

s
) regime, which is 

important for cortical neurons (Greenberg et al., 2008).
The leaky integrate and fi re (LIF) model (Brunel and Sergi, 

1998; Fourcaud and Brunel, 2002) has a similar spike generation 
mechanism. To compare both models, we study the transformation 
of input current to spikes. The LIF neuron driven by Ornstein–
Uhlenbeck current I(t) with time constant τ

I
 can be described by

τ τMV V I I t&( ) ( ),= − + +0
 (16)

where τ
M

 is the membrane time constant and I
0
 is the mean input 

current. When V(t) reaches the threshold ψ
0
, the neuron emits a 

spike, and V(t) is reset to V
r
. The LIF model mainly differs from 

our framework by the presence of reset after each spike. For low 
fi ring rates, where the reset has little infl uence on the following 
spike, the threshold model and the LIF model can be expected to 
yield equivalent results. In Figure 1C we compare the fi rst order 
fi ring rate approximation (fi rst order in τ τI M/ ) of a LIF neu-
ron driven by colored noise, which can be obtained via involved 
Fokker–Planck calculations (Brunel and Sergi, 1998; Fourcaud 
and Brunel, 2002) and the fi ring rate of the corresponding thresh-
old neuron ν π τ τ ψ τ τ σ τ= − − +−( ) ( ) ( )/( )2 21

0 0
2 2

I M I M I IIexp( ). 
In general, the details of the spike generating model can have a 
strong effect on current susceptibility and spike correlations (Vilela 
and Lindner, 2009). However, we fi nd that both models have a very 
similar current susceptibility for a range of input currents and spike 
correlations derived in the forthcoming sections are consistent with 
the corresponding correlations in the LIF model, e.g., fi ring rate 
dependence of weak cross correlations (de la Rocha et al., 2007; 
Shea-Brown et al., 2008), the infl uence of noise mean and variance 
on the fi ring rates and spike correlations (Brunel and Sergi, 1998; 
de la Rocha et al., 2007; Ostojic et al., 2009), sublinear dependence 
of correlation coeffi cients on input strength (Moreno-Bote and 
Parga, 2006; de la Rocha et al., 2007).

We include cross correlation between two spike trains i and j 
via a common component in V

i
(t) and V

j
(t), r > 0:

V

V t

i i c

j j c

t r t r t

t r t r

( ) ( ) ( )

( ) ( ) ( ).

= − +

= − +

1

1

ξ ξ

ξ ξ

 

(17)

where ξ
c
 denotes the common component and ξ

i
, ξ

j
 are the indi-

vidual noise components. In a Gaussian ensemble any expecta-
tion value is determined by pairwise covariances only. Thus 
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all pairwise correlations are determined by the joint Gaussian 
probability density p k k C k CT( ) exp( / )/( )

r r r
= − −1 22 4π Det  of r

& &k V V V Vi i j j= ( ( ), ( ), ( ), ( ))0 0 τ τ , where

C

C C

C C

C C

V ij ij

V ij ij
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Matrix entries are covariances C
xy

 = 〈k
x
k

y
〉 with C

ij
 = rC(τ). Below, 

we calculate the conditional fi ring rate ν
cond,ij

(τ) (Eqs 1 and 11) for 
several important limits.

SPIKE CORRELATIONS WITH ZERO TIME LAG
The above framework allows one to derive an analytical expression 
for the cross conditional fi ring rate with zero time lag, ν

cond,ij
(0). Via 

Eqs 5, 9 and 10 ν
cond,ij

(0) can be related to c
ij
, ρ

ij
 and J

ij
. For a pair of 

statistically identical neurons with (ν = ν
1
 = ν

2
). ν

cond,ij
(0) in Eq. 1 

can be solved by transforming the correlation matrix C (Eq. 18) 
into a block diagonal form via a variable transformation:
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The matrix C is then the identity matrix for τ = 0, and 
∑ = + ∆ =2 0ψ σ σ0
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Equation 19 (Figure 3A) shows, as expected, that ν
cond,ij

(0) 
increases with increasing strength of input correlations r. Since both 
correlation coeffi cients ρ

ij
, and normalized correlation coeffi cient 

c
ij
 are proportional to ν

cond,ij
(0) (Eqs 9 and 10), both measures also 

increase with increasing r, which is consistent with experimen-
tal fi ndings (Binder and Powers, 2001; de la Rocha et al., 2007). 
However, the functional form of r-dependence and the sensitivity 
to the fi ring rate ν of c

ij
 and ρ

ij
 are different (Figure 2). The nor-

malized correlation coeffi cient c
ij
 and pairwise coupling J

ij
 are both 

inversely proportional to ν, and thus decrease with increasing ν for 
any value of r (Eqs 4 and 5; Figure 2B). Notably, we fi nd that c

ij
 can 

be normalized to c
ij
 → c

ij
· (νT) to yield a less ambiguous measure 

of the input correlation strength (Eqs 4 and 10; Figures 3C,D). 
Additionally, we fi nd that the fi ring rate dependence of ρ

ij
 is dif-

ferent for the weak and strong correlations.
Equation 19 further exposes one important feature of ν

cond,ij
(0), 

and thus of c
ij
 and ρ

ij
 for small time bins: all three measures depend 

on the temporal scale of the input correlations (τ
s
), but not on the 

functional form of input correlation C(τ). Thus, changes in ν
cond,ij

(0) 
and correlation coeffi cient ρ

ij
 can be interpreted as a change of the 

strength of underlying input correlation strength, if a fi ring rate 
modifi cation can be excluded.

In the linear r-regime, the analytical expression for ν
cond,ij

(0) can 
be further simplifi ed:

ν ν πcond  1
2

4|log( 2 )|, ( ) .ij s0 ≈ ( )



+ + ν πτr

 (20)

In this limit, ν
cond,ij

(0) shows a strong dependence on the fi r-
ing rate ν (Figure 3A, right, Figure 2A, top). This dependence is 
remarkably similar to the fi ring rate dependence found previously 
in vitro and in vivo in cortical neurons and LIF models (de la Rocha 
et al., 2007; Greenberg et al., 2008; Shea-Brown et al., 2008).

In the limit of strong input correlations, Eq. 19 can be simpli-
fi ed to:

ν
τcond, ( ) .ij

sr
0

1

2 2 1
≈

−
 (21)

In this regime, ν
cond,ij

(0) does not depend on the fi ring rate ν 
(Amari, 2009). Furthermore, for strong input correlations and 
small bin sizes T the correlation coeffi cient ρ

ij
 also changes only 

J i
j

A B

FIGURE 2 | Dependence of correlation coeffi cient ρij and conditional rate 
νcond,ij(0) on fi ring rate and correlation strength. (A, top) ρij vs. ν, (A, bottom) 
νcond,ij(0) vs. ν, as in Eq. 19. (B, top) Pairwise couplings Jij vs. ν, as in Eq. 5. (B, 

bottom) cij vs. ν. All quantities are computed for τs = 10 ms, C(τ) as in Eq. 13 and 
ν = ν1 = ν2; circles denote the corresponding simulation results. ρij, cij and Jij are 
computed for T = τs/4.
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marginally over a range of fi ring rates (0 < ν < 15 Hz, Figure 2A), 
since it depends linearly on ν

cond,ij
(0). Note, as r is approaching 1 the 

temporal width of ν
cond,ij

(τ) is approaching 0 and the peak ν
cond,ij

(0) 
diverges, corresponding to the delta peak in the autoconditional fi r-
ing rate ν

cond
(τ) which results from the self-reference of a spike. For 

r ≈ 1, almost every spike in one train has a corresponding spike in 
the other spike train, however these two are jittered. The temporal 
jitter of the spikes can be characterized by the peak of the condition-
al fi ring rate ν τ τ τ τcond,12  ( ) /( ) /( ( ) )/= − − − +1 2 2 1 3 8 2 12 3 2 3r rs s  
O[( /( )) ]τ 1 4− r sτ  and its temporal width ∝ 2 1− r sτ , both 
of which are threshold and fi ring rate independent in this 
limit. Notably, the threshold independence and the depend-
ence on temporal scale of input correlations are consistent with 
 previous  experimental fi ndings on spike reliability (Mainen and 
Sejnowski, 1995).

TEMPORAL SCALE OF SPIKE CORRELATIONS
So far we considered only spike correlations occurring with zero 
time lag. However, spike correlations can also span across signifi -
cant time intervals (Azouz and Gray, 1999; Destexhe et al., 2003). 
The temporal structure of spike correlations, as refl ected in the 
conditional fi ring rate ν

cond,ij
(τ), can induce temporal correlations 

within and across time bins and could potentially alter count 
correlations. To capture correlations with a non-zero time lag, 
spike correlation measures are calculated for time bins T span-
ning tens to hundreds of milliseconds, e.g., 20 ms (Schneidman 
et al., 2006), 30–70 ms (Vaadia et al., 1995), 192 ms (Greenberg 
et al., 2008) and 2 s (Zohary et al., 1994). For time bins longer 
than the time constant of the input correlations, measures of cor-
relations become sensitive to the temporal structure of ν

cond,ij
(τ). 

Moreover, the values of ρ
ij
 and c

ij
 depend on the bin size T used 

for their calculation. Figure 3 shows how dependence of ρ
ij
 and 

c
ij
 on the fi ring rate is altered by a change in bin size. Increasing 

the bin size leads to the increase of the calculated correlation 
coeffi cient ρ

ij
, and also increases the sensitivity of ρ

ij
 to the fi ring 

rate. The fact that increasing T brings the calculated correlation 
coeffi cient closer to the underlying input correlation r could 
justify the use of long time bins in the above studies. But do cor-
relation coeffi cients always increase with increasing time bins? 
To further clarify how the temporal structure of input correla-
tions infl uences the temporal correlations within and across spike 
trains, we investigate the covariance of spike counts recorded at 
different times

Cov , , +

cond

n T t n T t n T n T Ti j i j i j

i j ij

( ), ( ) ( , ) ( , )

(,

τ τ ν ν

ν ν ν

( ) = −

=

0 2

ττ ν ν + t T t dti jT

T
) | | ,−( ) −( )

−∫
 

(22)

where n
i
(T, t) and n

i
(T, t + τ) are the spike counts of neurons i, j 

measured in time bins of the same duration T, but shifted by the 
time lag τ. For each time lag τ, covariance of the spike counts can 
be calculated using ν

cond,ij
(τ) (Eq. 1). Below, we will fi rst address the 

temporal structure of auto correlations in a spike train, and then 
consider the cross correlations between spike trains.

The auto conditional fi ring rate νcond(τ)
For large time lags τ we expect the auto conditional fi ring rate to 
approach the stationary rate but to deviate from it signifi cantly 
for small time lags. Of particular importance for population 
models is the limit of small but fi nite τ, which determines the 
time scale on which adjacent time bins are correlated. At τ = 0, the 
auto conditional fi ring rate has a δ-peak refl ecting the trivial auto 
correlation of each spike with itself. In the limit of small but fi nite 
time lag (0 < τ < τ

s
) we fi nd a period of intrinsic silence, where 

the leading order ∝τ4 is independent of a particular  functional 

.. .. . .

. .

A B

C

c ij.

D

FIGURE 3 | Dependence of spike correlation measures on fi ring rate ν and 
correlation strength r. (A) νcond,ij(0) vs. r (B) ρij vs. r for bin widths T = 30τs (red), 
T = τs (blue), T = τs/4 (black). (C) cij νT vs. r. (D) cij vs. r. All quantities are 

computed for C(τ) as in Eq. 13, correlation time τs = 10 ms and three fi ring rates 
ν = 2, 4, 6 Hz, ν = ν1 = ν2; circles denote simulation results for the 
corresponding parameters.
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choice of C(τ). We solve ν
cond

(τ) (Eq. 2) by transforming the 
correlation matrix in Eq. 18 into a block diagonal form using 
new variables
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Then only few elements of the corresponding symmetric density 
matrix C∑ ∆, , ,& &∑ ∆ remain non-zero: the diagonal elements C

ii∑ ∆, , ,
,& &∑ ∆ = 1  

i ∈ {1, 2, 3, 4} and the non-diagonal elements
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For C(τ) as in Eq. 13 we obtain a simple analytical expression 
in the limit of 0 < τ < τ

s
:

ν τ ν
πτ

τ τcond

1/4

/( ) ( ) .=
⋅( )

⋅
3 2

3
4

4

s

s  (23)

This equation shows that ν
cond

(τ) depends on the temporal struc-
ture of a neuron’s input and fi ring rate, Figure 4B. Respectively, the 
silence period after each spike depends on the functional form and 
time constant of the voltage correlation function C(τ) and fi ring 
rate (Figures 4B and 5A). Figure 4B illustrates ν

cond
(τ) obtained 

using numerical integration of Gaussian probability densities (e.g., 
Wolfram Research, 2009), ν

cond
(τ) obtained from simulations of 

digitally synthesized Gaussian processes (Prichard and Theiler, 

1994) and the τ < τ
s
 approximation in Eq. 23. In this framework, 

the silence period after each spike mimics the refractoriness present 
in real neurons (Dayan and Abbott, 2001).

Count correlations within a spike train
Here we study how the input correlations shape the temporal struc-
ture of spike autocorrelations. In particular, we focus on how the 
input correlations and spike autocorrelations are refl ected in count 
correlations within a spike train. The silence period after a spike is 
refl ected in vanishing ν

cond
(τ) for 0 < τ < τ

s
 and results in negative 

covariation of spike counts in adjacent time bins. We fi nd that the 
relation between ν

cond
(τ) and spike count covariance is most salient 

for higher fi ring rates (Figure 4C, 10 Hz). For small time bins, the 
covariance mimics the functional form of ν

cond
(τ) for time bins 

covering several time constants. Plots of spike count covariance 
calculated for increasing bin sizes T reveal an important feature 
of count correlations: covariance of adjacent bins persists even 
when the bin size is increased well over the time scale of intrinsic 
correlations (T >> τ

s
), Figure 4. This suggests that avoiding sta-

tistical dependencies associated with neuronal refractoriness by 
choosing longer time bins (Shlens et al., 2006) might not be pos-
sible, particularly for higher fi ring rate neurons. We conclude that 
temporal count correlations within a spike train generally need to 
be considered in the design of population models.

Cross conditional fi ring rate νcond,ij(τ)
We explore the temporal structure of spike correlations in a weakly 
correlated pair of statistically identical neurons (ν = ν

1
 = ν

2
). This is 

an important regime for cortical neurons in vivo (Greenberg et al., 
2008; Smith and Kohn, 2008). To solve ν

cond,ij
(τ) (Eq. 1), we expand 

the probability density p V t V t V t V t( ( ), ( ), ( ), ( ))1 1 2 2
& &+ +τ τ using a von 

Neumann series of the correlation matrix C in Eq. 18. We obtain 
ν

cond,ij
(τ) up in linear order
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T

Spike train si(t)

15 bin number1   2    3   4   5    6   7   8 9 10 11  12 13 14
reference bin
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FIGURE 4 | Spike correlations and count correlations within a spike train. 
(A) Example of a binned spike train si(t), bins numbered with respect to a 
reference time bin. (B) νcond(τ) vs. τ for τ = 10 ms, numerical solution and 
simulations for the fi ring rates ν = 1 Hz (black), 5 Hz (blue) and ν = 10 Hz (red) 
are superimposed. Dotted lines denote the corresponding solutions for small 

τ (Eq. 23). (C) Cov(ni(T,0),nj(T,τ))/T vs. τ for τs = 10 ms, time bin T = τs/2 = 5 ms 
(left), T = 10 ms = τs (middle), T = 5τs = 50 ms (right). Circles denote the 
corresponding simulation points, adjacent time bins are denoted by the 
fi rst points on the time axis. All spike correlations are computed for C(τ) as 
in Eq. 13.
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ν τ ν τ πτ τ

ν τ ν
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r k= ′′( )( )
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% %2 −

11+ c( )2|log(2 )| c ( )/2 ,2r s s% %τ πντ πτ τ− ′′( )( )
 

(24)

where %c C kV V( ) ( )/ /τ τ σ ψ σ= =2
0and . Equation 24 shows that 

weak spike correlations are generally fi ring rate dependent and 
directly refl ect the structure of input correlations C(τ). Figure 5A 
shows three examples of voltage correlations which have the same 
τ

s
, but different functional form. All three functional dependencies 

are refl ected in the cross conditional fi ring rate ν
cond,ij

, but result 
in markedly different shapes of auto conditional rate ν

cond
(τ) 

(Figures 5A,B). In the next section we study how the functional 
choice of C(τ) affects the correlation coeffi cient.

Count correlations across spike trains
We now use the spike correlation function obtained above to study 
the pairwise count covariance.

Cov ( ), ( ) =i j
2n T n T r c t

c t

sT
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( ) ( )(
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−∫ ν πν
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%

%
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2 2

22 TT t dt− | |) ,   (25)

which allows to obtain the correlation coeffi cient for a weakly cor-
related pair of neurons:

ρ
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This offers the opportunity to study how changes in the input 
structure affect spike count correlations. Figure 5 shows that corre-
lation coeffi cient ρ

ij
 depends on both bin size T and the functional 

form of input correlation function C(τ). Figure 5C illustrates that 
different functional form of underlying membrane potential cor-
relations can lead to a strikingly different dependence of ρ

ij
 on the 

bin size. After an initial increase for all three voltage correlation 

functions, correlation coeffi cient continues increasing slowly for 
C

1
, remains at the same level for C

2
, but decreases dramatically 

for C
3
. This latter type of behavior was not observed in previous 

studies of LIF models (de la Rocha et al. (2007), Suppl.), which 
focused on the analytically accessible choice of white noise cur-
rents and reported a monotonously increasing correlation coef-
fi cient in the limit of large T. Below we will further consider how 
dependence of ρ

ij
 on T is infl uenced by the choice of the form of 

voltage correlations C(τ). We will show that some voltage correla-
tion functions can lead to vanishing correlation coeffi cients in the 
limit of large bin size T.

Vanishing count covariance in the presence of cross correlations
Count covariances and correlation coeffi cients rely on the inte-
gral of the spike correlation function (Eqs 3 and 7). In cortical 
neurons, the spike correlation functions can exhibit oscillations 
and  signifi cant undershoots in addition to a correlation peak 
(Lampl et al., 1999; Galan et al., 2006), this may alter the correla-
tion coeffi cients and their dependence on bin size T. In the weak 
correlation regime we obtained an analytic expression for ν

cond,ij
(τ) 

(Eqs 24 and 26). This allows us to explore analytically how a change 
in the functional choice of voltage correlations will infl uence count 
correlations. To qualify as a reliable measure of synchrony, count 
cross correlations between two neurons should refl ect primarily 
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FIGURE 5 | Infl uence of temporal structure on pairwise spike correlations. 
(A) Spike cross correlations νcond,ij(τ) and auto correlations νcond(τ) for three 
voltage correlation functions Ci(τ). (B) Voltage correlations C V s1

2 1( ) ( / )τ σ τ τ= −cosh  
(blue), C V s s2

2 12 2( ) cosh( /( )) cos( / )τ σ τ τ τ τ= −  (red), C V s3
2 2 26( ) [exp( / ( ))τ σ τ τ= − −  

τ τ τ τ2 3/( )exp( /( ))]s s
2 2 26− (black). Note, all voltage correlations Ci(τ) share the same 

correlation time τs but have a different functional form. (C) ρij vs. T for voltage 
correlation functions Ci(τ). For all fi gures the correlation time τs = 10 ms, 
ν = 5 Hz, ν = ν1 = ν2; circles denote the corresponding simulation points.

(26)

correlation strength and be independent of the functional form 
of input correlations. Our framework offers the possibility to test 
this hypothesis and explore whether previously reported fi nite 
correlation coeffi cients obtained for LIF model using white noise 
approximation (Shea-Brown et al., 2008) can be generalized to a 
larger class of input correlations.
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Here we consider spike correlations generated by a voltage cor-
relation function with a substantial undershoot (e.g., as in Figure 1E 
in Lampl et al., 1999). For illustration, we could use any voltage 
correlation function with a large undershoot and vanishing long-
timescale variability (∫ =−∞

∞
C d( )τ τ 0). Besides variance and correla-

tion time, the variability as quantifi ed by ∫−∞
∞

C d( )τ τ  is an important 
characteristic of every noise process. For analytical tractability we 
chose the voltage correlation function C

3
(τ) as the normalized sec-

ond derivative of the function %C s s3
2 2 23 6( ) /( ) :τ τ τ τ= − −exp( )

C V
s s s

3
2

2

2

2

2

2

26 3 6
( ) .τ σ τ

τ
τ
τ

τ
τ

= −




− −











exp exp  (27)

Defi ned this way, the correlation time of C
3
(τ) is τ

s
 and 

∫ =−∞
∞

C d3 0( )τ τ , which is equivalent to vanishing spectral power 
for zero frequency. Figure 5 illustrates functional form of C

3
(τ) and 

the corresponding spike cross and auto correlations. The functional 
form of C

3
(τ) fulfi lls limT T

T C t T t Tdt→∞ −∫ − =3 0( )( | |)/ . This leads 
to a vanishing count covariance and spike correlation coeffi cient 
for T >> τ

s
 (Eq. 26):
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We note that the correlation coeffi cients and count covariances 
calculated for this functional form of input correlations can be 
arbitrarily small if T >> τ

s
. This means that the absence of long-

timescale variability in the inputs (∫ =−∞
∞

C d3 0( )τ τ ) is equivalent 
to an absence of long-timescale co-variability in the spike counts. 
Notably, despite vanishing cross covariance, the variability of 
the single spike train is maintained and count variance of the 
single spike train (Eq. 8) is fi nite for C

3
(τ) in infi nite time bins. 

Equation 28 implies that experimental correlation coeffi cients cal-
culated for large time bins are most susceptible to the infl uence of 
temporal structure of correlations, and experimental studies focus-
ing on large bin sizes [e.g., T = 192 ms (Greenberg et al., 2008) 
or T = 2 s (Zohary et al., 1994)] could potentially underestimate 
the correlation strength. For the important regime of low fi ring 
rates (Greenberg et al., 2008), where the reset has little infl uence 
on the following spike, the threshold model and the LIF model 
can be expected to yield equivalent results. In this case, Eq. 28 
and Figure 5 suggest that fi nite correlation coeffi cients, which are 
increasing with bin size T as reported for the LIF model (de la 
Rocha et al., 2007) might be limited to the subset of input cor-
relation functions without sizable undershoots. To obtain fi nite 
count cross correlations, the voltage correlation functions need to 
fulfi ll ∫ >−∞

∞
C d( )τ τ 0, as C

1
(τ),C

2
(τ) in Figure 5 do.

Notably, spike count correlations of cortical neurons in vivo 
can decrease or increase as the length of the time bin increases 
(Averbeck and Lee, 2003; Smith and Kohn, 2008). These results are 
consistent with our fi ndings (Figure 5C). Thus, in contrast to the 

correlation coeffi cients computed for small T which are independ-
ent of C(τ) (Eqs 9 and 19), the count correlations computed for 
T ≥ τ

s
 are a potentially unreliable measure of synchrony.

DISCUSSION
Unambiguous and concise measures of spike correlations are needed 
to quantify and decode neuronal activity (Abbott and Dayan, 1999; 
Greenberg et al., 2008; Krumin and Shoham, 2009). Pairwise spike 
count correlations are frequently used to describe interneuronal 
correlations (Averbeck and Lee, 2003; Kass and Ventura, 2006; 
Greenberg et al., 2008) and many population models are based 
on these measures (Schneidman et al., 2006; Shlens et al., 2006; 
Roudi et al., 2009). However, quantitative determinants of count 
correlations so far remained largely elusive. Here, we used a sim-
ple statistical model framework based on the threshold crossings 
and the fl exible choice of temporal input structure to study the 
signatures of input correlations in count correlations. In general, 
the details of the spike generating model can have a strong effect 
on spike correlations, f.e. depending on the dynamical regime, two 

(28)

quadratic integrate and fi re neurons or two LIF neurons can be 
more strongly correlated (Vilela and Lindner, 2009). Notably, we 
found that our statistical framework can replicate many important 
aspects of neuronal correlations, e.g., nonlinear dependence of spike 
correlations on the input correlation strength (Binder and Powers, 
2001) (Eq. 19), fi ring rate dependence of weak spike correlations 
(Svirskis and Hounsgaard, 2003; de la Rocha et al., 2007) (Eq. 20), 
and independence of spike reliability of the threshold (Mainen and 
Sejnowski, 1995) (Eq. 21). Furthermore, spike correlations derived 
here are consistent with many recent results in the commonly used 
LIF model, e.g., fi ring rate dependence of weak cross correlations (de 
la Rocha et al., 2007; Shea-Brown et al., 2008) (Eqs 20 and 24), the 
infl uence of noise mean and variance on the fi ring rates and weak 
spike correlations (Brunel and Sergi, 1998; de la Rocha et al., 2007; 
Ostojic et al., 2009) (Eqs 15, 20 and 24), or sublinear dependence of 
correlation coeffi cients on input strength (Moreno-Bote and Parga, 
2006; de la Rocha et al., 2007) (Eq. 19, Figure 3). While the analytical 
accessibility of the LIF model is limited by the technically demanding 
multi dimensional Fokker–Planck equations and provides solutions 
only in special limiting cases (Brunel and Sergi, 1998; de la Rocha 
et al., 2007; Shea-Brown et al., 2008), the framework presented here 
allows for an analytical description of spike correlations.

Measurements of correlation coeffi cients under different 
experimental conditions often aim to compare the input cor-
relation strength in pairs of neurons (Greenberg et al., 2008; 
Mitchell et al., 2009). But is a change in count correlations always 
indicative of a change in input correlations? The tractability of 
our framework revealed that spike count correlations can be a 
poor indicator of input synchrony for some cases of input corre-
lations. Count correlations computed for time bins smaller than 
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the intrinsic scale of temporal correlations could be independent 
of the functional form of input correlations but depend on the 
fi ring rate and input correlation strength. This suggests that a 
change in the correlation coeffi cient can be related to a change 
in the input correlation strength, if a fi ring rate change and a 
change of intrinsic time scale can be excluded. On the other 
hand, a change in correlation coeffi cients computed for large 
time bins is indicative of a change in input correlation strength 
only if a change in fi ring rate, time scale and functional form 
of input correlations can be excluded. Furthermore, count cor-
relations computed for large time bins can either increase or 
decrease with increasing time bin or even vanish in a correlated 
pair. This seemingly contradictory behavior is consistent with 
the functional dependence of spike count correlations observed 
in cortical neurons (Averbeck and Lee, 2003; Kass and Ventura, 
2006; Smith and Kohn, 2008).

Our results suggest that emulating neuronal spike trains, build-
ing effi cient population models or determining potential decoding 
algorithms requires the analysis of full spike correlation functions 

in order to compute unambiguous spike count correlations. In 
 particular, spike count coeffi cients computed for time bins larger 
than intrinsic timescale of correlations can be an ambiguous 
estimate of input cross correlations in a neuronal population 
with potentially heterogeneous distribution of input structures. 
Furthermore, the details of the spike generation model can be very 
infl uential for the transfer of current correlations to spike cor-
relations, and the analytical results obtained here could facilitate 
quantitative comparisons between different types of models and 
between models and real neurons, by providing a maximally trac-
table limiting case for future studies.
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Gutnisky and Josic, 2010). There are also a variety of methods for 
capturing precise synchrony between neurons through explicit 
sharing of spikes (Kuhn et al., 2003; Galan et al., 2006; Niebur, 2007; 
Brette, 2009) and several models based on statistical frameworks 
such as maximum entropy (Schneidman et al., 2006; Shlens et al., 
2006; Roudi et al., 2009).

All of the approaches described above are designed to capture 
and/or control the total correlation between spike trains and, as 
such, are of limited utility in the context of early sensory systems 
where it is important to separate internal network correlations 
from those due to the external stimulus. In this paper, we propose a 
framework designed specifically to model spike trains in which the 
total correlation can be separated into signal and noise components. 
If responses to repeated trials of an identical sensory stimulus are 
observed, the signal correlation, which reflects both correlation 
in the stimulus itself and similarities in neurons’ preferred stimu-
lus features, will be evident in the fraction of the response that is 
repeatable from trial-to-trial. Noise correlation, which results from 
the activity of network and intrinsic cellular mechanisms, will be 
evident in the fraction of the response that is variable from trial-
to-trial (note that the term noise correlation is not meant to imply 
that the activity underlying this correlation is unimportant, but 
simply that is not directly dependent on the stimulus).

INTRODUCTION
Correlated spiking activity in neuronal populations has been a sub-
ject of intense theoretical and experimental research over the past 
several decades, and the importance of correlations has been dem-
onstrated in a number of contexts, including plasticity and infor-
mation processing (for a recent review, see Averbeck et al., 2006). 
Recent advances in experimental technology have finally made 
it possible to observe the activity of large neuronal populations 
simultaneously. In order to take full advantage of these advances, 
new methods for the analysis and modeling of population activity 
must also be developed.

A number of methods exist for modeling correlated popula-
tion spike trains in which some fraction of the input driving the 
activity of each neuron is shared with other neurons, including 
integrate-and-fire models and other spiking models with corre-
lated input currents or synaptic conductances (Destexhe and Pare, 
1999; Feng and Brown, 2000; Song and Abbott, 2001; Stroeve and 
Gilen, 2001; Salinas and Sejnowski, 2002; Dorn and Ringach, 2003; 
Gutig et al., 2003; Galan et al., 2006; De La Rocha et al., 2007; 
Shea-Brown et al., 2008; Tchumatchenko et al., 2008), stochastic 
spiking models with correlated rate functions (Galan et al., 2006; 
Brette, 2009; Krumin and Shoham, 2009), and models based on 
a dichotomized Gaussian (DG) framework (Macke et al., 2009; 
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For modeling the population spike trains of early sensory neu-
rons, another class of methods based on generalized linear models 
(GLMs) has been developed (Chornoboy et al., 1988; Paninski, 
2004; Kulkarni and Paninski, 2007; Paninski et al., 2007; Pillow 
et al., 2008). In its typical formulation, the GLM is parameterized 
by a series of filters that relate the time-varying spike rate in one 
neuron to the sensory stimulus and the responses of other neu-
rons. This formulation has the great strength that once the filter 
parameters have been estimated, the model can be used not only 
to simulate responses that match those measured experimentally, 
but also to simulate responses to novel stimuli. However, this gen-
erality comes at a cost: specifying the filters requires the estima-
tion of a large number of parameters and, thus, a large amount 
of experimental data – much more than is necessary for a model 
designed only to simulate responses to the same stimuli that have 
been tested experimentally. It is possible to formulate alternatives 
to the typical GLM that require less experimental data by forgoing 
the ability to predict responses to novel stimuli and parameterizing 
the time-varying firing rate in response to a particular stimulus 
directly. However, even in this formulation, the GLM lacks a criti-
cal property: it does not enable straightforward specification or 
manipulation of one response property independent of the others 
(Krumin and Shoham, 2009; Toyoizumi et al., 2009).

In the model we present below, the time-varying spike rate, 
trial-to-trial variability, and pairwise signal and noise correlations 
can be matched to those measured experimentally, and the noise 
correlations can be manipulated without changes in the signal cor-
relations or the single-cell properties. The model is an extension of 
previous attempts to model population spike trains as DGs (Emrich 
and Piedmonte, 1991; Cox and Wermuth, 2002; Macke et al., 2009; 
Gutnisky and Josic, 2010). In our model, the response of each cell is 
a binary vector determined by the thresholded sum of two inputs: 
a signal, which is the same for each trial of a given stimulus, and a 
noise, which is different for each trial, both of which can be cor-
related across neurons. In the first part of the paper, we show how 
the model parameters can be estimated from experimental data 
and used to simulate spike trains with properties that match those 
measured experimentally. We also demonstrate how the model 
parameters can be manipulated to obtain spike trains with arbitrary 
pairwise noise correlations without changes in single-cell proper-
ties. In the second part of the paper, we describe a general form 
of the model that can be used model spike trains with arbitrary 
single-cell properties and pairwise correlations.

All of the Matlab code required to perform the analyses described 
in this paper is available for download at http://www.ucl.ac.uk/ear/
research/lesicalab.

A MODEL FOR SIMULATING AND MANIPULATING 
EXPERIMENTALLY RECORDED POPULATION SPIKE TRAINS
SINGLE-CELL RESPONSES
To represent a set of spike times from a single cell on a single trial 
i  {1, 2, ,I} of a particular stimulus, we discretize time into n  {1, 
2, ,N} bins of length  and set r

i
[n] = 1 if a spike occurs in bin 

n on trial i, and r
i
[n] = 0 otherwise. In general, we assume that  

is small enough that no more than one spike occurs in any given 
bin. Based on the responses to all trials r (an N  I binary matrix), 
we can define several quantities of interest:

Mean spike rate (scalar)

Time-varying spike rate (PST

r r
n i0 ,

HH) -dimensional vector)

Spike train signal to noise r

r r
i

N(

aatio (scalar)

where is the residu  

SNR
r

r r

i i

i i

var( )

var( )

aal on trial i

Note that we use the notation ·
x
 to represent the expectation 

over all possible values of x, ·
x,y

 to represent the expectation over 
all possible values of x followed by the expectation of all possible 
values of y, and ·

x y
 to represent the expectation over all possible 

combinations of x and y in which their values are not equal. We 
chose to use the above definition of SNR as the measure of trial-
to-trial variability because is it commonly used in early sensory 
systems (Borst and Theunissen, 1999). One important property of 
this measure that should be noted is that its value is dependent on the 
bin size . Thus, all of the computations described below for fitting 
model parameters must be repeated if the bin size is changed.

We model the response as a dichotomized sum of a deterministic 
“signal” and Gaussian “noise”

r n
s n z n

s n z ni
i

i

[ ]
, [ ] [ ]

, [ ] [ ]

1 0

0 0
 

(1)

Where r
i
[n] is the response in time bin N on trial i, s (an 

N-dimensional vector) is the same on every trial and z  N(0, 1) 
(an N-dimensional vector) is different on every trial [note that 
neither s nor z are intended to correspond directly to any intracel-
lular quantities]. Given the experimentally recorded responses of 
a cell, we wish to simulate responses with the same PSTH r . This 
can be done by solving

r n r n s ni i
[ ] [ ] ( [ ], )1

 
(2)

for s[n] in each bin, where (x, 2) is the CDF for a Gaussian 
with zero mean and variance 2 evaluated at x. Equation 2 is easily 
solved numerically, as the function is monotonic and has unique 
level crossings. It is clear from Eq. 2 that the choice of one for the 
variance of z is somewhat arbitrary; for any finite value of the 
variance of z, an s[n] can be found to achieve any desired value of 
r n[ ]. Note that if r n[ ] ,0 1or  then s[n] must be either  or . 
If finite values of s[n] are desired, then r n[ ] can be constrained to 
the interval [1/I, 1  1/I] before solving Eq. 2.

Importantly, since this approach matches r  exactly, it will also 
match the mean spike probability r

0
 and the spike train signal to 

noise ratio SNR, as both can be uniquely defined in terms of the 
PSTH r :

r r

r r

r r

r

r r

n

i i i i

0

SNR
var( )

var

var( )

var

var( )

var( ) var ii i i i
r r2 cov ,

where, because r
i
 is binary,

var ( ) cov , .r r r r r r ri i i i n0 0
2

0
21 and
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for each cell, it will also match the signal correlation between cells. 
To match the noise correlation, it is necessary to find the appropriate 
covariance matrix 

z
. This can be done by solving the equation that 

relates z
pq to the spike train noise correlation noise

pq  numerically for 
each pair of cells (again, the function is monotonic and, because z 
is Gaussian, each z

pq can be solved for independently).
Thus, noise

pq  can be written as

noise total signal
pq pq pq
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where, because r
i
 is binary,

var r r ri
p

i

p p
0 01

and, because z is Gaussian,

cov , ,r r
s

s
r ri

p
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q

i

p

q
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p q
2 0 0
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1
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cov , , ,r r s s r ri
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q

i j

p q

n

p q1 1 0 0

where 2( , )x  is the CDF for a two-dimensional Gaussian with 
zero mean and covariance  evaluated at x.

To demonstrate the utility of this approach, we first attempted 
to reproduce the single-cell properties and pairwise correlations 
recorded experimentally from a population of 10 cells in the cat 
lateral geniculate nucleus in response to repeated presentations of a 
natural scene movie. Figure 2A shows the experimental and simu-
lated responses for two cells. As expected, the PSTH, r

0
, and SNR of 

the experimental and simulated responses are closely matched. As 
shown in Figure 2B, the measured and simulated pairwise noise 
correlations in the population are also closely matched.

In addition to matching the experimentally observed responses, 
this approach can also be used to manipulate pairwise correlations 
without disturbing single-cell properties by changing the value of 

noise
pq  on the left side of Eq. 4 before solving for z

pq (note that there 
are a number of constraints on the realizable values of noise

pq  – for 
example, because the covariance matrix 

z
 must be positive semi-

definite, it may be difficult to obtain strong negative correlations; 
see Macke et al., 2009 for a detailed discussion). As a demonstration, 
we attempted to simulate population spike trains in which the noise 
correlations were twice as large as those observed experimentally. 
As shown in Figure 2C, the noise correlations in the simulated data 
match those desired.

EVALUATING GOODNESS OF FIT
Our model is not fit directly to observed spike trains, but rather to the 
PSTHs and pairwise noise correlations that are extracted from them. In 
our framework, any set of PSTHs and noise correlations can be fit with 
a unique set of model parameters, but that does not mean, of course, 
that the model is a good description of the original spike trains. The 
actual goodness of fit of the model is determined by two factors: the 
measurement noise in the PSTHs and noise correlations and the validity 
of the assumption that the spike trains can be described by our model 

Matching r  exactly will also match the mutual information 
transmitted by single spikes (Brenner et al., 2000). Note that if it 
is not necessary to match the bin to bin spike probabilities of the 
experimental response, but only the distribution of overall spike 
counts, a reduced model can be used (Macke et al., 2009).

To demonstrate the utility of this model, we first generated 
responses using Eq. 1 with a variety of different signals, and then 
attempted to reproduce the model responses after estimating s using 
Eq. 2. Typical results are shown in Figure 1A. For uniform random, 
sine wave, and square wave signals, the PSTH and, consequently, 
r

0
 and SNR of the responses simulated with the estimated s closely 

match those of the original model generated data.
Next, we tested the model’s ability to reproduce the single-cell 

properties of experimentally recorded responses. Figure 1B shows 
the responses of neurons in the gerbil inferior colliculus to repeated 
presentations of a variety of sounds. In each case, we estimated s 
from the experimental data using Eq. 2 and were able to simulate 
new responses with PSTH, r

0
, and SNR that match those measured 

experimentally.

POPULATION RESPONSES
As described in the Introduction, correlations between cells in early 
sensory systems can have both signal and noise components: signal 
correlations arise from correlations in the stimulus itself and/or 
similarity in preferred stimulus features (frequency, orientation, 
etc.), while noise correlations arise from shared inputs that con-
tribute to the trial-to-trial variability in responses. In our model, 
we adopt the most common definition of noise correlation, where 

noise
pq , the noise correlation between cells p and q, is given by the 

difference between the total correlation and the signal correlation, 

noise total signal
pq pq pq , and total

pq  and signal
pq  are the correlation coef-

ficients between the responses of cells p and q before and after 
the trial order has been shuffled. The model described above for 
a single cell is easily extended to capture the pairwise signal and 
noise correlations in a population, where the response of cell p  {1, 
2, ,P} is given by

r n
s n z n

s n z n
i
p

p
i
p

p
i
p

[ ]
, [ ] [ ]

, [ ] [ ]

1 0

0 0
 

(3)

where each cell has its own sp that is the same on every trial and zp 
that is different on every trial. In this population model, z  N(0, 

z
) 

is a multivariate (P-dimensional) Gaussian random process with 
covariance matrix

z

z z
P

z

z
P

1

1

1

12 1

21

1

,

where z
pq , which is assumed to be constant across time bins and 

trials, is the pairwise correlation coefficient between z p and z q 
and z

pq
z
qp . Assuming we have the responses of a population 

to repeated trials of a particular stimulus, we can estimate each s p 
separately to match the single-cell properties as described above. 
Because the response is binary and this approach matches r  exactly 

http://www.frontiersin.org/Computational_Neuroscience/archive
http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org/


Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 144 | 34

Lyamzin et al. Modeling correlated spike trains

FIGURE 1 | Simulated responses match the single-cell properties 
of model generated and experimental data. (A) The top row shows 
model generated responses to repeated trials with a variety of 
waveforms for s: a uniform random noise signal in the range [ 0.5 to 0.5]; 
a sinusoidal signal 0.75 sin(n/5)  1; a square wave signal with a 50% duty 
cycle, a period of 20 samples, and the same mean value and peak-to-peak 
amplitude as the sinusoid. The middle row shows simulated responses 
with s estimated from the responses in the top row. The bottom row 
shows the PSTHs of the original model generated (black) and simulated 
(gray) responses. (B) The top row shows experimental responses of a 
cell recorded in the inferior colliculus of an anesthetized gerbil to 

repeated trials of a variety of sounds (experimental methods are described 
in Lesica and Grothe, 2008a,b): a sinusoidally amplitude modulated (SAM) 
tone with a carrier frequency of 6 KHz, a modulation depth of 100%, an 
intensity of 70 dB, and a modulation frequency of 50 Hz; a square wave 
modulated tone with the same carrier frequency, modulation depth, and 
intensity, a 50% duty cycle, and a period of 25 ms; a tone with the same 
carrier frequency and intensity modulated by a signal with power spectra 
matched to that measured from a series of animal vocalizations. The bin 
size  for these responses was 1 ms. The middle and bottom rows show 
the simulated responses simulated and PSTHs presented as 
 in (A).
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framework. The goodness of fit can be measured by separating the 
available spike trains into “training” and “testing” sets, fitting the model 
parameters on the training spike trains, and calculating the (log) likeli-
hood of the testing spike trains from the resulting model. The absolute 
likelihood may be difficult to interpret, but the ratio of the likelihoods 
from two different models can give be an informative measure.

To demonstrate the use of likelihood as a measure of goodness of 
fit, we simulated population spike trains from a known model (see 
figure legend for model parameters), split the spike trains into training 
and testing sets, and estimated the model parameters from the training 
spike trains. To determine whether including noise correlations in the 
estimated model improved the goodness of fit, we then compared the 
likelihood of the testing spike trains from the estimated model with 
and without noise correlations (i.e., with 

z
 estimated as described 

above or set to the identity matrix) for different numbers of training 
trials. The likelihood of a given testing spike train was computed as

L n ni P i z
n

N

r r slog ( [ ] ) [ ],2 1
1  

(5)

where r
i
 is the N  P binary matrix of the responses of a popula-

tion of P cells on a given trial i, r
i
[n] is the vector of the responses 

r ni
p[ ] for each cell, s[n] is the vector of the signals s p[n] for each cell, 

P x( , ) is the CDF for a P-dimensional Gaussian with zero mean 
and covariance  evaluated at x , and · denotes a point-by-point 
vector product. To isolate the effects of the noise correlations on 
the goodness of fit, we set the PSTHs in the estimated model to be 

FIGURE 2 | Simulated responses match the single-cell properties and 
pairwise correlations in experimental data. (A) The top row shows the 
experimental responses of two cells recorded simultaneously in the lateral 
geniculate nucleus of an anesthetized cat to repeated trials of a natural scene 
movie (experimental methods are described in Lesica et al., 2007) with an RMS 
contrast of 0.4. The bin size  for these responses was 4 ms. The middle and 
bottom rows show the simulated responses and PSTHs presented as in 

Figure 1. (B) The image shows the pairwise noise correlations in the 
experimental (lower triangular portion) and simulated (upper triangular portion) 
responses of a population of 10 neurons recorded in the cat LGN. The responses 
of all 10 cells were recorded simultaneously. (C) The image shows the desired 
pairwise noise correlations (lower triangular portion; values are double those 
measured in the original data) and the pairwise noise correlations realized in the 
simulated responses (upper triangular portion).

FIGURE 3 | Model goodness of fit increases with increasing trials. The 
gray circles show the log likelihood (per bin) for the estimated model as a 
function of the number of trials used for fitting z. The likelihood was 
computed for 100 trials not used for fitting the model. The likelihoods for the 
actual model with and without noise correlations are also shown. Spike trains 
were generated using the model described in Eq. 10 with the following 
parameters: N = 500, P = 10, 2

s and  were chosen so that r0  N(0.16, 0.04) 
and SNR  N(0.5, 0.35), and s

pq and z
pq were chosen so that 

signal
pq N ( . , . )0 12 0 03  and noise

pq N ( . , . ).0 07 0 02

the same as those in the actual model and used only the estimated 
noise correlations. As shown in Figure 3, as the number of train-
ing trials increased, the measurement noise in noise correlations 
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where z  N(0, 1) is again a Gaussian random process that is dif-
ferent on every trial, s is a Gaussian random process s sN ( , )0 2  
that is the same on every trial, and the threshold  is allowed to 
take on any value (note that in this case,  cannot simply be set 
to an arbitrary value; in order to achieve any combination of r

0
 

and SNR, 2 degrees of freedom are required). Such a model could 
be used, for example, to simulate spike trains with any mean 
spike rate and trial-to-trial variability. Furthermore, because 
the model is based on Gaussian processes, it may enable certain 
population response properties to be investigated analytically 
or numerically directly from the model parameters, without the 
need for simulations.

decreased, and the likelihood from the estimated model with noise 
correlations approached that of the actual model, reaching the same 
value with I = 80 trials.

NOISE WITH TEMPORAL CORRELATIONS
The model as described above captures both the instantaneous and 
long-term signal correlations between cells by matching their individ-
ual PSTHs, but captures only instantaneous noise correlations because 
z is uncorrelated in time. While instantaneous noise correlations are 
likely to be sufficient to describe population spike trains in early sen-
sory systems, the model can also be extended to capture long-term 
noise correlations if necessary, for example, to capture the high level 
of trial-to-trial variability in higher cortical areas. Long-term noise 
correlations can be captured by adding temporal correlations to z via 
Gaussian conditioning (MacKay, 2003; Macke et al., 2009) so that z in 
each time bin is drawn from a distribution with mean and covariance 
dependent on the values of z in the preceding time bins:
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(6)

and K is the number of preceding time bins to condition on. An 
example of such conditioning is shown in Figure 4. We used a 
known model to generate population spike trains with the noise 
auto- and cross-correlation functions shown by the thick black lines 
(see figure legend for model parameters). We then estimated model 
parameters from those spike trains, including those required for 
conditioning z on the preceding K = 4 time bins. The noise auto- 
and cross-correlation functions for the spike trains simulated from 
the estimated model (shown by the gray circles) closely match those 
of the original spike trains.

A GENERAL MODEL FOR POPULATION SPIKE TRAINS
SINGLE-CELL RESPONSES
When modeling experimental spike trains as described above, the 
noise correlations can be chosen arbitrarily, but the mean spike 
rate, trial-to-trial variability, and signal correlations are depend-
ent on the PSTH. It may also be useful to have a general model 
for population spike trains in which all of the response properties 
can be specified independently. For a single cell, this is achieved 
by replacing the deterministic signal s in the model framework 
described above with a Gaussian random process:

r n
s n z n

s n z ni
i

i

[ ]
, [ ] [ ]

, [ ] [ ]

1

0
 

(7)

FIGURE 4 | Gaussian conditioning captures long-term noise correlations. 
The gray circles show the noise auto- and cross-correlation functions for spike 
trains simulated from the estimated model. Error bars represent the standard 
deviation in the correlation values computed from independent realizations of 
the model. The model parameters were estimated from spike trains simulated 
by the model in Eq. 10, including Gaussian conditioning of z, with the following 
parameters: N = 500, P = 10, 2

s and  were chosen so that r0  N(0.16, 0.04) 
and SNR  N(0.5, 0.35), s

pq 0 5. , and z
pp k[ ] and z

pq k[ ] .0 12 for k  4 and 
zero thereafter. The noise auto- and cross-correlation functions of the original 
spike trains are shown by the thick black lines. Examples of the noise auto- 
and cross-correlation functions of the original spike trains after trial shuffling 
are shown by the thin black lines. The dashed lines indicate the mean 2 
standard deviations of the distribution of the correlation values after shuffling.
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where both s and z are multivariate Gaussian random process 
s  N(0, 

s
) and z  N(0, 

z
) with covariance matrices 
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After determining s
2 and  for each cell based on the desired r

0
 

and SNR as described above, the pairwise correlation coefficients 

s
pq and z

pq required to obtain the desired spike train signal and noise 
correlations signal

pq  and noise
pq  can be found by solving the following 

equations numerically:
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Again, the functions are monotonic and each s
pq and z

pq can be 
solved for independently.

To demonstrate this approach, we generated a random set of pair-
wise signal and noise correlation coefficients signal

pq  and noise
pq , estimated 

the corresponding values of s
pq and z

pq , and simulated population spike 
trains with these values. As shown in Figures 5B,C, the correlations in 
the simulated spike trains closely matched the desired values.

DISCUSSION
We have described a model for simulating population spike trains 
typical of early sensory systems. The model has two forms: the 
first requires the specification of PSTHs and noise correlations and 

To specify the model parameters, the equations for r
0
 and SNR 

can be written in terms of s
2 and  and solved numerically to 

obtain the appropriate values:

r s0
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While Eq. 8 is already written in terms of s
2 and , Eq. 9 requires 

some manipulation. The numerator can be written as
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Note that in these equations, r ri and r
i
·r

j
 denotes point-by-

point vector products, and r 2 denotes point-by-point squaring. 
Thus, for any realizable combination of r

0
 and SNR, appropriate 

s
2 and  can be found (the minimum realizable SNR depends on 

the number of trials, see Appendix). To demonstrate this approach, 
we randomly chose a variety of values for r

0
 and SNR, estimated the 

corresponding values of s
2 and , and generated responses using 

the estimated values. As shown in Figure 5A, r
0
 and SNR of the 

simulated responses closely match the desired values.

POPULATION RESPONSES
The model described above for a single cell is easily extended to a 
population, where the response of cell p  {1, 2, ,P} is given by

r n
s n z n

s n z n
i
p

p
i
p p

p
i
p p

[ ]
, [ ] [ ]

, [ ] [ ]

1

0
 

(10)

http://www.frontiersin.org/Computational_Neuroscience/archive
http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org/


Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 144 | 38

Lyamzin et al. Modeling correlated spike trains

and without noise correlations. The model also provides the ability 
to manipulate noise correlations without affecting the signal cor-
relations or single-cell properties. In the brain, these properties are 
coupled to each other – for example, one can decrease the spike 
rate of visual neurons by decreasing the contrast of the stimulus, 
but this will also likely change the trial-to-trial variability and the 
correlations. Thus, a question such as whether or not changes in 
correlations with changes in contrast are detrimental or beneficial 
to a population code is impossible to answer experimentally. With 
our model, one could compare simulated populations with high 
contrast single-cell properties and correlations to simulated popu-
lations with high contrast single-cell properties and low contrast 
correlations to directly test whether or not the change in correla-
tions is important. A similar example can be used to illustrate the 
utility of the general form of the model: Because the general form of 
the model allows for spike trains with any mean spike rate, trial-to-
trial variability, and pairwise signal and noise correlations (within 
statistical constraints), it could be used to perform a systematic 
investigation of the effects of noise correlations on populations 
with different levels of signal correlations that would be impossible 
to conduct experimentally.

There are several ways in which the formulation of our model 
described here could potentially be improved. For example, the 
assumption that no more than one spike can occur in any time 

can be used to match and manipulate experimental data, and the 
second is more general and allows for population spike trains with 
any mean spike rates, trial-to-trial variabilities, signal correlations, 
and noise correlations. Both forms of the model are easily imple-
mented as parameter fitting requires simply finding the level cross-
ings of monotonic functions and correlations can be determined 
independently for each pair of cells. The Matlab code required to 
fit the model parameters is available for download at http://www.
ucl.ac.uk/ear/research/lesicalab.

Our model improves on the existing methods for generating 
population spike trains described in the Introduction in several 
important ways. First, the model framework is explicitly designed 
around the response properties that are important for early sensory 
neurons: time-varying spike rate (PSTH), trial-to-trial variability, 
and signal and noise correlations. Second, the model allows inde-
pendent and straightforward manipulation of one response prop-
erty without changes in the other properties. One can imagine a 
number of potential uses for a model with these properties. The fact 
that the model matches the single-cell properties and correlations 
observed experimentally is in itself of some utility, such as providing 
a simple framework for computing the likelihood of observed spike 
trains given only pairwise interactions. These likelihoods could be 
used to, for example, test how important noise correlations are in 
determining population spike patterns by comparing models with 

FIGURE 5 | Simulated population responses with specified single-cell 
properties and pairwise correlations. (A) The top row shows the 
simulated responses for two cells with specified r0 and SNR. (B) The 
image shows the desired pairwise signal correlations (lower triangular 

portion) and the pairwise signal correlations realized in the simulated 
responses (upper triangular portion) for a population of 10 cells. (C) The desired 
and realized pairwise noise correlations for a population of 10 cells presented as 
in (B).
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APPENDIX
MINIMUM ACHIEVABLE SNR
For any binary response r with N time bins and I trials, the minimum 
realizable SNR depends only on the number of trials. Recalling the 
definition of SNR

SNR
var( )

var( )

r

i i

the minimum value within the context of our model framework is 
clearly achieved when the variance of the signal s

2 0 (in the case 
of I = , this results in var( )r 0). Recalling the expansion of var( )r  
in section “Single Cell Responses” and the fact that r s0

2 1( , ) 
within our framework, we find that when s

2 0,
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Simplifying the resulting expression gives the minimum realiz-
able SNR:
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and the spectral properties of a GLM model were derived (Nykamp, 
2007; Toyoizumi et al., 2009) under fairly restrictive conditions, 
while exact parameters for detailed, heterogeneous GLM models 
can only be evaluated numerically (Pillow et al., 2008).

The significance and applications of spike train models with 
closed-form expressions for the output correlation/spectral structure 
have begun to emerge in a number of recent studies. These include: 
(1) the ability to generate synthetic spike trains with a given auto- 
and cross-correlation structure (Brette, 2009; Krumin and Shoham, 
2009; Macke et al., 2009; Gutnisky and Josic, 2010); (2) the ability to 
identify neural input-output encoding models “blindly” by analyz-
ing the spectral and correlation distortions they induce (Krumin 
et al., 2010); (3) the ability to fit compact multivariate auto-regressive 
(MVAR) models to multi-channel neural spike trains (Krumin and 
Shoham, 2010); and (4) the ability to apply the associated powerful 
framework of Granger causality analysis (Granger, 1969; Krumin and 
Shoham, 2010). These early studies relied on the analysis of tractable 
non-linear spiking models such as threshold models (Macke et al., 
2009; Gutnisky and Josic, 2010; Tchumatchenko et al., 2010) or the 
Linear–Non-linear-Poisson (LNP) models (Krumin and Shoham, 
2009) driven by Gaussian input processes.

In this paper we revisit the Hawkes model within this new 
emerging framework for correlation-based, closed-form iden-
tification and analysis of spike trains models. The framework is 

INTRODUCTION
Linear system models enjoy a fundamental role in the analysis 
of a wide range of natural and engineered signals and processes 
(Kailath et al., 2000). Hawkes (Hawkes, 1971a,b; cf. Johnson, 1996) 
introduced the basic point processes equivalent of the linear auto-
regressive and multi-channel auto-regressive process models, and 
derived expressions for their output correlations and spectral densi-
ties. The Hawkes model was later used as a model for neural activity 
in small networks of neurons (Brillinger, 1975, 1988; Brillinger et al., 
1976; Chornoboy et al., 1988), where maximum likelihood (ML) 
parameter estimation procedures can be used to estimate the syn-
aptic strengths between connected neurons, but where no external 
modulating processes were considered. Interestingly, the recent ren-
aissance of interest in explicit modeling and model-based analysis 
of neural spike trains (e.g., Brown et al., 2004; Paninski et al., 2007; 
Stevenson et al., 2008), has largely disregarded the Hawkes-type 
models, focusing instead on their non-linear generalizations: the 
generalized linear models (GLMs), and related multiplicative models 
(Cardanobile and Rotter, 2010). GLMs are clearly powerful and flex-
ible models of spiking processes, and are also related to the popular 
Linear–Non-linear encoding models (Chichilnisky, 2001; Paninski 
et al., 2004; Shoham et al., 2005). However, they do not enjoy the 
same level of mathematical simplicity as their Hawkes counter-
parts – only approximate analytical expressions for the  correlation 
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thereby extended from the exclusive treatment of feed-forward 
models to treating more general and neuro-realistic (yet ana-
lytically tractable) models that also include feedback terms. In 
Section “Methods” we begin by reviewing some basic results 
for the correlation structure of the classical, homogenous (con-
stant input) single and multivariate Hawkes model, derive new 
integral equations for the correlation structure of a Hawkes 
model driven by a time-varying (inhomogeneous) stationary 
random non-negative process input (see Figure 1), and pro-
pose a numerical method for solving them. In Section “Results,” 
we present the results of applying these methods to real neu-
ral recordings from isolated mouse retina, and the required 
methodological adaptations. We conclude with a discussion 
in Section “Discussion.”

METHODS
In this section we begin by defining the Hawkes model, recalling 
its auto-correlation structure and then generalizing to multivari-
ate (mutually exciting) non-homogeneous Hawkes model of point 
processes. Next, we propose a method for the solution of the result-
ing equations, and for the estimation of the different parameters 
of the model. In the final subsection the experimental methods of 
stimulation and data acquisition are presented.

THEORETICAL BACKGROUND
Let us consider the intensity of a self-exciting point process to be 
defined by the following expression:

( )t g t tk
k  

(1)

Here, the instantaneous firing intensity µ(t) is the exogenous 
input  summed together with multiple shifted replicas of the self-
excitation kernel g(t). The kernels are causal (g(t) = 0, t  0), and 
t

k
 represents all the past spike-times. For technical reasons we will 

write the expression using the Stieltjes integral:

( ) ( ) ( )t g t u dN u
t

 

(2)

where N(t) is the counting process (number of spikes up to time t). 
The sum term in Eq. 1 is now replaced by a convolution of the spiking 
history with a linear kernel. The mean firing rate (denoted throughout 
the paper by dN ) of this point process is given by:

dN
dN t

dt
g t u dN u

g t u
d

t( )
( ) ( )

( )
NN u

du
du dN g u du

t ( )
( )

0  

(3)

Resulting in:

dN

g u du1
0

( )
 

(4)

The stability (and stationarity) condition for this model 
( ( ) )0 1g u du  can easily be inferred from this equation. An expres-
sion for the auto-covariance function of such a point process was 
derived in Hawkes (1971a), and we will briefly review here the 
main results (adapted from his auto-covariance notation into 
auto-correlation function notation used here for simplicity). We 
will distinguish between two different auto-correlation functions, 
the first:

R
dN t dN t

dtdN ( )
( ) ( )

,
2

 
(5)

which has a delta function singularity dN · ( ) at  = 0 due to the 
nature of point processes, and the second:

R R dNdN dN( ) ( ) ( ),
 

(6)

from which this singularity was subtracted.
Using these definitions we get the following integral equa-

tion for the auto correlation of the output point process of the 
Hawkes model:

R dN g dN g u R u dudN dN( ) ( ) ( ) ( )
 

(7)

FIGURE 1 | Linear–Non-linear-Hawkes model diagram. White multivariate 
Gaussian noise w(t) passes through a Linear–Non-linear cascade, resulting in an 
exogenous input, (t), to the Hawkes model. By setting the Hawkes self- and 

mutual-excitation feedback filter to equal zero we remain with a multivariate 
Linear–Non-linear-Poisson (LNP) model. By setting (t) =  we get the 
Hawkes model.
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These two equations provide the solution for the output 
auto-correlation function R

dN
( ) and for the cross-correlation 

R t dN t dtdN ( ) { ( )( ( )/ )} between the exogenous input (t) 
and the point process whose intensity is defined by Eq. 11. Here, the 
input auto-correlation function R ( ) and the self-exciting kernel g( ) 
serve as given parameters (see also Identification of the LNH Model).

Equations 12 and 13 can be further generalized to a multivari-
ate case (mutually exciting point processes), and be written using 
the matrix notation:

d du

dd d

N I G( )

R R G( ) NN N

u t

diag

0

1

( )

( ) ( ) G( )R

R R R G

N

N N

u u u

u uT

d

d d

d

du

( )

( ) ( ) ( ) ( )
 

(14)

Note that for constant  these equations are reduced to Eqs 9 
and 10.

IDENTIFICATION OF THE LNH MODEL
The equations for the correlation structure of a single self-exciting 
point process and multivariate mutually exciting point processes 
(Eqs 13 and 14 respectively) can be solved numerically by switch-
ing from continuous time integral notation to discrete time matrix 
notation, and consequently performing matrix calculations. The 
integration operations in the Eqs 13 and 14 are thus converted 
to matrix multiplication operations. This allows a simple and 
straightforward way to solve the equations for the output correla-
tion structure. Here, we only briefly present the main results. All the 
detailed explanations on the notation used, on how the appropriate 
matrices and vectors are built, and how the equations are solved 
in both single- and multi-channel cases can be found in Section 
“Solution of the Integral Equations” of Appendix. Using the new 
notation the output correlation is estimated by:

R I G R G N

R I G R

N N

N

d d

d

d2

1

1

1

diag

T T

,

 
(15)

where R R R R GN Nd d, , ,T T and  are block column vectors that repre-
sent the sampled versions of the correlations R

dN
( ), R ( ), R

dN
( ), 

and the feedback kernel G( ). Block matrices G1 and G2 are built 
from G( ), and I  is the unity matrix of appropriate dimensions 
(see also Solution of the Integral Equations of Appendix). The gen-
eralized Hawkes model has three different sets of parameters – the 
input correlation structure R ( ), the output correlation structure 
R

dN
( ), and the Hawkes feedback kernel G( ). Thus, in addition to 

the forward problem solution presented in Eq. 15, there are three 
other possible basic scenarios for the identification of the different 
parts of the proposed generalized Hawkes model from the correla-
tion structure of the observed spike train(s).

I R GdN , R̂

II R RdN , Ĝ

III RdN
ˆ , ˆG R

This equation can be solved numerically (Mayers, 1962) or 
by using Wiener–Hopf related techniques (Noble, 1958; Hawkes, 
1971b).

Similarly, Hawkes (1971a) generalized this solution (Eqs 4 and 7) 
to multivariate mutually exciting point processes by using matrix 
notation. The intensity of mutually exciting process becomes:

( ) ( ) ( )t t u d u
t

G N
 

(8)

with mean firing rates:

d u duN I G( )
0

1

 

(9)

and the cross-correlation matrix as a solution of:

R N G( ) N G( )RN Nd dd d( ) ( )
T

diag u u du
 
(10)

THE LINEAR–NON-LINEAR-HAWKES MODEL AND ITS CORRELATIONS
Let us now consider a more general case of a non-homogeneous 
Hawkes model, where the exogenous input (t) can be a time-
varying (stationary) process:

( ) ( ) ( ) ( )t t g t u dN u
t

 
(11)

For example, this class of models includes the important spe-
cial case (Figure 1) where (t) is itself a non-negative stationary 
random process generated by a Linear–Non-linear cascade acting 
on a Gaussian process input (possibly a stimulus). Note the dif-
ference between the proposed linear–non-linear-Hawkes (LNH) 
model and the GLM-type models, in which the feedback term is 
summed with the x(t) and not with the (t) (according to the 
notation in Figure 1). This effectively changes the locus of the non-
linearity present in the model and affects the model’s properties 
and analytical tractability.

The mean firing rate of this point process can, in general, be 
found in a similar way as in Eqs 3 and 4:

dN
t

g u du

( )

( )1
0  

(12)

Next, the auto-correlation function R
dN

( ) of this process can 
be derived using a similar procedure to the derivation of Eq. 7 (the 
detailed derivation can be found in Section “Correlation Structure 
of the LNH Model” of Appendix). This time, the auto-correlation 
function is governed by two coupled integral equations:

R R g dN g u R u du

R R g u

dN dN dN

dN

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )R u dudN

 

(13)

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 147 | 45

Krumin et al. Correlation-based Hawkes model analysis

feedback kernel g( ) from the input and the output correlations 
(R ( ) and R

dN
( ), respectively). The procedure is summarized in 

the following algorithm:

1. Estimate initial g( ) from R ( ) and R
dN

( ) by solving Eq. 13 
(in its matrix form of Eq. 17).

2. Simulate a Hawkes point process using the original input 
correlation R ( ) and the estimated kernel g( ). Use 
µ

eff
(t) = max{µ(t), 0}.

3. Estimate the output correlation RdN
sim( ) of the simulated spike 

train. The violation of the µ(t)  0 assumption will result in 
a difference between the desired (R

dN
( )) and the estimated 

( ( ))RdN
sim  output correlation structures.

4. Use the estimated RdN
sim( ) instead of the input correlation R ( ) 

in the Eq. 13 to estimate the kernel g( ). The output correla-
tion that should be used is the desired R

dN
( ) throughout the 

iterative solution, only the input correlation R ( ) changes 
from iteration to iteration.

5. Update g( )  g( )  · g( ). The scalar   1 is used for 
controlling the speed and/or smoothness of the convergence. 
In Section “Application to Neural Spike Trains – Single Cells” 
we have used a relatively small  = 0.1 to ensure smooth con-
vergence to the solution.

6. Loop through steps 2–5 until the actual RdN
sim( ) of the simula-

ted spike train converges to the desired R
dN

( ).

The above procedure uses the difference between the model-based 
(simulated) and the desired (data-estimated) correlation structures 
of the output spike trains to systematically update the feedback kernel 
g( ) until the difference between these two correlation structures 
becomes small enough. The resulting model allows to relax the 
assumption of µ(t)  0 and to use µ

eff
(t) = max{µ(t), 0} instead.

EXPERIMENTAL METHODS
Retina preparation
Animal experiments and procedures were approved by the 
Institutional Animal Care Committee at the Technion – Israel 
Institute of Technology and were in accordance with the NIH Guide 
for the Care and Use of Laboratory Animals. Six-week-old wild type 
mice (C57/BL) were euthanized using CO

2
 and then decapitated. 

Eyes were enucleated and immersed in Ringer’s solution contain-
ing (in mM): NaCl, 124; KCl, 2.5; CaCl

2
, 2; MgCl

2
, 2; NaHCO

3
, 26; 

NaH
2
PO

4
, 1.25; and Glucose, 22 (pH 7.35–7.4 with 95% O

2
 and 5% 

CO
2
 at RT). An incision was made at the ora serrata using a scalpel 

and the anterior chamber of the eye was separated from the poste-
rior chamber cutting along the ora serrata with fine scissors. The 
lens was removed and the retina was gently cleaned of the remain-
ing vitreous. Retinal tissue was isolated from the retinal pigmented 
epithelium. Three radial cuts were made and the isolated retina was 
flattened with the retinal ganglion cells facing the multi electrode 
array (MEA). During the experiment the retina was continuously 
perfused with oxygenated Ringer’s solution.

Electrophysiology
The retina was stimulated by wide-field intensity-modulated light 
flashes using a DLP-based projector. The stimulus intensities were 
normally distributed and updated at the rate of 60 Hz. Resulting 
activity was recorded using 60-channel MEA with 10 µm diameter, 

In the first scenario we are interested in the estimation of the 
input correlation structure, given the output correlation structure 
R

dN
( ) and the Hawkes kernel G( ). By using the aforementioned 

matrix notation the solution can be achieved in a straightforward 
manner, akin to the forward problem:

R I G R G N

R I G R

N N

N

d d

d

d2

1

diag

T T

 
(16)

After R ( )is estimated one can proceed, if interested, with the 
estimation of an LN cascade model for this correlation structure 
by applying the correlation pre-distortion procedures developed 
and detailed in (Krumin and Shoham, 2009) and (Krumin and 
Shoham, 2010). Estimation of the Linear–Non-linear cascade 
model, in addition to the connectivity kernels G( ), can provide 
additional insights about the stimulus-driven neural activity.

The second possible scenario is to estimate the Hawkes kernels 
when the output and the input correlation structures are known 
(see, e.g., Figure 3B). Here, once again, we can use the advantage 
of the same matrix notation (block column vector R Nd  and block 
matrix R Nd  represent the R

dN
( ) and R

dN
( ) correlation functions, 

respectively) and solve the following equations in an iterative man-
ner to estimate G( ):

G N R R R

R I G R

N N N

N

T
d
T

d
T

d
T

d
T T

d
1

1

1

 
(17)

where dN  stands for the block diagonal matrix with diag ( dN ) 
as its block elements on the main diagonal.

The iterative solution of this set of equations is explained in 
detail in Section “Solution of the Integral Equations” of Appendix, 
Eq. A23.

The third possible scenario is to estimate both the kernels G( ) 
and the input correlation structure R ( ), given only the output cor-
relation structure R

dN
( ). In general, this problem is not well-posed 

and does not have a unique solution, and additional application-
driven constraints on the structure of G( ) and/or R ( ) should 
be considered. We will leave additional discussion on the unique-
ness of the solution to the results (see Application to Neural Spike 
Trains – Single Cells) and in Sections “Discussion.”

Refractoriness and strong inhibitory connections
In general, the connectivity between the different units (G( ) feed-
back terms in the Hawkes model) is not limited to non-negative 
values. Hence, the firing intensity µ(t) defined in Eqs 1 or 8 can 
occasionally become negative. However, the analytical derivations 
for the output mean rate and correlation structure are based on 
the assumption that µ(t) is non-negative for all t. The violation of 
this assumption results in a discrepancy between the actual and the 
analytical results. Simulation of the estimated LNH model [while 
using the effective firing intensity µ

eff
(t) = max{µ(t), 0}] yields out-

put spike trains with a correlation structure RdN
sim( ) that is differ-

ent from the desired output correlation structure R
dN

( ) (used for 
the estimation of the model parameters). To address this issue an 
additional procedure was developed for the estimation of the actual 
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In Figures 2A–C the forward model solution by the Eq. 15 is 
 compared to the auto-correlation function estimated from single simu-
lated point processes with different self-excitation kernels, g( ), under 
two different conditions – constant input  (pure Hawkes model), or 
time-varying input (t) with an exponentially shaped auto-correlation 
function (LNH model). In Figure 2D an example of a bivariate case is 
presented with a more complex correlation structure of the input  (t) 
and a set of self- and mutually exciting kernels G( ).

planar electrodes spaced at 100 µm. The data was acquired with 
custom written data acquisition software using Matlab 7.5.0 data 
acquisition toolbox.

RESULTS
SIMULATION STUDIES
We performed a number of simulation studies to validate the 
 methods proposed for the solution of the integral Eqs 13 and 14.

FIGURE 2 | Correlation structure of the homogeneous and inhomogeneous 
Hawkes models can be accurately predicted. Predicted theoretical correlation 
structure is compared to the correlation structure estimated from simulated point 
processes in several cases: (A) Constant  and a refractory period-like 
self-exciting kernel g( ). (B) Same as in (A), but with time-varying (t) that has an 

exponentially shaped auto-correlation function. (C) Similar to (B), but with a 
different self-excitation kernel g( ). (D) Bivariate mutually exciting point processes 
driven by time-varying exogenous inputs with complex correlation structure. 
Mean values and standard deviations of the estimators were calculated from 100 
simulations (each 10 min long) of corresponding Hawkes models.
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This LN cascade was then used for generating the input ( (t) 
in Figure 1) to the Hawkes feedback stage of the LNH model. The 
auto-correlation function of (t) is exactly that of the LNP model’s 
output estimated previously and found inconsistent with the real 
recordings. Now, the input auto-correlation function R ( ) was 
used together with the measured output auto-correlation function 
R

dN
( ) to estimate the Hawkes feedback kernel g( ) (Figure 4C) from 

Eq. 13 (including the procedure described in the Refractoriness and 
Strong Inhibitory Connections). Interestingly, the output auto-cor-
relation function of the newly estimated LNH model (as measured 
from the simulated spike trains) was in excellent agreement with 
the auto-correlation function of the actual neural data (Figure 4D). 
The addition of the linear Hawkes feedback stage to the classical 
feed-forward LNP model proved beneficial to the model’s capability 
of explaining more complex spike train correlation structures of 
real neural recordings (Figure 4E).

Finally, we validated that the improved fit of the LNH model 
to the data compared with the LNP model, does not result from a 
model overfitting due to the larger number of parameters in the LNH 
model. For each unit, we computed an LN-Hawkes for a different 
data set from the same unit (Gaussian distribution, different mean 
intensity). Next, we simulated an output spike train using a “hybrid” 
LNH model (“original” LN model  “new” feedback kernel g( )), and 
estimated its correlation function. This output correlation function 
was compared to the correlation function of the original data by 
calculating the correlation coefficient between the two functions 

LNH
. 

This procedure was applied to the nine units in our data set where 
the mean firing rates were 2 Hz. In eight out of these nine units the 
hybrid LNH model provided considerably better fits to the output 

As can be seen in all of these examples, the analytically  predicted 
correlation functions had a near-perfect match with the mean cor-
relation functions of the simulated spike trains (correlation coef-
ficient 0.99). Individual correlation functions calculated from 
10-min traces were more noisy, thus the forward analytical pre-
diction vs. simulation correlation coefficients for single traces were 
significantly lower: 0.83  0.06.

Figure 3A shows the result of applying the “scenario I” solution 
(Eq. 16) to spike trains generated by the model presented in Figure 2D; 
the mean identified input correlations have an excellent match with 
the ones used for generating the data (correlation coefficients: 0.99 
and 0.92 respectively for the auto- and cross-correlations).

Figure 3B shows the result of applying the “scenario II” solu-
tion (Eq. 17) to spike trains generated by the model presented 
in Figure 2D; the mean identified kernels greatly match the ones 
used in generating the data (correlation coefficients 0.99 for 
all kernels.

APPLICATION TO NEURAL SPIKE TRAINS – SINGLE CELLS
Next, we applied the method on the data recorded from the retina 
(see Methods for the experimental protocol). We started by analyz-
ing the spike trains using reverse-correlation techniques (Ringach 
and Shapley, 2004) based on a feed-forward Linear–Non-linear–
Poisson (LNP) model. The LNP-based estimates of the linear filter, 
and the static non-linearity (Figure 4A) were further used for the 
calculation of the expected output auto-correlation function of the 
estimated LNP model. This LNP-based output auto- correlation 
function was found to be noticeably different from the actual auto-
correlation function of the measured spike trains (Figure 4B).

FIGURE 3 | System identification. Any of the three different parts of the 
system can be identified from the other two. (A) Comparison of the input 
correlation structure estimated from the simulated point processes and the real 
values used in the simulation. (B) Hawkes kernels estimated from the simulated 

point processes and input correlation structure are compared to their real value 
used for the simulation. Mean values and standard deviations of the estimators 
were calculated from 100 simulations (each 10 min long) of the bivariate 
inhomogeneous Hawkes models from Figure 2D.
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framework, which was limited, thus far, to feed-forward models. 
These currently include the synthetic generation of spike trains 
with a pre-defined correlation structure (Brette, 2009; Krumin 
and Shoham, 2009; Macke et al., 2009; Gutnisky and Josic, 2010; 
Tchumatchenko et al., 2010), “blind” correlation-based identifica-
tion of single-neuron encoding models (Krumin et al., 2010), the 
compact representation of multi-channel spike trains in terms 
of multivariate auto- regressive processes and the framework of 
causality (Granger) analysis (Nykamp, 2007; Krumin and Shoham, 
2010). As noted above, the LNH model is related to the commonly 
used GLM model, with the LNH feedback kernels paralleling the 
GLM history terms. Both ways of altering the underlying feed-
forward LNP model lead to more flexible models capable of fit-
ting more complex correlation structures, but the preferred fitting 
procedures for the two models differ: the GLM model is typically 
fit using a maximum likelihood approach, but this does not suit 
the LNH model (due to possible zero firing rates), where a method 
of moments (like the one introduced here) is more appropriate 
for the estimation of the linear kernels. A systematic study on the 
differences between the statistical properties of the two approaches 
falls beyond the scope of the current manuscript.

The model and analysis presented here also provide a new con-
text and results to a significant body of related previous work on 
the second-order statistics of Hawkes models, which we will now 
review very briefly. The basic properties of the output  correlation 

correlation function than the  corresponding LNP model, providing 
in those cases an average improvement of  = 

LNH
  

LNP
 = 0.19 

with /
LNP

 = 30%. Note that this procedure is over-conservative, 
since there is no guarantee that kernels calculated for different input 
stimulus ensembles will be the same or conversely, that neural models 
will generalize across different stimulus ensembles.

DISCUSSION
In this paper, we extended previous work on the correlation-
based simulation, identification and analysis of multi-channel 
spike train models with a feed-forward Linear–Non-linear (LN) 
stage driven by Gaussian process inputs (Krumin and Shoham, 
2009; Krumin et al., 2010), by allowing the non-negative process 
to drive a feedback stage in the form of a multi-channel Hawkes 
process. The move from doubly stochastic Poisson (Cox) mod-
els in our previous work to doubly stochastic Hawkes models 
employed here vastly expands the range of realizable correlation 
structures, thus relaxing the main limitation of the previous results, 
and allowing for a superior, excellent fit (   0.98) of the auto-
correlation structures of spike trains recorded from real visually 
driven retinal ganglion cells. At the same time, it preserves the 
analytical tractability and closed-form correspondence between 
model parameters and the second-order statistical properties of 
the output spike trains, and thus, essentially, all of the advantages 
and potential applications of the general model-based correlation 

FIGURE 4 | Linear–non-linear-Hawkes and LNP model fits to single-unit 
retinal neural spike train auto-correlations. Single-unit recordings from mouse 
retinal ganglion cells were analyzed using the LNP and the LNH model-based 
approaches with the LNH model succeeding to explain the spike trains’ correlations 
much better than the LNP model. (A) Linear filter h( ) and the non-linearity 
estimated using reverse-correlation approach (spike triggered average). (B) The 
expected output auto-correlation function of the LNP model calculated from the 

parameters in (A) does not fit the actual auto-correlation function of the spike train 
well. (C) The self-excitation kernel g( ) of the LNH model shows strong 
refractoriness that cannot be explained by the LNP model. (D) The LNH model 
output auto-correlation precisely fits the actual spike train auto-correlation 
measured from the data. (E) The correlation coefficients between the model and 
the actual output auto-correlation functions are significantly (p = 0.005) higher for 
the LNH model (with mean  SE of LNP = 0.62  0.11 and LNH = 0.98  0.01, n = 9).
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the convergence of this procedure is not proven, in practice, it 
was capable of estimating kernels for real neural spike trains that 
not only dramatically improved the auto-correlation fits relative 
to LNP cascades, but also generalized across different stimulus 
ensembles (a very conservative cross-validation test). Second, we 
have not addressed the important but complex issue of unique-
ness of the different identification problems encountered here. 
Interestingly, in the examples we have examined, an excellent match 
was found, in practice, between the Hawkes kernels and their esti-
mates (Figure 3B), although we are not aware of any guarantees of 
uniqueness here (these may perhaps be related to the nature of point 
processes). In the more general problem where both ˆ , ˆ ( )G( ) R  are 
simultaneously estimated, it seems obvious that unique solutions 
can only be obtained by imposing additional constraints on the 
solutions (i.e., degree of smoothness and/or sparseness). In section 
“Application to Neural Spike Trains – Single Cells” we presented an 
example of the “scenario III”-type problem, where only the output 
correlation structure is actually observable. In this example we used 
additional application-driven constraints on the input correlation 
structure R ( ) to infer the feedback kernels G( ). Interestingly, the 
exact same “scenario III”-type framework can be used for generat-
ing synthetic spike trains with a controlled correlation structure. 
This application will benefit from using the LNH feedback model 
by harnessing the capability of generating spike trains with a much 
richer ensemble of possible correlation structures in comparison 
with the feed-forward-only models like LNP. Additionally, once 
ˆ ( )R  is determined there is an additional level of non-uniqueness 
in the determination of the underlying LN structure, which can 
also be overcome by imposing constraints (e.g., a minimum phase 
constraint (Krumin et al., 2010)).

When considering the broader relevance of this work, and the 
directions to which it may develop in the future, it is worth noting 
that some of the most fundamental and widely applied tools for the 
identification of systems rely on the use of second-order statistical 
properties (Ljung, 1999) (correlation or spectral). The increasing 
arsenal of tools for identifying spike train models from their cor-
relations, rather than from their full observed realizations could 
form a welcome bridge between “classical” signal processing ideas 
and tools and the field of neural spike train analysis.
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structure and the spectrum of a univariate self-exciting and a 
 multivariate mutually exciting linear point process model without 
an exogenous drive were derived in the original works of Hawkes 
(1971a,b) using the linear representation of this process (Eq. 2). 
Brillinger (1975) also analyzes linear point process models and 
uses spectral estimators for the kernels, which he applies to the 
analysis of synaptic connections (Brillinger et al., 1976). Bremaud 
and Massoulie (2002) and Daley and Vere-Jones (2003) (exercise 
8.3.4) present expressions for the output spectrum of a univariate 
Hawkes model excited by an exogenous correlated point process 
derived using an alternative, cluster process representation of the 
Hawkes process: 

dN
t

g
( )

( ) ( )

( )
,

1

1
2

where 0 g u du( )  and dN g( ), ( ), ( ) represent the respective 
spectra of dN(t), (t), g(t). Our derivation in the Section “Methods” 
and “Correlation Structure of the LNH Model” of Appendix focused 
on expressions for the correlation structure of exogenously driven 
Hawkes process and was based on the linear representation, similar 
to Hawkes (1971a). Adding the exogenous input introduces a new 
term into the Hawkes integral Eq. 10, and a second integral equation 
for the cross-covariance term between the exogenous input and the 
output spike trains R

dN
( ). The parameters of these generalized 

models, i.e., the kernels G( ) and/or the input correlation structure 
R ( ), can be directly estimated from the output process correlation 
structure using an iterative application of this set of equations, 
as illustrated in Section “Results,” or they could, alternatively, be 
estimated from the spectral expressions.

We next turn to discuss certain limitations of the proposed 
framework. First, the analytical equations for the auto- correlation 
structure of the point processes (Eqs 7, 10, 13, and 14) are exactly 
true under the assumption µ(t)  0 (Eqs 2, 8, and 11) or when 
the stochastic intensity is always non-negative. These exact results 
could also provide an excellent agreement to many practical cases 
wherein the self-exciting Hawkes kernel g( ) is only weakly negative 
(e.g., Figure 2), leading in such cases to slight systematic devia-
tions at “negative” peaks. In cases of strong refractoriness or other 
inhibitory interactions, g( ) becomes strongly negative, and the 
rectification of the stochastic intensity around zero leads to strong 
deviations from the assumptions underlying Eqs 7 and 13. For such 
cases we introduced an intuitive iterative procedure for comput-
ing g( ) (see Refractoriness and Strong Inhibitory Connections), 
and it is likely that related alternatives are also  possible. Although 
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APPENDIX
CORRELATION STRUCTURE OF THE LNH MODEL
Part I – Derivation of the output correlation of the inhomogeneous 
Hawkes point process
We consider the Hawkes point process driven by a time-varying 
exogenous input, with the intensity defined in Eq. 11:

( ) ( ) ( ) ( )t t g t u dN u
t

For the mean firing rate we receive:

dN dN dN( )
( ) ( ) ( )

( )

t

dt
t g t u u

t

t

gg t u
t

dt
du t g u du

t

( )
( )

( ) ( )
dN dN

0  
(A1)

resulting in:

dN
t

g u du

( )

( )1
0  

(A2)

Next, we expand the expressions for the correlation structure of 
the output spike trains, following a similar formalism to the deriva-
tion found in Hawkes (1971a) for the correlations of homogeneous 
Hawkes processes:

R R dN
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(A3)

Now, substituting R R dNdN dN( ) ( ) ( ) we get:

R R g dN g u R u dudN dN dN( ) ( ) ( ) ( ) ( )
 

(A4)

We have arrived to a solution similar to Eq. 7 with one additional 
term R

dN
( ) that will be derived in Part II.

Part II – Derivation of the cross-correlation between the exogenous 
input (t) and the output point process
The derivation of R

dN
( ) has much in common with the deriva-

tions in Part I above.

R t
dN t

dt
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dN
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(A5)

To summarize, the derivations in Part I and Part II of the current 
Appendix result in two coupled integral equations:

R R g dN g u R u du

R R g u

dN dN dN

dN

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )R u dudN

 

(A6)

Part III – Derivation of the output correlation structure for the 
multidimensional LNH model
Let us now consider a multivariate inhomogeneous Hawkes 
process:

(t) ( ) ,t t u d u
t

G( ) N( )
 

(A7)

where (t), (t), and dN(t)are now column vectors, and G( ) is a 
square matrix. The values in the row #r and column #s of the matrix 
G( ) correspond to the mutual-excitation kernel that explains the 
effect of the firing history of the process #s on the stochastic inten-
sity of the process #r.

The expression for the mean firing rate dN  of the process is 
derived in the following way:

d
d t

dt
t t u d u

t

t

N
N

G N
( )

( ) ( ) ( )

( ) GG
N

N G( )
( )

( ) ( ) ,t u
d t

dt
du t d u du

t

0  
(A8)

resulting in

d u du tN I G( ) ( )
0

1

 

(A9)
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We can rewrite these equations in the following manner:

R R G N G( )R

R G

N N N

N

d d d

d

diag d u u du( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

diag d

u u du u u dud d

d
T

N

G( )R G R

R R

N N

N

0 0

T
d

Tu u du( ) ( ) ( )G R N

 
(A13)

To solve these equations numerically we use the following dis-
cretized representation:

R R G N G R G R

R G N G R

R

N N N N

N N

d d T d H d

d d

diag d

diag d 2

dd
T T

d
T

N NR G R1 ,
 

(A14)

where dN  – is a block column vector representing the mean firing 
rates of the output spike trains

G R R RN N, , ,d d  – block column vectors of N block elements with 
the first block element representing  = 0, and the last block element 
representing  = 

max
. The choice of the discretization time-step d  

depends on the desired time resolution of the solution.
R R N

T
d

T,  – also block column vectors, but with their block ele-
ments transposed (in the univariate case R RN N, ,d

T
d )

G G G G1 2, , ,T H  – square block matrices of size N  N blocks that 
match the dimensions of the block column vectors.

To convert the integration operations into matrix multiplication 
operations we define the matrices G1 and G G G2 T H  (d  – time 
resolution) in the following way:

G

G G G G

G G

G

G

1

0 1 2 1

0 1

1

0

0

0 0

d

N

 

(A15)

is a block Toeplitz matrix with the elements of the block vector G
in the first row, and zeros in the first block column (excluding the 
main diagonal). The block elements of the matrix are;

G Gk k d
 

(A16)

G2 is a sum of two other matrices: G G G2 T H, where

G

G

G G

G

G G G

T

N

d

0

1 0

2

1 1 0

0 0

0

 

(A17)

The output correlation structure is now defined by:

R R N

N( ) N N

N Nd d

T

diag d

d t d t dt diag d

( ) ( ) ( )

( ) 2 ( )

( )
( )

t t u d u
d t

dt

t T

G( ) N( )
N

( )
( )

( )
( )

t
d t

dt
t u d u
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T t TN
G( ) N

N

R G R
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N N

N

d d
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d

t u t u du

dia

( ) ( ) ( )

( ) gg d t u t u du
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d

t

d

N G( )R

R G( ) N G

N

N

( )

( ) u R Nd u du( )
 

(A10)

Similarly to the Eq. A5 we can also derive:

R
N

G( ) N( )

d

T

t

t
d t

dt

t t t u d u

N( ) ( )
( )

( ) ( )
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d
T
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d
T

R G

R R G

N
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(A11)

SOLUTION OF THE INTEGRAL EQUATIONS
Part I – Developing the discrete time matrix notation formalism for the 
integral equations
The following coupled equations govern the relationship between the 
input correlation structure R ( ), the output correlation structure R

dN
( ), 

and the feedback linear kernel G( ) of the generalized Hawkes model:

R R G N G( )R

R R

N N N

N

d d d

d

diag d u u du( ) ( ) ( ) ( )

( ) ( ) ( ) ( )R GNd
Tu u du

 

(A12)
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This equation, written in the matrix form is:

R R N G R GN N Nd
T

d
T T

d
T Td ,

where the matrix dN  is a block diagonal matrix with blocks 

of diag ( dN ) replicated N times (that corresponds to 
max

) on 

its diagonal to match the dimensions of the matrix R Nd
T . R Nd

T  is a 
block Toeplitz matrix with the block vector R Nd

T  as its first block 
row and block column (note, that transpose is applied within-
the-blocks, so that for the univariate case there is effectively no 
transpose):

R

R R R

R R

R

R
N

N N N

N N

Nd
T

d
T

d
T

d
T

d
T

d
T

d
Td

( ) ( ) ( )

( ) ( )

( )

0 1 2

1 0

2

dd
T

d
T

d
T

N

N NR R

( )

( ) ( )

1

1 0
 

(A22)

This, together with the matrix form of the second equation of 
Eq. A12 brings us to a couple of equations:

G N R R R

R I G R

N N N

N

T
d
T

d
T

d
T

d
T T

d
1

1

1

( )

( )
 

(A23)

These can be solved iteratively:

(i) Start with a random R Nd

(ii) Find G from ( )
(iii) Build matrix G1

(iv) Find R Nd  from ( )
(v) Goto ii)

We can alternatively set the initial condition to R RNd , which 
corresponds to G 0.

This iterative solution converges very rapidly and, in practice, a 
single iteration brings us very close to the final solution.

is a block Toeplitz matrix with the elements of the block vector G in 
the first block column, and zeros in the first block row ( excluding 
the main diagonal).

G

G G G G

G G

G

G

H

N

N

d

0 1 2 1

1 2

2

1

0

0 0
 

(A18)

is a block Henkel matrix with the elements of the block vector G in 
the first block column, and zeros in the last block row (excluding 
the secondary diagonal).

Part II – Solution of the equations for different scenarios
The solution of the Eq. A14 for the output correlation structure 
R Nd  (the forward model) is straightforward:

R R G N G R

R R G R

R I G

N N N

N N

N

d d d

d
T T

d
T

d

diag d 2

1

( 22
1

1
1

)

( )
,

R G N

R I G R

N

N

d

d
T T

diag d

 
(A19)

where the second equation is solved in the beginning and then substi-
tuted into the first (after the appropriate rearrangement of R Nd ).

For scenario ( ) ,I R G RNd  the solution is also 
straightforward:

R R G N R

R R G R

R I G

N N N

N N

N

d d d

d
T T

d
T

d

diag d G2

1

22

1

R G N

R I G R

N

N

d

T
d

T

diag d

 
(A20)

For scenario ( ) ( ), ( )II R R G( )Nd  we will reorganize the 
equations and the matrix notation. Let us rewrite the first equation 
of Eq. A12 in the following way:

R R G N G( )R

R G

N N N

N

d d d

d

diag d u u du( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

diag d u u du
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d
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N G( )R

R R N G

N

N N

0

(( ) ( ) ( )R GNd
T Tu u du

0  
(A21)
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 neurons (Nadasdy et al., 1999; Abeles and Gat, 2001). Previous 
work (Gerstein, 2004; Pipa et al., 2008; Harrison and Geman, 
2009) only addressed the conservation of the ISI distribution, or 
the firing rate profile (Smith and Kohn, 2008), up to a precision 
determined by the dither width chosen. In the present study we 
propose dithering methods which simultaneously conserve both 
features with a higher level of precision.

The estimation of the intensity function within or across trials 
certainly only constitutes an approximate source of information, 
however we show that it can and should be used in the implemen-
tation of dithering methods. It may be argued that provided the 
rate profile, one can simply sample from it. That is, use it along 
with the ISI distribution, as a parameter of a chosen model of 
spike generation. The problems with this are that the spike count 
is not necessarily preserved, and strong assumptions on the proc-
ess itself have to be made; for example that it is a Poisson proc-
ess. The issues can be overcome if the estimated features of the 
process are integrated into the dithering method. The immediate 
benefit of having an estimate of the spike rate is that the process 
can be approximately transformed to a unit rate stationary proc-
ess through rescaling of the time axis; a mapping to operational 
time. Once a process is stationary, the constraints on the dithering 
method are considerably relaxed.

We begin our study by indicating how a time invariant dithering 
applied in operational time instead of real time leads to a perfect 
conservation of the rate profile. However, the effective transforma-
tion undergone by the spikes in real time is not entirely obvious. 
We address this issue and demonstrate how a uniform dither in 
operational time maps to a variable range, non-uniform dither 
following the rate profile itself, in real time. This is verified through 
simulations.

A fixed time scale hypothesis can be tested for by fixing the dither 
range in real time and replicating directly the effect of an opera-
tional time dither by modulating the dithering profile according 

INTRODUCTION
Surrogate generation has become a widespread tool for the statisti-
cal analysis of parallel spike trains (see Grün, 2009 for a review). 
As trial shuffling (Gerstein and Perkel, 1972) is limited to data 
consisting of a set of trials originating from an identical stochastic 
process, within trial approaches have been developed. In particu-
lar, dithering (Date et al., 1998) is often used in cross-correlation 
analysis and repeating pattern analysis, with the aim of identify-
ing the time scales at which the neural code may be operating. 
The methods consist in randomly shifting individual spikes (Date 
et al., 1998; Nadasdy et al., 1999; Hatsopoulus et al., 2003; Shmiel 
et al., 2006; Stark and Abeles, 2009), patterns of spikes (Harrison 
and Geman, 2009), or the whole spike train (Perkel et al., 1967; 
Pipa et al., 2008) by an amount sufficient to destroy fine temporal 
spiking. A commonly tested hypothesis states that the firing rates 
of neurons are sufficient to explain the statistics of fine temporal 
spiking patterns. Rejecting such a hypothesis could suggest a form 
of coding beyond that of rate coding. One example, which we focus 
on in this study, is excess synchrony.

Unfortunately, spike dithering alters the original data in two 
undesirable ways; it smoothes the rate profile and distorts the 
inter-spike interval (ISI) distribution toward that of a Poisson 
process (Pazienti et al., 2008). We demonstrate in the present 
study that these effects need to be taken into consideration before 
applying the method to experimental data. Indeed, the outcome 
of a synchrony or pattern analysis is entirely determined by the 
adequacy of the surrogate method (Grün, 2009; Louis et al., 
2010). Modifying the rate profile or the interval statistics is likely 
to affect the coincidence count statistics, and in turn could give 
grounds for false positive (FP) results. This is the main criticism 
against excess synchrony detection and Unitary Events (Grün et al., 
2002a,b). This observation becomes all the more important as 
the number of parallel spike trains being analyzed increases. For 
example in the analysis of spatio-temporal patterns across multiple 
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to the firing rate. In so doing, simulations and calculations point 
to the use of taking a power of the rate profile as the shape of the 
dithering distribution. We then extend the two known methods of 
joint-ISI based dithering (Gerstein, 2004) and spike train shifting 
(Pipa et al., 2008) and apply them in operational time, leading to 
superior conservation properties.

After demonstrating in how far these methods are capable to 
preserve the firing rate profile and the ISI distribution, we pro-
ceed to compare the different surrogate methods in their ability 
to provide a good implementation of the null-hypothesis for test-
ing the presence of excess precise spike coincidences. The quality 
of the surrogates is evaluated by testing for FP and false negative 
(FN) outcomes. Finally, we apply the different surrogate methods 
to responses of neurons recorded in the primary visual cortex of the 
anesthetized macaque monkey (Aronov et al., 2003). Preliminary 
results of the present study have been presented in abstract form 
(Diesmann et al., 2009).

VARIANTS OF DITHERING
DITHERING IN REAL TIME
We view the spike train of a neuron as a point process with continu-
ous conditional intensity function (t | H

t
), where H

t
 is the history 

of the process up to time t. We refer from now on to (t | H
t
) as the 

rate profile of the neuron. Dithering as outlined above consists in 
shifting individual spikes randomly around their initial position 
in time, following a dither distribution. In the most general case, a 
dithering method  will map a spike train t = {t

i
 | i = 1, ,N} of 

N spikes to

( ) ( ) | , , ,t tt i Ni i 1  (1)

where the 
i
(t) are random variables distributed as 

i
(t)  D

i
 and 

the D
i
 are dither distributions associated to each spike t

i
. They can 

potentially depend on the spike train as a whole and be different 
for each spike. In the case of a uniform dither method with range 

w (dither width), the above simplifies to

( ) | , , ,t t i Ni i 1  (2)

with the 
i
 being independent and identically distributed random 

variables 
i
  D = U( w,w). A further simplification is obtained by 

dithering all spikes together by the same amount   D such that 
(t) = {t

i
   | i = 1, ,N}, representing the spike train shifting 

surrogate (Pipa et al., 2008). Assuming an inhomogeneous Poisson 
process with intensity function (t), the effect of dithering indi-
vidual spikes with a fixed distribution D throughout time, yields 
the profile 

D
(t), with

( ) lim ( ) ( ) ,

( ) ( ) ( ) ( )(

t t u D u u

t u t u D u D u u

u
i i

i

i j i j

0

)) ,

( ) ( ) ,

2

i j

t u D u du

 (3)

where the sums and the integral are taken on the support of D(u). 
The above, which is a simple convolution, is obtained by first apply-
ing the inclusion–exclusion principle (Grimaldi, 2003) and then 

letting u tend to 0, removing all terms of order larger than 1 in 
u. This result is in fact equivalent to a translated Poisson process, 

which itself is a Poisson process (Snyder and Miller, 1991). We note 
that for a finite time resolution the higher-order corrections are 
present and may be important. The result holds up to edge effects 
and so is valid at time t if the dithering operation is applied on all 
spikes in the region [t  w,t  w]. An immediate consequence of 
Eq. 3 is that a constant rate (t) = c is always preserved through a 
constant dither operation

( ) ( ) ( ).t c D u du t  (4)

Furthermore, any profile which is a linear function of time 
(t) = at  b will be conserved under a dithering operation with 

mean displacement 0 ( [ ] = 0)

D t at b a uD u du

t a t

( ) ( ) ,

( ) [ ] ( ).
 (5)

Thus given a mapping of non-stationary point processes to sta-
tionary ones, it is possible to implement a rate profile preserving 
dithering operation. First the process is mapped to a stationary one, 
the dithering is applied, and then the process is mapped back.

DITHERING IN OPERATIONAL TIME
The desired mapping to a stationary process is achieved by trans-
forming t to a new variable known as operational time t  (Cox and 
Isham, 1980)

( ) ( ) [ , ] ,t u du N t t
t

0
0

 (6)

where N[0,t] is the number of events on the interval [0,t]. The last 
equality means that in operational time, the point process becomes 
a process with unit rate. In other words, this transformation can be 
seen as a rescaling of the time axis, such that the rate now becomes 
constant at 1 Hz (Brown et al., 2001). So for a dithering operation 

 with fixed dither distribution, the above equations tell us that 
for an inhomogeneous Poisson point process, t and ( )( )1 t
, where (t) = { (t

i
) | i = 1, ,N} are sampled from the same rate 

profile. Therefore a simple resampling procedure could consist in 
a fixed width uniform dithering (UD) in operational time.

To understand the effect of such a transformation in real time, 
we introduce the Perron–Frobenius (PF) operator  (Beck and 
Schlögl, 1995), used in non-linear dynamics to describe the time 
evolution of densities in phase space. After an iteration of the map 
f on the density (y), the output function becomes

( )( )
( )

| ( )|
,

( )

y
x

f xx f y1
 (7)

where f (x) = df(x)/dx. In the present case, we wish to map a UD 
distribution from operational to real time. Thus f becomes the 
inverse mapping 1 and (y) becomes our dither distribution 
D t t t( ) /( )1  for t t t[ , ]. Assuming (t) is a strictly increas-
ing function, applying the PF operator yields
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D u
t u

t t

t u

x dx
t

t w

t w( )
( ) ( )

( )
.  (9)

Non-uniform dithering distribution
Following Gerstein’s (2004) use of the square root function to scale 
in the dithering, we allow here for a general dithering distribu-
tion shaped according to a composition g t( ) of the rate profile. 
Using Eqs. 9 and 3 with a time dependent dithering distribution, 
a general dithering method following a function of the local rate 
profile would map this rate according to

( ) ( ) ( )

( )( )
( )

( )( )
.

t t u D u du

g t
y

g x dx
dy

t u

y w

y wt w

tt w  (10)

The question now becomes: how well is (t) preserved, depend-
ing on the choice of g. Below we show how the two obvious choices, 
g(x) = 1/2w (uniform dither in real time) and g(x) = x (uniform 
dither in operational time with fixed range in real time), both affect 

(t) in negative but opposite ways. For this we allude to Jensen’s 
inequality (Gradshteyn and Ryzhik, 2000) which in the continuous 
case states that if  is a convex function, then

f x dx
b a f x

b a
dx

a

b

a

b
( )

( ) ( )
.  (11)

It is straightforward to show that for  convex on the interval 
[y  w,y  w] the above yields

2w y x dx
y w

y w
( ) ( ) ,  (12)

( )( )
( )

( )( )

( )

D t
D t

t

t

t t

d
dt

u du

t

t

1

1

0

t

t

t t

( )
.

 (8)

The above states that a UD distribution in operational time, is 
equivalent to a dithering distribution following the rate profile, 
normalized over the mapped range 1 1t t t t, , . An 
obvious consequence of Eq. 8 is that the dither boundaries in real 
time are now modulated directly by the rate profile. Or conversely, 
a fixed dither width in real time will transform to a variable dither 
width in operational time (Figure 1). For a fixed range in opera-
tional time, the larger the firing rate, the smaller the effective dither 
width in real time (illustrated in Figure 2).

A fixed range in operational time may constitute an interest-
ing surrogate generation method, as it preserves the estimated 
rate profile exactly, and has an intuitive interpretation: in order 
to stand out from the noise, spike synchrony needs to be more 
precise in regions of high rate requiring only a smaller dither for 
effective destruction. However, if we fix the dithering boundaries 
in real time, to w, say, this produces a dithering distribution fol-
lowing the rate profile as shown in Eq. 8, with mapped boundaries 
[t  w,t  w], meaning

FIGURE 1 | Illustration of the conversion from real (horizontal) to 
operational (vertical) time. The thick curve shows a cumulative rate profile, 
which serves for the transformation from real time to operational time. The 
dashed lines indicate the positions of two example spikes prior to dithering. 
A constant dither window w in real time is converted to non-constant dither 
windows w  in operational time.

FIGURE 2 | Uniform dithering in operational time. Real time distributions of 
dithers at selected points (red vertical dashed lines) in the time course of the 
rate. For each time point an identical uniform, fixed width dither of 
w  = 30 ms in operational time was used. The dither distributions (gray, bin 
width 5 ms) at each original spike position are obtained empirically by 100000 
dither repetitions of each spike. The rate profile used for the mapping is shown 
in black.
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post-intervals and moving a spike is equivalent to displacing the 
point along the perpendicular to the main diagonal in the joint-ISI 
plot. The surrogate method is then based on dithering the spikes 
following the local joint-ISI distribution, in the same way as dither-
ing following the rate profile.

Gerstein (2004) observed that the peakedness (kurtosis) of the 
ISI distribution of the resulting surrogates is increased relative to 
the original shape; meaning the surrogate spike trains are more 
regular in their activity than the original. We now understand that 
this occurs as result of Eq. 14; each of the perpendicular cuts of 
the joint-ISI distribution sees its shape emphasized increasing the 
peakedness of the two-dimensional distribution. Consequently the 
shape of the marginal ISI distribution is also emphasized.

To overcome this effect Gerstein (2004) proposes to take the 
square root of the joint-ISI distribution before applying the dith-
ering procedure. The surrogates then exhibit an ISI distribution 
very close to the original for dither widths on the order of 10 ms. 
Setting g x x( )  in Eq. 10 does not lead to (t) = (t), however 
its smoothing property counterbalances the emphasizing property 
of the profile itself, providing a significant improvement as can be 
seen in Figure 4.

ISI CONSERVING DITHERS IN OPERATIONAL TIME
Combining both, the ideas of operational time for rate conservation 
and joint-ISI based dithering for interval conservation, we propose 
a novel surrogate method. It consists in first mapping the spikes 
to operational time, then applying a joint-ISI based dithering in 
operational time with real time fixed boundaries, before finally 
mapping the spikes back to real time.

The dithering of the whole spike train (Pipa et al., 2008), that 
is adding a single uniformly distributed shift to all spikes, can 
also be applied in operational time. If the process is a renewal 
process in operational time, then such a surrogate constitutes 
an ideal surrogate, as it conserves both the ISI and rate features 
of the real time process. However the dithering ranges varies 
depending on the position of the individual spikes relative to 
the rate profile.

We show that both methods conserve the spike rate as well as 
the ISI distribution.

SIMULATION METHODS
Spike dithering is now widely used in the detection of excess syn-
chrony in parallel spike trains and the investigation of patterns and 
temporal coding. However its exact effect on the statistics of the 
spike trains has not been studied in detail.

An analysis is only useful for the experimentalist if it is based 
on biologically realistic rate profiles and ISI distributions. Due to 
the restricted power of our present theoretical tools an appropri-
ate level of realism is only achievable by computer simulation. 
Fortunately, the progress in computer hardware and methods for 
trivial parallelization in high-level programming languages has now 
considerably expanded our capabilities compared to the time when 
dithering was first considered. The algorithms described below are 
implemented in Python (Langtangen, 2006) and executed in paral-
lel using the techniques described in Denker et al. (2010). Example 
code for implementing dithering in operational time is available at 
www.spiketrain-analysis.org.

while the converse holds for a concave . Starting with UD 
[g(x) = 1/2w] and assuming a locally convex profile, combining 
Eqs. 10 and 12 gives

( )
( )

( ),t
y

w
dy t

t w

t w

2
 (13)

where (t) can be interpreted as the “dithered” rate profile. Thus 
surrogates generated by UD have an increase in rate in convex 
regions of the profile, and conversely a decrease in concave regions, 
relative to the original rate profile. As expected, this is equivalent 
to a smoothing of the original profile (see Figure 4). For the case 
in which the dithering distribution follows the rate profile itself 
(g(x) = x), we obtain

( ) ( )
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The effect here is the opposite to that of UD; (t) now exaggerates 
the non-stationarities, decreasing in convex regions and increasing 
in concave ones, relative to (t).

JOINT-ISI DITHERING
A similar exaggeration of the profile was previously noted in 
Gerstein (2004), where the feature to be preserved is the ISI dis-
tribution. In this surrogate method, the joint-ISI distribution is 
constructed from pairs of successive intervals (see Figure 3). Each 
spike is situated on the joint-ISI surface according to its pre- and 

Joint−ISI Distribution
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FIGURE 3 | Illustration of Joint-ISI dithering. Joint-ISI distribution obtained 
from 1000 spike train realizations (same parameters as in Figure 4). The two 
perpendicular lines mark one particular spike with a particular ISI relative to its 
preceding (ISIi) and its following spike (ISIi 1). The spike is dithered within the 
interval [ w, w] according to the non-uniform probability given by the joint-ISI 
distribution (color coded).
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impacts spike correlation analysis, using coincidences as an exam-
ple, and may lead to erroneous conclusions on the spike correlation 
structure of the data.

BENCHMARK DATA
In order to compare the different surrogate methods, we simulate 
continuous time spike trains exhibiting both rate non-stationarities 
and non-Poisson ISI statistics. The standard rate profile used is 
shown by the black curve in Figure 4 consisting of a single step, 
with a base rate of 10 Hz. In our study we parameterize the profile 
by the size of the step . In the FP and FN analysis below we use 
50 trials and restrict  to the range between 0 and 100 Hz, leading 
to an upper firing rate of at most 110 Hz.

The duration of 100 ms corresponds to the typical length of the 
analysis window in time-resolved correlation analysis (Grün, 2009). 
The individual trials are produced by mapping a unit rate gamma 
process (renewal process with gamma distributed ISIs and rate 1 Hz) 
through the inverse function of the integrated rate profile ( 1 above) 
to real time. In other words a time rescaled stationary process. The 
spiking regularity is thereby defined through the shape parameter of 
the gamma process in operational time 

op
 or alternatively its coeffi-

cient of variation CV
op

, which due to the deterministic mapping leads 
to a constant CV = CV

op
 in real time. The resulting spike trains exhibit 

non-stationary firing rates and a non-trivial total ISI statistics.

IMPLEMENTATION OF DITHERING METHODS
In the order of Table 1, we start with UD in real time. As explained in 
the previous sections, we implement UD by adding a random number 
drawn from the uniform distribution U( w,w) independently to each 
spike time in the spike train. Next for the rate profile dependent 
method SRD, we first estimate the firing rate profile through the 
peristimulus time histogram (PSTH) constructed over the trials on 
a 1-ms resolution. The amount of smoothing applied depends on the 
number of trials; for 50 trials we choose a 10-ms Gaussian smooth-
ing. From this smoothed PSTH we construct a linearly interpolated 
function to provide us with a continuous rate profile (t). Then each 
spike t

i
 is dithered according to the normalized segment of the expo-

nentiated rate profile: t
i
  s

i
 where P( ) ( )/ ( )s t t u dui t w

t w

i

i  for 
t [t

i
w, t

i
  w] and 0 otherwise. SRD uses  = 0.5.

The SHIFT surrogate is constructed simply by adding the same 
random number drawn from the uniform distribution U( w,w) to 
each spike time in the spike train. Thus UD and SHIFT constitute 
the limits of the pattern-jittering method proposed by Harrison 
and Geman (2009). In broad terms, this method fixes a threshold 
for the ISIs of interest. ISIs larger than this threshold allow for a 
segmentation of the data into patterns, which are dithered inde-
pendently (the same random number is added to each spike of a 
pattern). In UD, the patterns are individual spikes and thus the 
ISI threshold is at 0, leading to a maximal perturbation of the ISI 
distribution. In SHIFT, the whole spike train is a single pattern and 
the ISI threshold is larger than the largest ISI, leading to a mini-
mal variability. Observing the performance of these two limiting 
methods will give us an idea on where to situate pattern-jittering, 
with respect to other methods. We also extend SHIFT to an opera-
tional time version OSHIFT, which dithers the whole spike train 
in operational time. The mapping is done through the integrated 
PSTH. The real time dither range is thus no longer fixed.

It is intuitively clear that spike dithering works for a Poisson 
process with a constant intensity in the dithering interval (see 
Diesmann et al., 2009 for a thorough introduction). Thus as soon 
as the spike train exhibits temporal structure such as refractory 
periods, dithering may be questionable. In addition, the question 
of the adequate choice of dithering width needs to be addressed. 
If the width is kept too small compared to the tolerated jitter 
in synchrony, the sensitivity of the detection may be affected 
(Pazienti et al., 2008). For excess synchrony detection, the dither 
width clearly depends on both the hypothesis being tested for 
(the allowed jitter) and the requirement to conserve the firing 
rate profile.

In the following sections we compare the different surrogate 
methods listed in Table 1 in two steps. In the first step we examine 
the methods’ ability to preserve the rate profile of the spike trains 
as well as their ISI distribution. Both are primary features of spike 
trains which ought to be conserved adequately. In the second step 
we quantify how the potential non-preservation of these features 

FIGURE 4 | Conservation of rate profile at 20 ms dither width. A total of 
5  105 trials are used, with an underlying rate following the black curve in 
the top panel. The estimated rate profiles (top panel) yielded by the 
surrogate methods are shown in color (see legend and Table 1). The lower 
panel shows a bar plot of the normalized root mean square error (NRMSE) 
of each surrogate method compared to the original PSTH (resolution 1 ms). 
The leftmost bar is the NRMSE of the original PSTH compared to the true 
rate profile.
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mean square error (NRMSE) of the surrogate PSTH obtained 
from all surrogate trials H

s
 with respect to the true PSTH 

obtained from the original trials H
T
 at a resolution of 1 ms as 

NRMSE max min1 2/( ) ( ) /H H H H NT T T S
, where HT

max and 
HT

min are the maximum and the minimum spike count in the 
histogram of the original spike trains respectively and N is the 
number of bins of the histograms.

The NRMSE is also calculated for the respective ISI distributions 
(1 ms resolution) in a similar fashion, quantifying the destruction 
of the original ISI statistics.

FALSE POSITIVE AND FALSE NEGATIVE EVALUATION IN CORRELATION 
ANALYSIS
Feature conservation is only part of the assessment of a surrogate 
method. It may indicate its flaws and advantages, however it does not 
guarantee that it will be useful in the context of a specific analysis of 
the data. Here we concentrate on the example of spike correlation 
analysis, and show how surrogates can be used for testing for the 
presence or absence of correlation between spike trains and for deriv-
ing their significance. In the correlation analysis we are interested to 
detect the presence or not of excess precise spike synchrony, beyond 
that explained by the firing rate and the ISI statistics. We define a 
synchronous event by two spikes (one from each neuron) occurring 
within 1 ms of each other. Surrogates serve as an implementation 
of the null-hypothesis of independent firing. By dithering the precise 
relationship of the spikes of the two spike trains is destroyed.

To evaluate the performance of the surrogates in the context of 
correlation analysis we look at FP rates in data containing no excess 
synchrony and FN rates in data containing excess synchrony. In the 
statistical analysis we are here following the terminology of Ventura 
et al. (2005). For each parameter configuration and surrogate method, 
the FP and FN rates are obtained as follows. We begin by generating 
1000 data sets with the same parameter configuration. A data set 
consists of 50 trials (100 ms duration) of two parallel spike trains 
generated according to a defined rate profile and interval statistics as 
in the study of feature conservation estimation of single spike trains. In 
case of studying the FN rate, the parallel spike trains contain correlated 
spiking due to insertion of jittered ( 1 ms) coincident spike events 
at rate 

c
. For the FP analysis, the insertion is omitted and the spike 

trains are independent on a fine temporal scale, but are correlated on 
a slower time scale due to correlated (identical) rate profiles.

For each data set, we produce 1000 surrogate versions. Each 
set of surrogates is analyzed as the original data set for the occur-
rences of coincident spike events. In each data set, the number of 
coincidences of an allowed temporal precision (here  1 ms) is 
counted. A coincidence is detected by testing if there is one spike 
(or more) of the second spike train within 1 ms relative to a spike 
of the first (reference) spike train. If more spikes occur within an 
individual coincidence window, this is counted as one coincidence 
(“clipping”). From the coincidence counts derived from the sur-
rogates we construct the surrogate coincidence count distribution, 
which serves to estimate the significance of the coincidence count 
of the original data by calculating the p-value.

Thus for one parameter configuration of the data and surro-
gate method, we obtain 1000 p-values (p

i
 for i = 1, ,1000). Given 

a significance level , which we fix to 0.01 in the following, we 

For the ISI dependent methods, JISID and OJISID, we first con-
struct the JISI matrix on a 1-ms resolution (in real and rescaled 
operational time respectively). The size I

max
 of this matrix was set to 

100 ms  100 ms. In general, the choice of I
max

 will depend on the 
mean and standard deviation of the ISI distribution. Once filled, 
the matrix is square rooted (Gerstein, 2004). In the case of a small 
number of trials, the matrix is additionally smoothed with a 2D 
Gaussian of width 3 ms. From this square rooted matrix we pro-
ceed to construct a 2D interpolated function J(x,y) through bilinear 
interpolation (Press et al., 2007), where 0  x,y  I

max
 are the pre- 

and post-inter-spike intervals respectively. The dithered  position of 
a spike t

i
 with pre- and post-intervals x

i
 and y

i
 is then given by 

t
i
  t

i
  z

i
 with P z t J x t y t J x u y u dui i i i iw

w
( ) ( , )/ ( , )  for 

0  x
i
  t,y

i
  t  I

max
 and 0 otherwise. The spikes are dithered in paral-

lel; that is the dither distribution is initially fixed for each spike at the 
beginning of procedure, based on the position of neighboring spikes. 
It may seem like a dynamic version, in which one first dithers (assum-
ing the spikes are numbered) even spikes, then updates the joint-ISI 
coordinates before dithering the odd spikes, would be more accurate. 
However the conservation properties and the excess synchrony detec-
tion performance remain unaffected. The same procedure is used in 
the OJISID method once the spike trains were mapped to operational 
time. The joint-JISI matrix is then constructed in operational time. To 
make the matrix sizes compatible between the two methods we scaled 
the operational time back down to a duration of 100 ms, relative to 
a bin size of 1 ms. Spikes which fall out of the matrix are dithered 
uniformly within the initial dither width.

QUANTIFICATION OF FEATURE CONSERVATION
In order to have a reliable comparison of feature conservation 
across the surrogate methods, we simulate a total of 5  105 
trials following the procedure outlined above. Except for UD 
and SHIFT which are independent of the rate profile, all meth-
ods make use of all the trials in estimating the rate profile and 
the JISI distribution. We then calculate the normalized root 

Table 1 | The investigated dither methods and their features.

Dither time Dither ISI Abbreviation 
 distribution conservation 

Real Uniform No UD
Real Rate  No SRD
Real J ISI Yes JISID
Operational OJ ISI Yes OJISID
Real Uniform Yes SHIFT
Operational Uniform Yes OSHIFT

The first column indicates in which time coordinate the spikes are dithered. 
The second column lists the shape of the dithering distribution. UD (uniform 
dithering), SRD (dithering according to the normalized square rooted rate profile), 
JISID (dithering according to the joint-ISI distribution), and SHIFT (spike train 
shifting) are thus dithered in real time, with the exception of OJISID (dithering 
according to the joint-ISI distribution in operational time) and OSHIFT (spike train 
shifting in operational time). UD, SHIFT, and OSHIFT use a uniform distribution 
whereas SRD uses the square root of the estimated firing rate profile itself. 
JISID and OJISID use the joint-ISI distribution constructed from the data, in 
real time and operational time respectively. The third column indicates whether 
the method attempts to conserve the ISI statistics and the fourth shows the 
abbreviations used in the text and figures for each of the dithering methods.
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method, which conserves the distribution far better. It is still quite far 
from the original distribution, which we attribute to the size of the 
dither window, which is larger than the width of the distribution. The 
method conserves the ISI distribution with much higher precision 
for dither widths on the order of 10 ms (not shown, see Gerstein, 
2004). As anticipated, the OJISI method not only preserves the rate 
profile, it also yields surrogates with an ISI distribution even closer 
to the original, as can be seen from the reduced NRMSE.

However the most accurate methods are the SHIFT and OSHIFT 
methods, as expected. They perfectly conserve the ISI statistics of the 
processes. For SHIFT, this is obvious. For OSHIFT, the ISI statistics 
of the process in operational time are perfectly conserved, so apply-
ing exactly the same mapping to and from operational time leads 
to a perfect conservation in real time. However the ISI sequence of 
a single trial is modified, unlike in the SHIFT method.

Combining the last two results, we can safely conclude that the 
OSHIFT and OJISID methods are by far the most feature preserving 
surrogate methods amongst the six being compared.

EFFECT OF DITHER SURROGATES ON SENSITIVITY OF CORRELATION 
ANALYSIS
To see how the methods compare in the context of correlation 
analysis, we devised two separate analyses focusing on different 
parameters. The first analysis evaluates the dependence of FPs and 
FNs on the strength  of the non-stationarity in rate (Figure 6). 
In the second analysis  is set to 70 Hz and we investigate the 
 dependence of FP and FN results on the coefficient of varia-
tion (CV) controlled by the shape parameter 

op
 of the process 

(Figure 8). The task of the surrogates is to detect the presence of 
excess spike synchrony ( 1 ms), beyond that explained by the firing 
rate and the ISI statistics. We set the dither range in the various sur-
rogate methods to 20 ms throughout this part of the study for the 
intended destruction of the precise temporal relationship between 
the spikes of the two neurons. This dither range is a lower bound 
for OSHIFT; spikes may be dithered by larger amounts in the low 
rate region. In addition, Figure 7 shows a scenario where for the 
first analysis we progressively reduce the dither width of UD.

We begin with the rate dependence analysis (Figure 6) and 
clearly identify UD as the method with the highest FP rates (up to 
35% for  = 100 Hz) and correspondingly the lowest FN rates. 
Then comes the SRD method which attempts to better preserve the 
rate step but ignores the ISI statistics. With similar FP performances, 
we find SHIFT and JISID, producing FPs up to 10%. However the 
SHIFT method is clearly superior when looking at the FN rates 
which are consistently lower. Thus for the same accuracy, SHIFT 
is more sensitive than JISID.

The operational time methods OJISID and OSHIFT are consid-
erably more conservative, with FP rates of at most 5%. However 
their level of sensitivity appears to be far lower, with high FN rates 
going up to 70%. In the Appendix we explain why in fact OSHIFT 
reaches the maximum sensitivity: The other surrogate methods 
are smoothing the rate profile. This leads to a distribution of 
coincidence counts which is shifted to a lower mean compared to 
the mean of the actual independent distribution. Consequently a 
smaller fraction of the dependent distribution is located to the left 
of the threshold coincidence count determined by the significance 
level. The FN rate appears to be reduced compared to OSHIFT but 

 convert these results into counts of positive (significant) results, 
i.e., N  = 

i
(p

i
  ), and counts of negative (non-significant) 

results, i.e., N  = 
i

(p
i
  ), where (x) = 1|0 if x is true|false. If 

the chosen parameter configuration involves injected synchrony, 
then the FN rate in percentage is given by 100 · N /N (where 
N = N   N  = 1000), i.e., the percentage of falsely undetected 
correlation. Conversely, if the parameter configuration does not 
involve injections, then the FP rate reads 100· N /N indicating the 
percentage of falsely detected correlation (Louis et al., 2010).

In general the FP rate (empirical type I error) does not coincide 
with the prespecified significance level  because the surrogate dis-
tribution only imperfectly resembles the distribution of coincidence 
counts of independent data. If the independent distribution is known 
a matched significance level 

m
 can be determined which restricts 

the FP rate to a prespecified value. However, with knowledge of the 
independent distribution, typically no surrogate method is required 
in the first place. The FN rate (empirical type II error) can be used to 
compare the sensitivity or test power of different surrogate methods if 
they are adjusted to produce the same FP rate. Differences in sensitiv-
ity may then, for example, originate from a different effectiveness of 
the surrogate methods in destroying injected coincidences.

CALIBRATION BASED ON SIMULATED DATA
EFFECT OF DITHER SURROGATES ON RATE PROFILE
We compare a total of six surrogate methods (UD, SRD, SHIFT, 
OSHIFT, JISID, and OJISID, listed in Table 1) in their ability to 
preserve the underlying rate profile. The dither width was fixed 
at 20 ms; intentionally large such as to accentuate the differences 
between methods. The parameters of the profile are  = 70 Hz 
and 

op
 = 3 (Figure 4).

We observe that the UD, SHIFT, and JISID methods perform 
worse (highest NRMSE), systematically deviating away from the 
rate in the vicinity of the step. The effect is intuitive for UD and 
SHIFT which lead to a smoothed profile, corresponding to a con-
volution as shown in Eq. 13. In the case of JISID, the effect can 
be understood by considering the likely positions of the interval 
borders in the JISI matrix given by the previous and the next spike 
in dependence of the rate profile. When the rate is increasing, as 
is the case at the step, the post-interval is likely to be smaller than 
the pre-interval, thus the JISI based dither will tend to recenter the 
spike and shift it back in time. Repeating this effect over trials leads 
to a systematic shift of the rate profile. The rate would be shifted 
in the other direction in downward transients.

Taking the square root of the profile as a dithering distribution 
more than halves the NRMSE, as can be seen from the performance 
of SRD. OJISID performs even better, apart from the slight empha-
sizing effect at the step, which was anticipated in Eq. 14. Finally 
OSHIFT is at the level of the variability in the original PSTH as it 
does not modify any of the statistics of the processes.

EFFECT OF DITHER SURROGATES ON ISI DISTRIBUTIONS
The same set of trials as in the previous section is then used to assess 
the conservation of the ISI distribution (Figure 5). The UD and SRD 
methods deviate most from the original distribution, showing the 
largest NRMSEs (computed for the surrogate distributions com-
pared to the distribution of the original trials). Next we find the JISI 
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reason is that the smoothing of the rate profile described above is 
also used in OJISI . The region shaded in light purple indicates the 
effect of using a PSTH instead of the true rate profile, and in some 
sense illustrates the distance to the optimal surrogate. Another way 
to explore the effect of non-stationarity in spike rate on a particular 
surrogate method is to compare the results for non-stationary data 
with the result of stationary data but otherwise similar character-
istics. The curves labeled SHIFTfl (short dashed green) show the 
result of the SHIFT surrogate method applied to a data set gener-
ated by a stationary process parameterized by the average spike 
rate of the non-stationary process and identical regularity. The 
distance between SHIFT (solid green) and SHIFTfl (short dashed 
green) illustrates the cost of ignoring non-stationarity. For SHIFT 
the FP rate substantially increases with  while it stays at the 
expected level for SHIFTfl. Thus, the smaller FN rate of SHIFT as 
compared to SHIFTfl is due to the higher FP rate of SHIFT. We 

this is trivially so because the FP rate is larger than the significance 
level suggests. If a larger fraction of the independent distribution 
is to the right of the significance level also more of the dependent 
distribution is. The FN rates are only decisive if the FP rates are 
comparable.

Figure 6 shows three variants of OSHIFT: one in which the 
true rate profile is used (OSHIFTopt, short dashed purple), one in 
which the PSTH is smoothed before being used for the mapping 
(OSHIFTsm, long dashed purple) and one without the smoothing 
(OSHIFT, solid purple). An immediate observation is that smooth-
ing the PSTH, which is initially quite variable due to the limited 
number of trials (50) induces a strong increase in FPs, from 0 to 
5% at  = 100 Hz. Thus integrating the PSTH for deriving the 
rate mapping provides an inherent reduction of noise and leads to 
a reliable mapping to and from operational time. SHIFT and JISID 
perturb the rate profile and exhibit the same dependence of the FP 
rate on . Using operational time, the FP rate of OJISI does not 
drop to the one of OSHIFT but reaches the level of OSHIFTsm. The 

FIGURE 5 | Conservation of the ISI distribution at 20 ms dither width. 
The top panel shows the original and estimated ISI distributions based on the 
various surrogates (colors, see legend). The original ISI distribution curve is 
covered both by SHIFT and OSHIFT traces. The lower panel shows a bar plot of 
the NRMSE performances of each surrogate method (colors as in top panel) 
compared to the ISI distribution of the original spike trains. The heights of the 
bars for SHIFT, OSHIFT and the NRMSE of the ISI distribution of the original 
spike trains compared to the true distribution (black) are amplified just to 
indicate that the NRMSE was computed for all cases. The data are the same as 
shown in Figure 4.

FIGURE 6 | FP and FN percentages as a function of the step amplitude 
, with fixed op = 3. SHIFTfl is the SHIFT surrogate applied to a stationary 

process with the average spike rate of the rate step scenario. OSHIFTsm is a 
version of OSHIFT where the mapping to operational time constructed from 
the data is smoothed (10 ms Gaussian). OSHIFTopt is based on the true rate 
profile and the injection rate for the lower plot is c = 2 Hz. A worst case 
estimate of the standard deviation of the FP/FN percentage is given by the 
error in the mean p p n( ) /1 0.0158 1.6%, i.e., for a Bernoulli process 
with p = 0.5 and n = 1000 realizations as used here.

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Frontiers in Computational Neuroscience www.frontiersin.org September 2010 | Volume 4 | Article 127 | 62

Louis et al. Dithering in operational time

Figure 7. We observe that by the time the FP rates are brought 
down to the level of OJISID (still larger than OSHIFT: upper 
panel, light blue area) by using a dither width of 3 ms, the UD 
method is far less sensitive than OSHIFT or OJISID (lower panel, 
light blue shaded area). This signifies that one cannot reach the 
level of performance of the more advanced methods proposed 
in this study by simply reducing the dither width of simpler 
methods. The Appendix shows that the loss of sensitivity of UD 
with decreasing dither width is due to an insufficient destruction 
of the injected coincidences.

The second parameter which we investigate is the spiking regu-
larity, quantified by the shape parameter of the ISI (gamma) dis-
tribution in operational time 

op
 (see Figure 8). More precisely we 

plot the FP and FN rates as a function of the coefficient of variation 
CV op1/ . As in Figure 5 we set  = 70 Hz.

For CV  1, we find that most methods, except SHIFT, are oper-
ating at reasonable FP rates. However, once the processes become 
more regular than Poisson, UD shows a strong increase in FP rates. 
The performance of SHIFT does not seem to depend too strongly 
on CV and the offset of a few percent above the significance level 
is due to the smoothing of the rate profile, as can be seen from 
the SHIFTfl curve. SRD and JISID show a fairly similar behavior, 
reaching 5% FP rates for highly regular processes, on par with 
SHIFT. Again, JISID is above the significance level as it shows poor 
rate conservation properties. Below we find the operational time 
methods, of which OSHIFT lies at the significance level, unaffected 
by the increasing regularity.

Turning to the FN rates (Figure 8, lower panel), we note that 
UD and SRD follow a similar trend, opposite to their FP rate trend. 
SHIFT proves to be fairly sensitive through the parameter range 
and shows again an upward slope with regularity. In contrast, JISID 
and OJISID become more sensitive as regularity increases. The 
reason for this increased FN rate in irregular regimes is that most 
spikes have small pre- and post-intervals (burst) and thus can-
not be dithered by large enough amounts, relative to the coinci-
dence width ( 1 ms). The OSHIFT method looses in sensitivity as 
the process gains in regularity, maintaining its distance with the 
optimal surrogate for the non-stationary (light purple shading) 
and stationary (light green shading) cases. This suggests that as in 
Figure 6 its performance is limited by the accuracy of the mapping 
to operational time.

Combining the observations made above, we conclude that 
OSHIFT is the most conservative method, and in terms of sensi-
tivity, for a fixed accuracy, is the closest to optimum. The OJISID 
also outperforms simpler methods, however the constraints on the 
dither range by the previous spike and the next spike limits vari-
ability of the coincidence counts in the surrogates and its imple-
mentation is far more involved.

APPLICATION TO EXPERIMENTAL DATA
To assess the behavior of the various surrogates in an experimental 
setting, we consider a pair of neurons recorded non-simultaneously 
in the primary visual cortex of the anesthetized macaque monkey 
(Aronov et al., 2003). The reason for choosing non-simultaneous 
recordings is that we need to be in a situation in which we can be cer-
tain that there is no excess synchrony; only then can we be sure that 
we are observing FP results. The stimuli are transient  presentations 

find that OSHIFT (solid purple) lies between the optimal surrogate 
performances for non-stationary (OSHIFTopt, short dashed pur-
ple) and stationary (SHIFTfl, dashed green). The performance of 
OSHIFTopt and SHIFTfl is optimal in the sense that they destroy 
all coincidences, and have an FP rate at the expected level because 
the rate profiles are exactly respected. At the same FP rate no other 
method can have a lower FN rate. The rate of injected coincidences 

c
 is stationary and the same in both cases. Therefore, in the data set 

with a rate step (OSHIFTopt) the distance between the number of 
coincidences in the data and the expected number of coincidences 
in the surrogates is smaller (see also Grün et al., 2003). This leads to 
the larger FN rate of OSHIFTopt compared to SHIFTfl illustrated 
by the conjunction of the light blue and light purple areas. The 
region shaded in light blue indicates that the increase in the FN 
rate (light blue) of OSHIFT compared to the stationary setting 
(SHIFTfl) is about half of the optimal value (conjunction of light 
blue and light purple) due to the remaining noise in the estimation 
of the integrated rate profile.

To illustrate the superiority of the operational time meth-
ods, we performed the same analysis using UD with reducing 
dither widths 20, 10, 6, and 3 ms. The results are shown in 

FIGURE 7 | Comparison of sensitivity at matched false positive rates. FP 
and FN rates as a function of the rate step amplitude, for varying dither widths 
of UD. Other parameters as in Figure 6.
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non-uniform dither with a range in real time of at least 10 ms. For 
each surrogate method we generate 10000 surrogate versions of the 
recordings from the neuron with the mildest rate transient. The 
resulting coincidence distributions and p-values of the observed 
coincidence count (black line) are shown in Figure 10.

The resulting surrogate distributions are compatible with the 
observations made in the previous section on synthetic data. The 
non-ISI conserving methods, UD and SRD, would detect a sig-
nificant (above 1% level) number of coincidences (p-value below 
10–3 in both cases). SHIFT does not detect significant excess syn-
chrony. In turn, the more conservative methods, JISID, OJISID, 
and OSHIFT clearly do not observe any excess synchrony, as one 
would expect from independent recordings.

Thus in such strong rate transient regimes, we recommend 
the use of more advanced methods which take into account the 
observed rate and ISI properties of the recordings. The example 
data exhibit considerable cross-trial non-stationarity. Nevertheless 
OSHIFT is sufficiently robust and remains the method of choice.

Alternatively, one can reduce the dither width of more basic 
methods, however this will induce a substantial reduction in sen-
sitivity, for a similar accuracy, as shown in Figure 7.

DISCUSSION
The result of our study of the family of surrogate methods based on 
dithering is that the methods considering the ISI distribution behave 
best with respect to rate modulations and regularity of the spike trains. 
The novel techniques of joint-ISI dithering (OJISID) and train dither-
ing (OSHIFT) in operational time are the most robust methods, since 
they exhibit the lowest FP rates amongst the surrogate methods con-
sidered in the paper. The apparently lower FN rate of other methods 
is a direct consequence of the increased FP rate. At the same FP rate, 
simpler methods cannot match the sensitivity of OSHIFT and OJISID. 
Thus this surrogate approach should be restricted to the applica-
tion to Poisson spike trains with small rate fluctuations. This is also 
illustrated by the analysis of the macaque V1 recordings considered 
above. Even though the neurons were recorded in different sessions 
and are expected not to exhibit excess synchrony, UD does consider 
the empirical coincidence count as highly significant.

In the Appendix we explore the theoretical relationship between 
FP and FN by assuming that the true independent and dependent 
distributions of coincidence counts are known. In this scenario 
the significance level used for a particular surrogate method can 
be adjusted to generate a desired FP rate. As a consequence all sur-
rogate methods which effectively destroy coincidences also produce 
identical FN rates. Methods which leave a fraction of the coinci-
dences intact have a lower sensitivity.

The spike exchange (Smith and Kohn, 2008; Grün, 2009) surrogate 
methods may seem to have an advantage over the methods covered 
in this study, as they conserve the PSTH exactly, account for non-
stationarities across trials and keep the spike count per trial constant. 
Thus we expect that they perform better than UD or SRD. However 
they do not attempt to conserve ISI distribution and as we demon-
strated in the FP rate analysis, high firing rates combined with spiking 
regularity place strict requirements on the surrogate method.

Having considered the limiting cases (UD and SHIFT) of the 
pattern-jitter method (Harrison and Geman, 2009), we believe 
that their performances situate the performance of the latter. We 

of stationary gratings of varying spatial phase. Each neuron was 
recorded from in different sessions and with a different stimulus 
presented. A total of 64 trials were obtained for each neuron; the 
responses are shown in Figure 9. As one can see from the dot display 
and the PSTH, both neurons exhibit strong rate transients within 
the analysis window of duration 100 ms covering the time interval 
[250, 350 ms]. The spike rates of the two neurons peak at 200 and 
250 Hz, respectively, with highly regular spike sequences.

We treat these two neurons as if they were simultaneously 
recorded and test for excess coincidences with an allowed jitter of 

1 ms. Due to the large amplitude of the transient we use a dither 
width of 10 ms for all methods except OSHIFT, which applies a 

FIGURE 8 | FP and FN percentages as a function of the regularity of the 
processes. The firing rates of the parallel spike trains follow the step profile 
with  = 70 Hz. The regularity of the spike trains is parameterized by the 
coefficient of variation CV = CVop. FP values are shown for CV values 
corresponding to shape parameters op = 10,8,6,4,2,1.5,1,0.9,0.8,0.6, and 0.4 
(from left to right). Each data point results from 1000 repetitions.
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In a given application it may be of interest to not only include the 
rate profiles and the interval statistics but also additional features 
like a baseline spike correlation into the null-hypothesis. Whether 
it is possible to limit the destructive power of dithering to achieve 
this needs to be investigated.

The comparison between the joint-ISI dithering methods in real 
and operational time highlights that given a non-stationary rate the 
ISI distribution is in a formal sense not defined. The long intervals 
in the ISI distribution in real time are dominated by contributions 
from the low rate regimes. Nevertheless, the full distribution is 
used to dither spikes also in high rate regions where short intervals 
dominate. The role of the transformation to operational time is to 
get access to a well defined ISI distribution valid at any point on 
the temporal axis. Nawrot et al. (2008) exploited the same idea to 
reliably assess the CV of ISIs in neuronal data.

Our theoretical framework explains why the square root profile 
introduced by Gerstein (2004) is superior to a flat dither profile and 
to the profile following the original distribution. We have no evi-
dence, however, in what sense 0.5 is an optimal choice of the expo-
nent. In fact, it seems that for an arbitrary rate profile an exponent 
with an improved performance can be found (not shown). This 
raises the intriguing question whether there is a locally optimized 
time dependent choice of the  exponent (t).

The method of dithering in operational time emphasizes 
the dual role of the size of the sliding analysis window in time-
resolved correlation analysis. The original paper on the Unitary 
Events  analysis (Grün et al., 2002b) states the two characteristics 
controlled by the parameter: (1) The window needs to be narrow 
enough to assume stationarity of the rate. (2) The window size 
needs to be large enough to collect sufficient statistics but adapted 

anticipate that pattern-jitter will not represent an improvement 
over OSHIFT for the processes considered in this study. However 
further studies including cross-trial non-stationarities are required 
to clearly differentiate the methods and define the conditions under 
which they are most applicable.

Experimentally recorded spike trains have the added compli-
cation that they not only exhibit rate non-stationarities but also 
non-stationarities in the CV (regularity) of the ISIs within trials 
(Shinomoto et al., 2003, 2009; Davies et al., 2006; Nawrot et al., 
2008; Kilavik et al., 2009). In consequence single trials may have 
a rate profile and a potentially independent regularity profile. It 
remains to be investigated whether a concept similar to operational 
time for converting a non-stationary rate  process to a stationary 
one, can be found to account for regularity non-stationarities. Again 
surrogate generation methods need to be thoroughly tested for 
processes that are non-stationary in both parameters.

FIGURE 9 | Dot displays (upper panels) and smoothed PSTHs (bottom 
panel) of two simple cells recorded from monkey primary visual cortex 
recorded in the same session, however under different stimulus 
conditions. The stimuli for the two neurons are stationary transient gratings 
of different orientation. The data are described in (Aronov et al., 2003) and 
publicly available at neurodatabase.org. Neuron 1 corresponds to file 410106s 
in condition 5, and neuron 2 to file 410106t in condition 1.

FIGURE 10 | Surrogate coincidence distributions based on experimental 
data shown in Figure 9, with a dither width set to 10 ms in range-
bounded methods. The vertical black line indicates the coincidence count in 
the original data.
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However, at the smaller dither width the surrogate distributions for 
correlated and independent data are no longer identical because the 
method does not destroy coincidences effectively enough.

In the right column of Figure 11 we match the fraction of FP 
of the dithering methods at a target level of 1% by selecting the 
minimal coincidence count required for significance n

FP=1%
 as the 

largest coincidence count for which the total probability of the 
independent distribution for counts larger or equal to this value 
does not exceed 1%. The total probability of the surrogate distribu-
tion corresponding to n

FP=1%
 constitutes the matching significance 

level 
m
 of the dithering method used to generate the surrogate 

distribution. By definition n
FP=1%

 has exactly the same value for all 
dithering methods because it only depends on the independent 
distribution, not the surrogate distribution. Therefore, not only 
the fraction of FP but also the fraction of FN are now identical for 
all dithering methods. What is different is the matched significance 
level 

m
. Clearly, this calibration procedure is only possible in our 

model situation because we have access to the true coincidence 
count distribution of  independent data.

An exception to the invariance of the relationship between FP 
and FN with respect to the dithering methods at matched  lev-
els is UD 3 ms. Here the surrogate method does not destroy all 
injected coincidences. The surrogate distribution for correlated 
data is shifted to the right with respect to the surrogate distribu-
tion for independent data. Therefore, the 

m
 determined using the 

independent data leads to an increased fraction of FN.
The top panel of Figure 12 shows the dependence of the fraction 

of FP on the magnitude of the rate step . With increasing  
the discreteness of the distribution of coincidence counts reduces 
and therefore the optimal choices of n

FP=1%
 better approximate the 

target FP fraction of 1%. A detailed discussion of the discreteness 
of the distribution of coincidence counts can be found in Grün 
(2009). All methods behave the same.

The fraction of FN increases with increasing  (Figure 12, 
middle panel) because with increasing mean spike rate the frac-
tion of surplus coincidences compared to the number of chance 
coincides reduces. The dependence of FN on  only depends 
on the independent distribution and therefore is identical for all 
dithering methods and represents the optimal sensitivity (FN rate) 
for any surrogate method. An exception is UD 3 ms which does 
not manage to destroy the injected coincidences effectively enough. 
The result is a substantially reduced sensitivity. The FN converge 
again at large  when the injected coincidences contribute little 
to the large number of chance coincidences.

The bottom panel of Figure 12 shows the dependence of the 
significance level 

m
 on . For OSHIFT the 

m
 stays close to the 

desired fraction of FP = 1% because the surrogate distribution well 
approximates the distribution of coincidence counts for independ-
ent data. Thus, using OSHIFT the experimenter can select the  
of choice and obtain the expected FP level. Also UD 3 ms is well 
behaved in this respect. For UD at 20 ms, however, 

m
 drops with 

increasing  by at least two orders of magnitude. This indicates 
that n

FP=1%
 is located far out in the tail of the surrogate distribution. 

Consequently the precise value of 
m
 depends on the details of the 

time course of the original data. There is no universal mapping of 
a desired significance level  to 

m
 for UD.

APPENDIX
THE RELATIONSHIP OF FP AND FN
In the following we compare three characteristic dithering methods 
(UD, SHIFT, and OSHIFT) in a situation where the FP generated 
by the different methods are matched by adjusting the significance 
level . This cannot be done for experimental data because, as 
shown below, the resulting 

m
 depends on the detailed shape of the 

surrogate distribution and the calibration requires access to the true 
distribution of coincidence counts for independent data.

Nevertheless, the analysis of a model situation enables us to 
investigate the relationship between FP and FN and the limit of 
sensitivity. Consider a situation similar to the one discussed in 
Figure 6. We generate two types of data sets consisting of 100 trials 
of 100 ms duration of  = 3 process realizations with a rate step 
at 50 ms from a base of 10 Hz to a new rate level elevated by . 
One type is called the correlated or dependent data set. Here we 
inject coincidences with a jitter of 1 ms using a Poisson process 
at rate 

c
 = 2 Hz and reduce the baseline rate accordingly. The 

second type is left uncorrelated which we call the independent 
data set. As in Figure 6 we vary  from 0 to 100 Hz and create 
105 data sets for both types. Subsequently we apply the dithering 
methods UD, SHIFT, and OSHIFT to the data sets to generate one 
surrogate data set per method and original data set. Finally, for 
each of the methods we collocate the data into four distributions 
of coincidence counts: independent data, correlated data, and the 
corresponding two surrogate distributions. For comparison we 
also compile the four distributions for UD at a reduced dither 
width of 3 ms.

Figure 11 verifies that at a dither width of 20 ms the surrogate 
distributions for correlated and independent data are identical for 
all dithering methods because the dither width is large enough 
to destroy practically all injected coincidences. Note that in this 
Appendix we simplify the procedure compared to the main text 
in that we construct the distributions of coincidence counts by 
combining data from all original spike train realizations. This is 
less accurate because for a particular realization the surrogate dis-
tributions do not conserve the spike counts of the original data. As 
argued above and elsewhere (Grün, 2009) we do not recommend 
to do this in the analysis of experimental data but it is convenient 
to study the fundamental relationship between FP and FN.

Figure 11 illustrates the shapes of the distributions and their 
relationships at a particular . For the given significance level of 

 = 0.01 the fractions of FP and FN differ considerably between the 
surrogate methods. This is mainly due to the different means of the 
surrogate distributions. The differences between the surrogate and 
the independent distribution for UD and SHIFT demonstrate the 
fact that these surrogates lead to lower mean coincidence counts 
than in the independent data due to the destruction of the rate 
profile (cf. Figure 4). For OSHIFT the surrogate distribution well 
resembles the independent distribution. UD exhibits a decreased 
level of FN simply because compared to OSHIFT the surrogate 
distribution is shifted to the left. The price is an increase of FP far 
exceeding  because the surrogate distribution is also shifted to the 
left with respect to the independent distribution. For UD 3 ms the 
surrogate distributions are closer to the  independent distribution 
because the rate profile is less distorted as at the larger dither width. 
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FIGURE 11 | False positives (FP, blue areas) and false negatives (FN, red 
areas) for unmatched (left) and matched (right) . The curves show 
coincidence count distributions of correlated (red), independent (blue) and the 
respective surrogate (black, cyan) data for four dithering methods (top to bottom: 
UD, UD 3 ms, SHIFT, OSHIFT). The probabilities at the discrete coincidence 
counts are connected by straight lines and the sums of neighboring probabilities 
are indicated by colored areas for clarity. For UD with dither width reduced to 
3 ms (second row) from 20 ms the surrogate distribution for correlated data 
(black) is substantially shifted to the right with respect to the one for 
independent data (cyan). The left column shows results for a fixed significance 
level of  = 0.01. The coincidence count n  (vertical bar) is the largest count with 
respect to the surrogate distributions for which the sum of the probabilities of 
increasing counts starting at this value is smaller or equal . This defines 

the fraction of FP as the area under the independent distribution (blue) for 
counts n  and the fraction of FN as the area under the correlated 
distribution (red) for counts n . For the four methods the n  are located at 
different counts and for UD 3 ms also the n  of the two surrogate distributions 
differ (visible cyan vertical bar). The right column shows results for FP levels of 
0.01 achieved by choosing a corresponding significance level m (values in panel 
titles). The count nFP=1% (blue vertical bar) is the largest count with respect to 
the independent distribution (blue curve) for which the sum of the probabilities 
of increasing counts starting at this value is smaller or equal FP = 1% (blue 
area). This m applied to the surrogate distribution of correlated data defines 
the threshold count for the fraction of FN (red area). For UD 3 ms the 
threshold (visible black vertical bar) is to the right of nFP=1%.  = 90 Hz, other 
parameters as in Figure 6.

In conclusion, we now understand why the performance of 
OSHIFT cannot be achieved by reducing the dither width of UD as 
studied in Figure 7. Reducing the dither width reduces the fraction 
of FP and increases the fraction of FN because the surrogate distribu-
tion better resembles the independent distribution. Eventually, how-
ever, the dither width is so low that a substantial fraction of injected 

 coincidences remains intact and the fraction of FN  surpasses the 
one for OSHIFT at a larger dither width. A good surrogate method 
is characterized by the congruence of three distributions: the dis-
tribution of coincidence counts of independent data, the surrogate 
distribution of independent data, and the surrogate distribution of 
correlated data.
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Louis et al. Dithering in operational time

FIGURE 12 | False negatives (FN, middle panel) at matched rates of false 
positives (FP, top panel) for four surrogate methods (UD, UD 3 ms, SHIFT, 
OSHIFT). The top panel shows the optimal approximations to the target fraction 
of FP = 1% given the discreteness of the coincidence count distributions at the 

magnitude of the rate step . The middle panel shows the corresponding 
fractions of FN. The bottom panel shows the significance levels m of the four 
surrogate distributions realizing the matched FP rate of 1% on a log-scaled axis. 
Other parameters as in Figure 11.

It appears tempting to calibrate 
m
 on the surrogate  distribution 

for correlated data instead of independent data to compensate 
for the incomplete destruction of coincidences at small dither 

widths. This, however, is a conceptual error in the context of our 
 null-hypothesis because 

m
 then depends on the amount of syn-

chrony originally contained in the data.
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cortical areas like inferotemporal cortex, neurons can synchronize 
their spiking when monkeys successfully solve visual recognition 
tasks (Gochin et al., 1994; Anderson et al., 2006) or processes fea-
tures of faces (Hirabayashi and Miyashita, 2005), but evidence for 
stimulus dependent or even object-specific synchronized firing in 
higher visual areas remains sparse. Despite of this unresolved issues, 
cortical areas beyond sensory pathways express temporally pre-
cise spike firing which has been related to prediction of go signals 
(Riehle et al., 1997), decision making (Dudkin et al., 1995; Thiele 
and Hoffmann, 2008), spatial (Constantinidis and Goldman-Rakic, 
2002), as well as working memory for temporal intervals and color 
(Sakurai and Takahashi, 2006).

Does millisecond precise neuronal firing have any relevance for 
cortical information processing? Evidence for the behavioral rel-
evance of precise neuronal timing beyond mere covariation with 
behavior was recently provided by electrical stimulation experi-
ments in auditory cortex which showed that rats can detect inter-
stimulus-intervals of 3 ms (Yang et al., 2008). However, there is 
growing evidence that precise neuronal activity patterns across 
different spatiotemporal scales are highly relevant for informa-
tion coding in sensory and associational areas of the cortex (Kayser 
et al., 2009). Another piece of evidence that points to the relevance 
of precise neuronal timing is the observation that during attention, 
the variance of spike responses is reduced (Mitchell et al., 2007), 
which may be related to the occurrence of stabilizing gamma oscil-
lations (Rodriguez et al., 2010).

However, there are other observations of cortical synchrony 
which suggest that precise spike timing is a much more gen-
eral principle of cortical function than serving the encoding of 

INTRODUCTION
Synchrony of neuronal spike firing has originally been proposed 
as a fundamental property of neocortical function (Delage, 1919; 
Hebb, 1949; Abeles, 1982, 1991) and has been observed under 
various conditions in numerous areas of the cerebral cortex. Early 
evidence was provided by studies of primary visual cortex (Gray 
et al., 1989; reviewed in Singer and Gray, 1995), later synchrony 
was observed in extrastriate (Kreiter and Singer, 1996) and other 
sensory areas like A1 (Ahissar et al., 1992; deCharms and Merzenich, 
1996) and executive areas including frontal cortex (Vaadia et al., 
1995), primary motor cortex (Murthy and Fetz, 1996; Riehle et al., 
1997; Pipa et al., 2007). However, the nature of synchronous firing 
has nurtured a long standing debate whether synchrony serves the 
integration of signals distributed over large neuronal populations 
(Singer, 1999 versus Shadlen and Movshon, 1999). One interest-
ing problem in this discussion was that studies in which attention 
was explicitly or implicitly modulated, synchrony could either 
change as predicted by properties of the sensory stimuli (Kreiter 
and Singer, 1996; Maldonado et al., 2000; Steinmetz et al., 2000) 
or in a counterintuitive way, which was not related to properties of 
the stimuli (de Oliveira et al., 1997; Thiele and Stoner, 2003). Two 
recent studies (Dong et al., 2008; Lima et al., 2010) have once more 
investigated whether the “binding-by-synchronization” hypothesis 
can predict spike synchrony in area V1 of behaving macaques. Both 
studies found synchrony which did show some degree of stimulus 
dependence, but reflected more spatial properties of the underly-
ing connectivity as had been shown before for correlated firing 
of neurons in V1 and V2 (Nowak et al., 1999; Kohn and Smith, 
2005) rather than direct evidence for figural binding. In higher 
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 behaviorally relevant information provided by sensory input. One 
of the prominent properties of corticocortical networks is their 
massive divergence and convergence (Salin and Bullier, 1995) and 
the very low number of synaptic contacts between individual cells 
(Douglas and Martin, 2004) combined with small unitary synaptic 
potentials (Sjöström et al., 2008). As a consequence, signal propaga-
tion along cortical pathways depends on cooperativity of a large 
number of converging presynaptic neurons (Sjöström et al., 2008). 
But, beyond feed-forward processing of sensory information, corti-
cal networks are continuously active (Arieli et al., 1996; De Luca 
et al., 2006), which may be the consequence of reverberating syn-
fire chains (Abeles et al., 1993; Prut et al., 1998) and is most likely 
the basis for ongoing brain processes like thinking and dreaming. 
Regulating the general fluidity of neuronal interactions on large 
spatial scales are likely to reflect general capabilities of the cortical 
network which can be addressed more empirically as general factor 
of intelligence (van den Heuvel et al., 2009). Beyond these puta-
tive cognitive functions of precise neuronal timing, synchronous 
cortical activity is involved in the organization of cortical circuits 
as abundant evidence for spike timing dependent plasticity suggests 
(Caporale and Dan, 2008).

Why could synchronous spiking be useful for in the organization 
of short-term memory in prefrontal cortex? (1) Synchrony might 
sustain endogenous activity during the memory delay for maintaining 
stimulus information without depending on further sensory drive, 
(2) Synchrony may support sensory coding of feature conjunctions 
as hypothesized in the binding hypothesis (see however Dong et al., 
2008), (3) Synchronous activity could drive downstream neurons in 
premotor cortex to prepare and execute the behavioral responses, (4) 
Synchrony may reconnect more abstract representations to sensory 
representations during rehearsal as has been shown for locking of 
theta oscillations across areas with dual micro electrode recordings 
in ventral PFC and V4 (Liebe et al., 2009; Hoerzer et al., 2010), (5) 
Synchrony might structure executive processes underlying task per-
formance by driving circuits that serve different subtasks in the mem-
ory process. We set out to determine whether we can find synchronous 
spiking in our multi-site prefrontal recordings and if confirmed, to 
test whether this synchrony is task and/or stimulus dependent.

MATERIALS AND METHODS
We therefore trained two female monkeys (M. mulatta) to perform 
a visual short-term memory task which consisted of a 0.5-s sam-
ple presentation, followed by a 3-s delay and a 2-s test presenta-
tion (Figure 1). Sample stimuli were randomly drawn from a set 
of 20 familiar stimuli and test stimuli were drawn from the same 
set excluding the sample of this trial in half of the trials in which 
non-matching test stimuli were used. Match and Non-match trials 
were presented in random order. When the test stimulus was shown, 
the monkey had to decide whether the stimulus was matching the 
 sample and respond by pressing the left of two buttons while in case 

of a non-match, the monkey had to press the right button. By requir-
ing behavioral responses for both types of test stimuli we made sure 
that all trials are homogenous with respect to response preparation 
and motor activity. Stimulus presentation and behavioral control 
were provided by a custom-made program. The monkeys did not 
have to fixate, but we measured eye movements at high resolution 
with the double magnetic induction method (Bour et al., 1984). 
The percentage of correct behavioral responses ranged between 71 
and 87% across sessions. Anatomical MRI scans (T1-flash, 1 mm3 
isovoxel, 1.5 T) were used to guide implantation of recording cham-
bers and to reconstruct recording positions. All procedures were 
approved by the local authorities (Regierungspräsidium) and are 
in full compliance with the guidelines of the European Community 
(EUVD 86/609/EEC) for the care and use of laboratory animals.

Simultaneous recording of multi-unit activity was performed 
with up to 16 platinum–tungsten-in-quartz fiber microelectrodes 
(Thomas RECORDING, Giessen, Germany) from ventral PFC. 
Electrodes had been arranged in a square shaped 4 × 4 grid with a 
distance between nearest neighbors of 500 µm. Signals were filtered 
(0.5–5 kHz, 3 dB/octave), digitized at 32 kHz, and saved as time 
stamp with attached waveform. Preprocessing included the rejec-
tion of artifacts (movements, licking) and removing line noise at 
50 ± 0.5 Hz. Spike pattern analyses were performed for sets of trials 
constructed from the stimulus and behavioral protocol using the 
NeuronMeter software package (http://neuronmeter.convis.info). 
Data will become available online at the German Neuroinformatics 
Node (http://www.neuroinf.de/).

ANALYSIS OF SYNCHRONOUS FIRING
To identify differences in neuronal coupling expressed by modulation 
of spike synchrony we used a bivariate and multivariate extension 
of NeuroXidence (Pipa et al., 2008; Wu et al., submitted; see also 
http://www.NeuroXidence.com). In the present article, each incidence 
of a synchronized firing event is referred to as a joint-spike event 
(JSE), while the identity of a JSE is referred to as a joint-spike pattern 
(JS-pattern). Or, with other words JSE are realizations of a JS-pattern.

In a first step, the frequency ft
k p, ( )org  of JSEs of a certain 

JS-pattern (p) was determined by the bivariate and multivariate 
extension of NeuroXidence for each trial (t) and for each factor (k) 
of an experiment. To account for the stochasticity of spike times, 
a JS-pattern is defined by a millisecond wide temporal window, 
which accounts for the maximal uncertainty of synchronous fir-
ing (Figure 2A). In this paper, this uncertainty (t

c
) was set to 3 ms. 

Note that the detection of a JSE is not based on binned spike trains, 
but uses the exact experimental spike times which were sampled 
at a precision of 32 kHz, i.e., times of threshold crossing were ini-
tially recorded as multiples of 31.25 µs. For illustrative purposes, 
Figures 2B,C demonstrate how significant JS-patterns (Figure 2B) 
are destroyed when spike trains are randomly jittered by t

r
 = 15 ms 

(Figure 2C). In the original data, the total number of significant 
joint-spike patterns consisted of patterns with complexities 2–6, 
59% of JSP with complexity 2, 13% complexity 3, 17% complexity 
4, 10% complexity 5 and 1% complexity 6. After jitter the number 
of significant patterns was reduced for all complexities. Compared 
to the frequency of significant joint-spike pattern in the original 
data, the percentage in respect to the complexity dropped from 59 
to 54% (c2), from 13 to 3% (c3), from 17 to 4%, from 10 and 1 to 

1http://neuronmeter.convis.info
2http://www.neuroinf.de/

Q6

FIGURE 1 | Time structure of the visual memory task.
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In a third step, we determined for each trial (t), each exper-
imental factor (k), and each JS-pattern (p), the difference 
∆ = −f f ft

k p
t
k p

t
k p, , ,( ) ( )org sur  of JSE frequencies in original and 

surrogate data sets. Ultimately, this difference ∆ft
k p,  is used to test 

whether the strength of synchrony of a certain JS-pattern differs 
across experimental conditions. To this end, the bi- and multivari-
ate versions of NeuroXidence test whether the mean or median of 
the delta frequencies ∆ft

k p,  of JSEs is significantly different across 
experimental factors. For the bivariate case, mean and median were 
compared by unpaired t-test and Mann–Whitney U-test, respec-
tively. For the multivariate case, an ANOVA or a Kruskal–Wallis 
test were used. This comparison yields exactly one p-value per 
JS-pattern tested across experimental factors and trials. To prevent 
any sampling bias, only those JS-patterns were tested for which 
JSEs occurred at least once for every individual factor. For each 
experiment between hundreds and many thousands of JSE pat-
terns were tested.

In order to summarize the results across all tested JS-patterns 
detected in each experiment, we grouped JS-patterns based on their 
complexity (c), which is given by the number of sites participating 
in a synchronous event. JS-complexity ranges from c = 2 (pairs), in 

0% for complexity 5 and 6. This effect is summarized in Figure 2D 
as frequency distribution of JS-patterns as a function of their com-
plexity and a Cumulative Distribution Function based on a two 
sample KS-test is plotted in Figure 2E.

In a second step, the frequencies ft
k p, ( )sur  of chance JSEs were 

estimated for JS-pattern (p), trial (t), and experimental factor (k) 
from surrogate data which were derived from the original data 
by jittering each individual spike train under the assumption that 
neuronal spike discharge is not coupled on a fine temporal scale. 
We generated exactly one surrogate trial for each original trial to 
prevent a sampling bias. For setting the amount of jitter applied to 
the original data when generating the surrogates, a second slower 
time scale t

r
 was defined which was set to t

r
 = 15 ms. The slower 

time scale t
r
 sets the minimal interval during which rate covariation 

may explain coincident firing. Therefore, t
r
 defines the maximal 

extent of the jittering, which is applied to destroy any fine tempo-
ral cross-structure that may exist between different spike trains. 
Because spike trains are shifted as a whole against each other within 
t

r,
 the auto-structure, rate covariations across neurons as well as rate 

variation and other features of each individual spike train, which 
are slower than the time scale t

r
, are preserved.

FIGURE 2 | Demonstration of time windows, coincidences before and after 
significance estimation and after introducing artificial jitter. (A) Sketch to 
illustrate the idea of testing joint-spike events (JSE) by comparing time scales. 
Joint-spike patterns (JSP) are considered significant if there are more or less JSE 
than in a dataset in which spike timing of neurons is synchronized and spike rate 
covariations are slower than tr = 15 ms. To define this criterion, two time scales 
were introduced. The first time scale (tc) defines the temporal precision with 
which spikes have to coincide in order to be detected as JSE. The second time 
scale (tr) defines the maximum speed of rate covariation. Using these two time 
scales, JSEs are considered as significant if there are significantly more JSEs, 
i.e., coincidence firing with an uncertainty less than tc, in the original data than in 
a surrogate data set obtained by jittering the original spike trains with ±7.5 ms. 
(B) Raster plot of all significant synchronous patterns in 14 sites after correction 

with tr. (C) Raster plot of the same data after destroying JSPs: In order to 
demonstrate that the JSPs shown in (B) are real, we performed a control for 
which both – original and surrogate – data were jittered with the same tr = 15 ms. 
This control corresponds to a data set that does not have any fine temporal spike 
synchronization across neurons, but may have spike rate covariation slower than 
tr. (D) Quantitative comparison of the number of significant JSPs in original and 
control data set, shown in (B,C), respectively. Red bars are normalized to 1, and 
the blue bars are normalized to the total numbers of non-jittered patterns (red = 
number of patterns of complexity c in non-jittered data / number of patterns for all 
complexities in non-jittered data; blue = number of patterns of complexity c in 
jittered data / number of patterns for all complexities in non-jittered data). (E) 
Cumulative Distribution Function of a two sample KS-test. The p-value of 0.0037 
reflects that the number of JSPs is highly significantly decreased.
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TEMPORAL MODULATION OF JS-PATTERN COMPLEXITY
The frequencies ρ( )t c

specific for stimulus specific as well as ρ( )t c
false 

and ρ( )t c
correct for performance related modulations of spike syn-

chrony had been computed for each JS-pattern complexity and 
each sliding window. Note that each JS-pattern that contributes 
to any of the three frequencies ρ(t)

c
 can be considered as signifi-

cant. To test whether the frequency of JS-patterns also has been 
significantly modulated over time, we compared ρ( )t c

specific and the 
difference ∆ −ρ = ρ( ) ρ( )c c ct tperf correct false to analogous results obtained 
from analyses of the same data, but based on permuted trials. 
Trial permutation exchanged trials between experimental factors 
while the simultaneity and the auto-structure of all recorded spike 
trains was preserved. This way we could destroy any performance 
or stimulus specific modulations, while keeping all other proper-
ties of the joint-spike trains intact so that the analysis of spike 
synchrony and temporal modulation of neuronal coupling is not 
compromised (Figure 3A). Therefore trial permutation serves as 
an ideal estimate of the frequency ρ(t)

c
 and its variability under the 

null hypothesis that synchrony is unchanged between experimental 
factors. Trial permutation was performed independently for each 
sliding window, giving exactly one p-value per JS-pattern for the 
original trial structure and for the trial permuted data (Figure 3B). 
As for the original data, we then computed the frequencies 
∆ρ = ρ( ) − ρ( )c c ct t, , , ,perm

perf
perm

correct
perm

false  and ρ( )t c , .perm
specific  Using the average 

∆ρc , ,perm
perf  ∆ρc ,perm

specific and the SD std perm
perf( ),,∆ρc  std perm

pecific( ),∆ρc
s  of both fre-

quencies over time for the same complexity, we expressed the mod-
ulations of JS-pattern frequency as time course of the trial for each 
complexity as a z-scores: z t t tc c c c( ) ( ( ) ( ) ), ,

perf perf
perm

perf
perm

perfstd(= ∆ ∆ ∆ρ − ρ )/ ρ
 

for behavioral performance (Figure 3C), and 
z t t tc c c c( ) ( ( ) ( ) ,

specific specific
perm

specific std(= ∆ ∆ ∆ρ − ρ )/ ρ ,, )perm
specific  for stimulus speci-

ficity (not shown). In a last step, we compared the modulation 
of z-scores for performance and stimulus specific modulations of 
spike synchrony based on a critical z-score accounting for multiple 
comparisons of all sliding windows and all complexities. Note that 
the distribution of ∆ρc , perm

perf  is not expected to be normal given that 
∆ρc , perm

perf  is a difference of counts which are rather low. Therefore 
using the z-score may not be appropriate. We validate the modula-
tion of z-scores for performance and stimulus specific modulations 
based on a rank order statistic. To this end we performed the permu-
tation analysis three times, yielding in total 1368 estimates of ∆ρperm

perf  
(three times 97 estimates across time and 8 pattern complexities). 
We then determined the largest absolute value ∆ρ

crit
 out of all 1368 

estimates and used this as the critical value for a minimal significant 
difference from zero (corresponding test level is p < 0.001). This 
latter rank test is independent of the underlying distribution of 
chance deviations from zero. Using both methods we found mostly 
the same time complexity pattern to be significant.

MEDIAN VERSUS MEAN
The entire analysis was performed for both, mean pattern frequency, 
based on t-test and ANOVA, as well as for median pattern frequency 
based on Mann–Whitney U-test and Kruskal–Wallis test. ANOVA 
and Kruskal–Wallis test were used for multivariate analyses. For 
both tests we obtained qualitatively and quantitatively very simi-
lar results. In particular, comparison of z-scores yielded the same 
significant modulation across time and for the same complexities. 

which at least two sites have fired in synchrony during a temporal 
window of t

c 
= 3 ms. If c = 3, at least three sites fired synchronously, 

and so on. We analyzed JS-patterns with a complexity of up to c = 8. 
To summarize results for each complexity we derived the frequency 
σ of JS-patterns that each expressed a significant difference in ∆ft

k p,  
across the factors k.

In order to account for dynamic modulations of spike coupling 
throughout the different periods of each trial, we performed the 
joint-spike analysis outlined above by using sliding windows. The 
sliding window length was chosen to fit the assumed time scale 
of changes of neuronal coupling given the underlying processes 
that encode, maintain, or decode information. Given the some-
times very transient rate responses we used a sliding window of 
100 ms length during the sample and test stimulus presentation 
periods. The delay period could be analyzed with longer windows 
of 400 ms because of much slower rate modulations. Note that this 
choice of the sliding window length is independent of the spike 
rate modulation per se. NeuroXidence allows for an unconstrained 
choice of sliding window length, because it accounts for auto-
structure and rate covariation slower than tr

. This distinguishes 
NeuroXidence from other methods like for example the unitary 
event method (Grün  et al., 1999, 2002, 2003) which all require 
stationary data.

BEHAVIORAL AND STIMULUS SPECIFIC MODULATION OF SPIKE 
SYNCHRONIZATION
First we used the bivariate NeuroXidence method to detect modu-
lation of spike synchronization depending on the behavioral suc-
cess of the monkeys, comparing trials with correct or incorrect 
behavioral responses. On average, performance was ∼80%, trials 
with correct responses were four times more frequent than tri-
als with behavioral errors. To prevent any bias, we balanced the 
number of correct and incorrect trials for each session by selecting 
subsets of correct trials which were close in time to the error trials. 
With the bivariate version of NeuroXidence we tested whether 
synchrony was modulated by the performance of the monkey and 
derived the direction of modulation, i.e., tested whether synchro-
nous firing compared to chance occurred more often in correct 
trials than in incorrect (relative increase for correct), or whether 
synchronous firing occurred more often in incorrect trials than in 
correct (relative increase for incorrect). In a second step we derived 
the frequency ρ of JS-patterns of complexity c that expressed a sig-
nificant increase of spike synchrony for correct responses ρ( )t c

correct , 
and the frequency of JS-patterns of complexity c that expressed 
a significant increase of spike synchrony for incorrect responses 
ρ( )t c

false .
The multivariate version of NeuroXidence was used to detect 

stimulus specific modulations of spike synchronization. Here, the 
k-experimental factors were all the 20 different visual stimuli pre-
sented during the sample period. These were tested for significant 
differences ∆ft

k p,  across stimuli. A significant difference indicates 
that the strength of spike synchrony is modulated in a stimulus spe-
cific manner. As for changes related to behavioral performance, we 
next summarized results by computing the frequency of JS-patterns 
for each complexity c that expressed a stimulus specific modulation 
of spike synchrony ρ( )t c

specific .
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paired test ∆ = −f f ft
k p

t
k p

t
k p, , ,( ) ( )org sur  can be used. However, using 

more than one surrogate causes the distribution of the difference to 
approach a normal distribution. This in turn changes the median 
compared to the mean. Since this change is stronger for skewed 
distributions, the amount of change is also a function of the fre-
quency of patterns. A true null hypothesis implies that the amount 
of change of the median compared to the mean, which is induced 
by using more than one surrogate, is a function of the firing rate. 
Using more than one surrogate per trial can falsify the significance 
estimation (a detailed discussion on these effects and the choice of 
number of surrogates per trial including numerical calibrations can 
be found in Pipa et al., 2008 and Wu et al., submitted). Thus, using 
only one surrogate per trial is the most conservative approach. Since 
our results indicate that the test power with just one surrogate is 
still sufficiently high, we decided to use a single surrogate per trial.

NULL HYPOTHESIS
The null hypothesis (HØ) of this study assumes that synchroniza-
tion of spike discharge is not different across different conditions 
of the experiment. Synchronization of spiking activity across sites 

However, the results based on evaluation of means revealed slightly 
higher values. Therefore we present the more conservative results 
based on median testing in this paper.

NUMBER OF SURROGATES
In the presented approach we derived exactly one surrogate trial 
from each original trial by shifting all spike trains individually by 
a random time smaller t

r
. A small number of surrogates prevents a 

sampling bias, because if original and surrogate data have exactly 
the same number of samples, they also have the same degrees of 
freedom. Increasing the number of samples of the surrogates could 
be achieved by more than one jitter configuration of the same origi-
nal trial. This, however, would have two effects. First, the number 
of different patterns would be larger in the surrogate data, since the 
probability for individual patterns to occur – at least once – scales 
with the number of samples. The second effect is that computing 
the difference ∆ft

k p,  of spike pattern frequencies is non-trivial: in 
order to compute this difference one can use the average ∆ft

k p, ( )sur  
computed across surrogates for the same trial. This again gives as 
many surrogate samples as original frequencies such that the same 

FIGURE 3 | Effects of permuting trials on pattern incidence and as basis of a 
significance estimate. The x-axis represents time after sample stimulus onset in 
seconds. The y-axis shows pattern complexity and the z-axis (color) is explained for 
each figure below. Sliding windows span 400 ms in (A1–C1), while they are 
100 ms long in (A2–C2). (A) Shows the difference between the frequencies of 
JS-patterns with increases of synchrony for trials with correct and false behavioral 
responses. (B) Shows the results for the identical dataset, but with randomly 

permuted trials across the classes “correct” and “false.” Based on the average 
level of differences in (B) and the SD of these differences, differences in (A) were 
expressed as z-scores in (C). We subtracted the average difference per complexity, 
but evaluated significance across the entire time course of the trial, starting at −0.5 
and ending at 4.3 s after sample stimulus onset. (C) We then divided this 
difference, derived for each sliding window and complexity, by the SD of the 
respective measurement in the case that classes are permuted [shown in (B)].
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extension of the NeuroXidence method. As detailed in the method 
section, we first identified synchronous firing on a time scale of 3 ms 
and corrected for rate modulation on a time scale of 15 ms and 
slower (Figure 2). To test whether joint-spike events were modu-
lated for different experimental factors, we tested whether the rate 
and spike train auto-structure corrected synchrony differed across 
experimental conditions. The 3803 JS-patterns visible in Figure 4C 
were composed of 329 JS-pattern with complexity c = 2, 1455 with 
c = 3, 1581 with c = 4, 407 with c = 5, 30 with c = 6, and 1 JS-pattern 
of complexity c = 7. For each JS-pattern we determined whether 
spike synchrony was stronger in correct or in error trials. The high-
est number of significant JS-patterns was found between 150 and 
250 ms after sample onset (Figures 4A2,B2). During this period, 
808 JS-patterns were significant (c2: 91, c3: 308, c4: 325, c5: 73, c6:10, 
c7:1). This amounts to 21.2% of the identified JS-patterns and is 
therefore much higher than the expected number of false positives 
given by the test level of 1%. As shown in Figure 4D, the firing rates 
as determined in 20 ms intervals cannot explain the difference in 
JS-patterns. However, the incidence and temporal profile is different 
for different sites. Some sites participated only in low complexity 
JS-patterns, while others started with strong modulation of high 
complexity JS-patterns, which were particularly pronounced during 
the later phase of the sample presentation (see units 1, 6, and 12 in 
Figure 4A2 and units 3, 7, and 10 in Figure 4B2).

Integrating across all experiments, we obtained a total of 18150 
different JS-patterns (Table 1) that changed the level of synchrony 
in a performance related way (all test levels 1%) and which involved 
up to 8 units (corresponds to complexity = 7) simultaneously 
(Figure 5). To summarize the results, we determined the frequen-
cies ρ( )t c

specific for stimulus specific, or ρ( )t c
false and ρ( )t c

correct for perfor-
mance related modulations of spike synchrony per complexity and 
per sliding window, and expressed this as a rate (s−1). Note that each 
JS-pattern that contributes to any of the three frequencies ρ(t)

c
 is in 

excess of all patterns sampled across all experimental conditions and 
thus can be considered significant. Figure 5A shows ρ( )t c

correct , which 
is the rate of JS-patterns in sliding windows of 400 ms duration 
for each complexity, reflecting more synchrony during trials with 
correct compared to incorrect responses. While Figure 5A1 repre-
sents the entire time course starting 700 ms before sample stimulus 
presentation and ending after test stimulus processing, Figure 5A2 
features the sample response epoch with higher temporal resolution 
(sliding window of 100 ms duration). In analogy, Figure 5B1,B2 
show the rate of ρ( )t c

false , that is the rate per second of JS-patterns 
which reflect more synchrony during trials with incorrect compared 
to correct responses. These analyses show that across all experiments, 
the highest rate of performance dependent JS-patterns can reach 
up to 120 patterns per second which was observed for complexity 4 
and during error trials also 3, but not in pairs. High rates of ρ( )t c

correct 
and ρ( )t c

false occurred during all behaviorally relevant epochs: dur-
ing sample stimulus processing, during early delay and during test 
stimulus processing. Remarkably, rates ρ( )t c

correct were particularly 
high during the delay period of correct trials during which visual 
memory was required to generate an appropriate response.

To compare changes of frequencies ρ( )t c
correct and ρ( )t c

false , we 
computed ∆ −ρ = ρ( ) ρ( )c c ct tperf correct false and derived a z-score z t c( )perf  
based on a permutation test, that randomized class labels for cor-
rect and incorrect trials, to test whether observed differences can 

is measured by comparing the frequency of a certain JS-pattern 
with the expected frequency if neurons are not synchronized. More 
specifically, here synchronization is defined as coordinated firing 
on a time scale faster than t

c
. Slower effects on a time scale larger 

t
r
 such as rate covariation across neurons, are not considered as 

synchronization. Testing HØ is therefore based on, first, a spike rate 
and spike train auto-structure corrected measure of synchroniza-
tion, and second, a test that checks whether an experimental excess 
or deficit of spike synchrony compared to chance levels is the same 
or different across conditions. The latter test is based on a mean 
or median test for each JS-pattern (p) and uses the spike rate and 
spike train auto-structure corrected measure of synchronization 
∆ = −f f ft

k p
t
k p

t
k p, , ,( ) ( ).org sur  HØ is rejected, in case of testing the 

mean, if the average of ∆ft
k p,  across trials for a certain JS-pattern 

(p) is different across the factors k. The median testing rejects HØ, 
if the median of ∆ft

k p,  across trials for a certain JS-pattern (p) is 
different across the factors k. The median test is more strict, because 
HØ is only rejected if the difference of ∆ft

k p,  is consistent across 
trials. Due to the rate and auto-structure correction, based on sur-
rogate data, any source of changes of ∆ft

k p,  other than fine temporal 
changes on a time scale faster than t

c
 can be excluded (analytical 

and numerical demonstration for this can be found in Pipa et al., 
2008 and Wu et al., submitted).

PATTERN COMPLEXITY
We investigated JS-pattern complexity ranging from 2 to 8. In order 
to estimate the impact of JS-pattern complexity on global corti-
cal cooperativity, we distinguish between sub- and supra-patterns. 
A sub-pattern is a pattern that is embedded in a more complex 
JS-pattern. Thus, the complexity of a sub-pattern is always smaller 
than the complexity of the embedding JS-pattern. As an example, 
any complexity 3 pattern contains three sub-patterns of complexity 
2. The more complex embedding pattern is called supra-pattern. It is 
not straight forward to predict the significance of a given JS-pattern, 
i.e., whether its sub- and supra-patterns are significantly different 
from chance level. For a sub-pattern, we know that it occurs at 
least as often as its supra-pattern. This, however, is not sufficient 
for qualifying a sub-pattern as significant JSE, even if the embed-
ding supra-pattern has been proven to be significant. The reason 
is that the expected frequency of chance occurrences of a pattern 
usually increases with decreasing complexity. Thus, the frequency of 
a supra-pattern may be larger than the critical minimal frequency 
of patterns of large complexity, but below the critical frequency for 
low complexity patterns. In this case, significant high complexity 
JS-patterns occur, while sub-patterns may not be significant, as can 
be observed in the data presented here (e.g., Figures 3C1,C2). In 
the opposite case, low complexity JS-patterns are significant, but 
not their embedding supra-patterns. The simplest explanation is 
that the supra-pattern does not occur often enough.

RESULTS
We report results based on the analysis of neuronal spiking of 133 
multi-units recorded during 12 experimental sessions of a visual 
memory task (Figure 1). The two monkeys performed a total of 
9830 trials with on average 80% correct responses. In these data 
we identified differences in neuronal coupling expressed by modu-
lation of spike synchrony by using a bivariate and multivariate 
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FIGURE 4 | Millisecond precise joint spike events (JSE) in prefrontal 
multi-units. (A1, B1) Raster plots of 14 simultaneously recorded multi-unit signals 
(dots) for the sample stimulus period in trials with correct (A1) and erroneous 
behavioral responses (B1). (A2, B2) The same raster plots with superimposed 
JSEs marked by colored squares, each covering an interval of maximal 3 
milliseconds; colors reflect JSE complexity, i.e. how many units participated in a 
pattern. Yellow indicates JSE of pairs of units (c = 2), red and darker colors 

represent higher complexities ranging from c = 3 to 5. (A2) shows only JSEs 
which occurred in sets of sites that synchronized more often during trials with 
correct behavioral responses, while (B2) shows those JSE that occurred more 
often during error trials. (C) All JS-patterns combined from (B2, C2), irrespective of 
their modulation by behavioural performance. (D) Distributions of firing rates 
across all units, split for trials with correct and erroneous behavioral responses and 
below as average time course.

be explained by chance. Based on critical z-scores, which were 
corrected for multiple comparison across different complexities 
and different sliding windows, we identified periods and com-
plexities (“time complexity bins”) with significant modulations 
of the frequency of JS-patterns that each showed a significant and 
performance related modulation of spike synchrony (Figure 5C1). 
In other words, Figure 5C measures how significant the overall 
increase of spike synchrony was in correct compared to error tri-
als. Strongest modulation of spike synchrony was observed for 
JS-patterns of higher complexities and during the delay period. 
While the maximum complexity with significant modulations of 

z t c( )perf  reached 4 during the sample presentation (Figure 5C2), the 
complexity reached up to 7 during the delay. Surprisingly, pairwise 
synchrony measured by z t c( )perf was not significantly modulated. In 
general, behaviorally relevant periods are dominated by increases 
of synchronous activity in correct trials. Only during late delay and 
test stimulus presentation, spike synchrony of low complexities was 
stronger during error trials (Figure 5C1).

In stark contrast to the results for trials with correct behavioral 
responses, lower numbers of JSE were observed during error trials 
(Figure 5B). Most notably, this observation is not caused by some 
scaling or signal-to-noise problem, because during test stimulus 
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processing, when the monkey had to retrieve memory content and 
compare this to the test stimulus, an increase of JSE frequency was 
observed which is compatible with the JSE frequency observed dur-
ing sample stimulus processing and the early delay in correct trials 
(compare Figures 5A1,B1). An interesting feature of JSE increases 
during test stimulus processing is that complexity during correct 
trials is higher (4–6) compared to the complexity of JSE during 
error trials (2–5). Finally, we computed a contrast for JSE modula-
tion in trials with correct and incorrect behavioral responses after 
z-transformation using the variance obtained from permuted data 
in each experiment (Figure 5C). The main finding of this analysis is 
that during the first half of the delay, JSE increases during successful 
trials outbalance JSE during error trials while during late delay the 
converse is true. This is not a shaky effect, because these effects hold 
for many hundred milliseconds and are consistent across numerous 
adjacent complexities (Figure 5D).

We then also tested whether the occurrence of synchronous 
spike patterns was stimulus specific (Figure 6). Stimulus specific 
modulation of synchrony could be identified in 15273 patterns 
involving up to six units (Table 1). When comparing Figures 5 and 
6, it is evident that stimulus specific modulation of  synchronous 
firing is much more confined to stimulus response epochs than 
performance dependent modulation with two interesting excep-
tions: during early and mid delay. First, during early delay, JSE of 
complexity 3 occurred in a stimulus specific fashion for 800 ms, 
supporting the idea that synchronous neuronal activity during 
early delay is involved in encoding and stabilizing memory related 
activity. Second, well over a second into the delay, a short burst of 
JSE of complexity 5 discharged highly significant stimulus spe-
cific synchronous spikes (Figure 6B) which is reminiscent of the 
elevated rate of JSE c = 5 observed during correct trials in the 
performance analysis (Figure 5A1). Another interesting relation 
between performance dependent synchrony increases and stimulus 
specific synchrony increases can be observed during test stimulus 
processing when the monkey has to perform a comparison between 
arriving sensory information and memory content: First, the time 
complexity pattern of stimulus specific JSE peaks at around 300 ms 
after test stimulus onset at complexity 4 which matches the peak of 
performance dependent JSE modulation in correct trials. This is, of 

course, expected, because the analysis of stimulus specific JSE was 
exclusively performed on trials with correct behavioral responses. 
Note the different JSE pattern during error trials. Second, stimu-
lus specific JSE modulation during test stimulus processing was 
more than twice as strong as during sample stimulus processing 
(compare, e.g., JSE of complexity 4 during “S” and “T” periods in 
Figure 6A), which was not the case for correct trials in the perfor-
mance dependent modulation (Figure 5A1).

The temporal precision of JS-patterns is an important parameter 
of this study. We have chosen tc

 to be 3 ms. Other studies used less 
precise patterns that may extend from 5 ms to even more imprecise 
recurrences. To select the appropriate temporal scale for our analy-
sis, we performed the same analysis procedure for four different 
t

c
 windows with (t

c
 = 2, 3, 5, and 7 ms). The lower bound of rate 

responses were scaled in the same way with t
r
 = α* t

c
, and α = 3 

leading to t
r
 values of 6, 9, 15, and 21 ms. We found that effects 

across the four scales were compatible, but strongest modulation 
of performance and stimulus related modulations of spike syn-
chrony were observed for t

c 
= 3 ms. This finding suggests that the 

experimental data reported here were dominated by JS-patterns 
with a temporal precision of 3 ms. For smaller t

c
, i.e., t

c 
= 2 ms, 

much less JSE were detected since most of the observed JSEs had 
an imprecision larger than 2 ms. For longer t

c
, i.e., 5 and 7 ms, the 

rate correction was effectively stronger because the model impreci-
sion t

c
 was too large for the dominating imprecision in the data.

DISCUSSION
The main finding of this study is that patterns of precise spike syn-
chrony (≤3 ms), here referred to as joint-spike events (JSE), change 
their frequency of occurrence and their complexity in a dynamic 
way which depends on the behavioral success of the monkey and 
the stimuli in the memory task. These JSE are no rare events, nor 
do they occur by chance. JSE with performance related changes 
occur more than 20 times more often than expected by chance. 
This raises the question how relevant synchronous firing may be 
for cortical processing (Herrmann et al., 2004; Uhlhaas et al., 2009).

ANALYSIS APPROACH
Synchronous patterns of higher complexity had been observed in 
behaving monkeys before, but there have been and still are intensive 
discussions about whether such events might occur just by chance 
(Baker and Lemon, 2000). First and foremost, complex and usu-
ally time varying structures of spike trains caused the fear that 
model based analyses, which assume either stationary firing rates 
or idealized spike density distributions like following a Poisson 
distribution or reflecting a renewal process, cause false positive find-
ings. To avoid such assumptions, we have chosen a non-parametric 
approach that estimates the amount of chance JSE per trial based 
on permuted data from the exact same experiment thus preserv-
ing the auto-structure. Therefore any kind of complex structure, 
but also any kind of rate modulation slower than t

r
, the time scale 

for rate changes considered by NeuroXidence. At the same time 
the method stays very sensitive, on a level that is compatible to 
other methods, like standard pairwise cross correlation, factorial 
recoding of synchronous spike trains derived from data compres-
sion algorithms (Schnitzer and Meister, 2003) or the Unitary Event 
method (Pipa et al., 2008).

Table 1 | Number of joint-spike events (JSE) detected to be modulated 
by behavioral performance and stimulus specificity.

# JSE Performance Specificity

COMPLEXITY
2 743 792
3 3283 3225
4 7239 5850
5 4733 3808
6 1443 1598
7 595 –
8 114 –
Sum 18150 15273

Units 122 118
Sessions 13 12
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FIGURE 5 | Time course and performance dependence of joint-spike 
event complexity. Rate of JSE (z-axis/color scale) with complexity (y-axis) 
ranging from 2 to 8 which was significantly modulated by behavioral 
performance, displayed as a function of time with respect to the onset of 
sample stimuli (x-axis). (A,B) JSE rate plotted for sets of recoding sites which 
expressed more JSE during trials with correct behavioral responses (A) and 
during error trials (B). (C) Time resolved contrast of the rates plotted in (A,B) 
after z-transformation. z-scores were computed by taking the absolute 
difference between values in (A,B), divided by the SD of values obtained in 
permuted trials with correct and erroneous behavioral responses, thus 
referencing to the variance of the same experiment. The critical z-value 

was 4.2, given a test level of 1% and a Bonferroni correction for 48 sliding 
windows and 7 complexities. (D) Colored time complexity bins mark 
periods of significant differences of performance dependent joint-spike 
events at a test level of 0.1%. Significance was evaluated using a rank order 
test of the original differences shown in (C1,C2) compared with results 
obtained based on permuted trials (compare to Figures 3B1,B2). On the left 
(A1–D1), pattern incidence is shown for the entire duration of the task based 
on analyses with sliding windows of 400 ms duration, while on the right 
(A2–D2), pattern incidence was analyzed with sliding windows of 100 ms 
duration and plotted exclusively for the first 400 ms of sample stimulus 
presentation.
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 differences in  neuronal synchrony between conditions. Using this, 
we derived a z-sore and applied a Bonferroni correction. This second 
step is robust against changes of rates and particular auto-structures 
of neuronal activity across conditions, because NeuroXidence uses 
surrogate data which maintain this structure. Since a permutation 
test is used, no assumption is made regarding the distribution of 
any parameter. Last, but not least, testing median and mean JSE 
frequency at the level of individual JS-patterns provided very similar 
results for the modulation of spike synchrony.

To avoid that synchronous activity could have escaped our atten-
tion due to shallow significance levels we set the criteria for detecting 
JS-patterns as conservative as possible. We chose the required tem-
poral precision t

c
 of a synchronous firing pattern to be equal or less 

than 3 ms (see also Pipa et al., 2007 for further discussion on time 
scale separation). This parameter confines the analysis to very precise 
patterns, in particular if more than two multi-units were involved. 
On the one hand, the interval t

c
 can also be seen as a necessary upper 

bound of time scales which define a very fast increase of firing rate 
covariation across all units participating in a JS-pattern. On the other 
hand, the second interval t

r
 is important to contrast synchrony to all 

other kinds of rate covariation, in particular, on slower time scales. 
We chose t

r
 = 15 ms which implies that any covariation of firing 

rates occurring within more than 15 ms (or slower as 66 Hz) is con-
sidered as rate. Any covariation of firing rates occurring within less 
than 3 ms (or faster than 333 Hz) is considered to be a JS-pattern. It 
is important to note that 15 ms as an upper bound of rate covaria-
tions is very conservative given that firing rate changes are typically 
observed with bin sizes of several tens of milliseconds.

METHODOLOGICAL LIMITATIONS
A first limitation of the current approach is that the analysis does 
not consider the nature of the analyzed JS-patterns, e.g., their spa-
tial structure. This implies that for example information about 
the similarity of patterns accounted for different experimental 
conditions could not be analyzed. The spatial structure, however, 
might be very relevant for the neuronal processes. Furthermore, 
this limitation implies that similarity and stability of JS-patterns 
over time across different sliding windows were not analyzed. This 
might be very relevant, as a stable increase of JSE during the delay 
period which lasted for more than 2 s, may have been composed 
of very different sets of JS-patterns over time. Knowledge of this 
stability might allow to distinguish between the two hypotheses 
which either assume that information is encoded in stable and 
rather small subpopulations, or, that information is encoded on the 
sequences of many and very rich transitions of different neuronal 
states. However, technically this tracking of stability seems very 
demanding if not even impossible at the time.

A second limitation of the current analysis is that we cannot 
determine the actual size of neuronal assemblies which are involved 
in the encoding and maintenance of behaviorally relevant informa-
tion. Given our finding that up to 8 multi-units out of a population 
of 10–24 can be involved in behaviorally relevant JS-patterns, one 
may conclude that assemblies can be very large, maybe involving 
a third or even half of the neurons. From a theoretical perspective, 
such a code may appear very attractive, because the coding space 
becomes really large, if on average a third or half of the neurons in 
a population engage in JS-patterns.

A complication that arises when dealing with the activity of a 
large number of neurons is that the number of JS-patterns grows 
so large that standard approaches based on single JS-patterns are no 
longer applicable and the amount of information is overwhelming 
and may even become confusing. To overcome this problem, we 
chose a simple strategy which consists of computing the frequency 
of JS-patterns that have before been shown to be significantly modu-
lated by experimental factors. Using this simplification, we lost the 
identity of JS-patterns, but we were able to condense observations 
to a very handy low dimensional set of numbers: frequency and 
pattern complexity for each time window. However, this reduction 
requires a second level of hypothesis testing, since, even though 
each JS-pattern that is included in the statistics is significant, the 
expected level of significant JS-patterns is unknown. Therefore 
we used another robust non-parametrical test, based on permu-
tations. This test compares the frequency of patterns observed in 
trials selected for original experimental factors (i.e., trials with cor-
rect versus incorrect behavioral responses, or the different stimuli 
the monkey had to memorize) and, a second set of JS-pattern fre-
quencies derived from permuted class labels. This test preserved 
the simultaneity of recorded neuronal activity, but swapped trials 
between different experimental conditions in order to destroy any 

FIGURE 6 | Time course of stimulus specific joint-spike events. (A) 
Incidence of JSE of complexities 2–6 which exhibited a stimulus specific 
modulation during 3 ms short intervals in patterns per second. (B) Statistical 
evaluation of stimulus specific JSE incidence was performed in analogy to the 
analysis of performance dependent JSE incidence. z-sores were computed by 
dividing the number of JSE in trials in which a specific visual object was 
memorized divided by the SD of JSE in trials from the same recording session, 
but after permutation for memorized stimuli. To this end we used the identical 
data and the identical number of trails per stimulus, but permuted stimuli 
randomly across all trails. z-transforms were performed for each individual 
complexity and based on the SD derived from the entire time course starting at 
the beginning of the baseline and including all other epochs until after button 
press of the monkey. The critical z-value was 4.08 given a test level of 1% and a 
Bonferroni correction for 48 sliding windows and 5 complexities.
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A third limitation of the current approach being restricted to 
multi-unit signals implies that we have investigated JS-patterns 
among several small, spatially separated neuronal populations and 
not single, well isolated units which are generally considered to 
reflect the activity of a single neuron. As we have recorded all wave 
forms at sufficient spectrotemporal resolution we have tried to 
sort spikes, but with limited success, the major obstacle being that 
most of the signals recorded for this study were not recorded with 
tetrodes, but with single-ended fiber microelectrodes. Therefore, 
despite good S/N, synchronous spikes occurring at individual 
sites were most of the time misclassified as deformed rare spike 
waveforms, which were discarded. Thus we restricted the analysis 
and interpretation of this study to multi-unit signals. As a con-
sequence, estimates of the assembly size as discussed above are 
even further hampered by concluding about synchronous firing 
only for several groups of neurons. However, this is a conservative 
approach for answering the question whether synchronous firing 
exists above chance, because each individual locally observed spike 
might already represent a synchronous event. Since we do not rely 
on any statistical assumption for the distribution of JS-patterns 
occurring by chance, but simply permute the existing time series, 
there is no trivial explanation for false positive events.

Our finding that JS-patterns with a precision of 3 ms and rate 
corrected at a time scale of 9 ms were more modulated by experi-
mental variables like behavioral performance than patterns at 
more precise or less precise scales suggests that the precision of 
3 ms is biologically meaningful. Compared to other studies, which 
reported JS-patterns of 5 ms precision, these time scales appear to 
be too short (Riehle et al., 1997). This difference, however, can be 
partly attributed to the chosen analysis techniques. For example 
in the paper by Riehle et al. (1997) the unitary event method 
was used. This method detects JSE based on binned spike trains 
with a bin size corresponding to the assumed temporal preci-
sion of the JS-pattern. Binning however requires that the window 
must be larger than the actual precision of the pattern, because 
JS-patterns close to the boarder of two bins have an effectively 
much smaller window than JS-patterns which are centered on a 
bin. Therefore, the detectability of a JS-pattern with methods using 
binning depends on the relative position of JS-patterns within 
the bins. In contrast, NeuroXidence describes a JS-pattern by the 
exact preset imprecision, given by tc

. Results presented in Pipa et al. 
(2007) demonstrate this link between two time scales for exactly 
the same data as presented in Riehle et al. (1997). By applying 
NeuroXidence to these data, the authors confirmed the previous 
results based on the binning UE method to contain JSEs on the 
same time scale of 5 ms. However, reducing the preset time scale 
from 5 to 3 ms for the NeuroXidence method, resulted in an even 
stronger deviation from the chance level, while the number of 
patterns detected by binning decreased significantly. This indicates 
that the NeuroXidence method is more sensitive to find the lower 
bound of spiking precision of JS-patterns.

An earlier study that has successfully dealt with higher order 
spike patterns extracted from simultaneous recordings of reti-
nal ganglion cells has used a factorial recoding of synchronous 
spike trains that was derived from data compression algorithms 
(Schnitzer and Meister, 2003). This method is also very efficient in 
detecting and storing synchronous spike trains, but  unfortunately 

also involved time binning which has been shown to miss coinci-
dences (Pipa et al., 2007). The advantage of this method is that one 
can preserve the identity of each unit and of all groups of units 
involved in synchronous firing which is certainly a feature we want 
to include in future versions of our analysis technique.

FUNCTIONAL IMPLICATIONS
For the analysis of synchronous firing patterns one can distinguish 
the complexity from the order of a JS-pattern. While the complexity 
just gives the number of neurons or sites involved in a JS-pattern, the 
order determines the real underlying correlation structure. The latter 
is necessary to distinguish between the chance level and the occur-
rence of sub-patterns of a more complex JS-pattern (Martignon 
et al., 2000; Nakahara and Amari, 2002; Schneider and Grün, 2003). 
However, the latter is also more of theoretical nature than of any 
practical relevance. It had been demonstrated that the amount of 
data necessary to distinguish between a certain set of orders is gigan-
tic compared to the amount of data which is usually available in 
real experiments, but also with respect to the amount of informa-
tion a neuron in the cortex would have to decode if sub-patterns 
would be able to carry relevant information. Both arguments are 
in favor of using the much simpler JS-pattern complexity. Pattern 
complexity can be simply interpreted as a kind of input saliency for 
downstream neurons. The higher the complexity, the more neurons 
participate, the more salient the input pattern is, because the more 
numerous simultaneous or nearly simultaneous inputs are, the more 
they can draw from spatial summation properties of postsynaptic 
membranes resulting in more rapid depolarization or even non-
linear amplification of the postsynaptic membrane potential.

What precisely synchronous spike firing of distributed popula-
tions of cortical neurons really means for information processing 
and generating appropriate behavior is not yet well understood. The 
observation that JSE incidence was massively increased even before 
the predictable end of the memory delay is reminiscent of JSE in 
motor cortex due to sensorimotor expectancy (Riehle et al., 1997), 
suggesting that spike synchrony in PFC could reflect a mechanism 
for the temporal organization of executive processes. However, the 
finding that synchronous spiking is modulated by, both, behavioral 
performance and the memorized visual stimuli, suggests that syn-
chrony is a very fundamental processing mechanism of the cortex. 
How well synchronous spike signals can be used in the future to 
actually decode information processed and maintained in distrib-
uted cortical circuits remains to be seen. The well established fact 
that coincident neuronal activity is a potent trigger for synaptic 
plasticity suggests that synchronous activity may be a better predic-
tor for what cortical circuits need to be adapted for rather than an 
expression of their current performance.
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The simplest example of the generalized linear spiking neu-
ron model is the linear-nonlinear Poisson (LNP) cascade model 
(Chichilnisky, 2001; Simoncelli et al., 2004). In this model, one 
first convolves the stimulus with a linear filter, subsequently trans-
forms the resulting one-dimensional signal by a pointwise non-
linearity into a non-negative time-varying firing rate, and finally 
generates spikes according to an inhomogeneous Poisson process. 
Importantly, the GLM model is not limited to noisy Poisson spike 
generation: analogous to the stimulus signal, one can also convolve 
the recent history of the spike train with a feedback filter and trans-
form the superposition of both stimulus and spike history filter 
outputs through the pointwise nonlinearity into an instantaneous 
firing rate in order to generate the spike output. In this way one can 
mimic dynamical properties such as bursts, refractory periods and 
rate adaptation. Finally, it is possible to add further input signals 
originating from the convolution of a filter kernel with spike trains 
generated by other neurons (Borisyuk et al., 1985; Brillinger, 1988; 
Chornoboy et al., 1988). This makes it possible to account for cou-
plings between neurons, and to model data which exhibit so called 
noise correlations, i.e., correlations which can not be explained by 
shared stimulus selectivity. Although the GLM only gives a phe-
nomenological description of the neurons’ properties, it has been 
shown to perform well for the prediction of spike trains in the retina 
(Pillow et al., 2005, 2008), in the hippocampus (Harris et al., 2003) 
and in the motor cortex (Truccolo et al., 2010).

In this paper we seek to explore the potential uses and limi-
tations of the framework for approximate Bayesian inference for 
GLMs based on the Expectation Propagation algorithm (Minka, 
2001). With this framework, we can not only approximate the 

INTRODUCTION
A common problem in system neuroscience is to understand how 
information about the sensory stimulus is encoded in sequences 
of action potentials (spikes) of sensory neurons. Given any stimu-
lus, the goal is to predict the neural response as well as possible, 
as this can give insights into the computations carried out by the 
neural ensemble. To this end, we want to have flexible generative 
models of the neural responses which can still be fit to observed 
data. The difficulty in choosing a model is to find the right trade-
off between flexibility and tractability. Adding more parameters 
or features to the model makes it more flexible but also harder 
to fit, as it is more prone to overfitting. The Bayesian framework 
allows one to control for the model complexity even if the model 
parameters are underconstrained by the data, as imposing a prior 
distribution over the parameters allows regularizing the fitting 
procedure (Lewicki and Olshausen, 1999; Ng, 2004; Steinke et al., 
2007; Mineault et al., 2009).

From a statistical point of view, building a predictive model 
for neural responses constitutes a regression problem. Linear least 
squares regression is the simplest and most commonly used regres-
sion technique. It provides a unique set of regression parameters, 
but one that is derived under the assumption that neural responses 
in a time bin are Gaussian distributed. This assumption, however, is 
clearly not appropriate for the spiking nature of neural responses. 
Generalized Linear Models (GLMs) provide a flexible extension of 
ordinary least squares regression which allows one to describe the 
neural response as a point process (Brillinger, 1988; Chornoboy 
et al., 1988) without losing the possibility of finding a unique best 
fit to the data (McCullagh and Nelder, 1989; Paninski, 2004).
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 posterior mean but also the posterior covariance and hence 
compute  confidence intervals for the inferred parameter values. 
Furthermore, the posterior mean is an alternative to the commonly 
used point estimators, maximum a posteriori (MAP) or maximum 
likelihood. Like the MAP also the posterior mean can be used with 
a Gaussian or a Laplacian prior leading to an L2 or an L1-norm 
regularization. To establish the approximate inference framework, 
we compare these point estimates on the basis of two different 
quality measures: prediction performance and filter reconstruction 
error. In addition, we investigate different binning schemes and 
their impact on the different inference procedures. Along with the 
paper we publish a MATLAB (the code is available at http://www.
kyb.tuebingen.mpg.de/bethge/code/glmtoolbox/) toolbox in order 
to support researchers in the field to do Bayesian inference over the 
parameters of the GLM spiking neuron model.

The paper is organized as follows. In Section “Generalized Linear 
Modeling for Spiking Neurons”, we review the definition of the 
Generalized Linear Model and present the expansion into a high-
dimensional feature space. We explain how a Laplace prior can 
improve the prediction performance in this setting and how dif-
ferent loss functions can be used to rate different quality aspects. 
In Section “Approximating the Posterior Distribution Using EP”, 
we present how the posterior distribution for observed data in the 
GLM setting can be approximated via the Expectation Propagation 
algorithm. Finally in Section “Potential Uses and Limitations” we 
systematically compare the MAP estimator to the posterior mean 
assuming Gaussian versus a Laplacian prior. In addition we apply 
the GLM framework to multi-electrode recordings from a popula-
tion of retinal ganglion cells and discuss the potential differences 
of discretizing time directly or discretizing the features.

GENERALIZED LINEAR MODELING FOR SPIKING NEURONS
SPECIFYING THE LIKELIHOOD
The Generalized Linear Model (GLM) of spiking neurons describes 
how a stimulus s(t) is encoded into a set of spike trains { }t j

i  gener-
ated by neurons i = 1, ,N, j = 1, ,N

i
 (Brillinger, 1988; Chornoboy 

et al., 1988; Paninski, 2004; Okatan et al., 2005; Truccolo et al., 2005) 
(See Stevenson et al., 2008 for a recent review). More precisely, s(t) 
is a vector of dimensionality n, which describes the history of the 
stimulus signal up to time t according to a suitable parametrization. 
For example, in Section “Potential Uses and Limitations” where we 
apply the GLM to retinal ganglion cell data, the vector s(t) contains 
the light intensities of the full-field flicker stimulus for the last n 
frames up to time t. The GLM assumes that an observed spike train 
{t

j
} is generated by a Poisson process with a time-varying rate (t). 

In its simplest form the rate (t) depends only on the stimulus 
vector s(t). This special case of the GLM is also known as the LNP 
model (Simoncelli et al., 2004). Specifically, the rate can be written 
as a Linear-Nonlinear cascade:

( ) ( )t f t ss w
 

(1)

First, the stimulus is filtered with a linear filter w
s
 which is 

referred to as the receptive field of the neuron. Subsequently, the 
pointwise monotonic nonlinearity f transforms the real-valued out-
put of the linear filtering into a non-negative instantaneous firing 
rate. If the current stimulus has a strong overlap with the receptive 

field, that is if s(t)Tw
s
 is large, this will yield a large  probability of 

firing. If it is strongly negative, the probability of firing will be zero 
or close to zero.

In the classical GLM framework (McCullagh and Nelder, 1989), 
f 1 is also called “link function”. For the Poisson process noise 
model, the link function must be both convex and log-concave 
in order to preserve concavity of the log-posterior (Paninski, 
2004). Thus it must grow at least linearly and at most exponen-
tially. Typical choices of this nonlinearity are the exponential or a 
threshold  linear function,

f x
x

x x
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,

,
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0 0
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As the spikes are assumed to be generated by a Poisson process, 
the log-likelihood of observing a spike train {t

j
} is given by
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In this simple form, the GLM ignores some commonly observed 
properties of spike trains, such as refractory periods or bursting 
effects. In order to address this problem, we want to make the firing 
rate (t) dependent not only on the stimulus but also on the history 
of spikes generated by the neuron. To this purpose, an additional 
linear filtering term can be added into Eq. 1. For example, by con-
volving the spikes generated in the past with a negative-valued 
kernel, we can account for the refractory period. The instantaneous 
firing rate of the GLM then results from a superposition of two 
terms, a stimulus and a spike feedback term:

( ) ( ) ( ) .t f t ts h hs w w
 

(3)

The m-dimensional vector 
h
(t) describes the spiking history 

of the neuron up to time t according to a suitable parametrization. 
A simple parametrization is a spike histogram vector whose com-
ponents contain the number of spikes in a set of preceding time 
windows. That is, the k-th component (

h
(t))

k
 contains the number 

of spikes in the time window (t  
k 1

, t  
k
] with 0 1 m . 

The linear weights w
h
 can then be fit empirically to model the specific 

dynamic properties of the neuron such as its refractory period or 
bursting behavior. The encoding scheme is illustrated in Figure 1.

Analogous to the spike feedback just described, the encoding can 
readily be extended to the population case, if the vector 

h
(t) for 

each neuron not only describes its own spiking history, but includes 
the spiking history of all other neurons as well. Taken together, the 
log-likelihood of observing the spike times { }t j

i  for a population of 
i = 1, ,N neurons is given by

log , log ( )

log

,

p t t s s

f t
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i

s
i

h
i i

j
i i

T
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tion to a more general renewal process (Pillow, 2009). By adding 
only a few extra parameters to the model these extensions can 
be very effective in increasing the computational power of the 
neural response model. The downside of this approach is that 
most of these extensions do not yield a log-concave and hence 
unimodal posterior anymore. Another option for increasing the 
flexibility of the GLM which preserves the desirable property of 
concave log-posterior is to add more and more linearly inde-
pendent parameters for the description of the stimulus and spike 
history that are promising candidates for improving the predic-
tion of spike generation. For example, in addition to the original 
stimulus  components s(t)

i
 we can also include their quadratic 

interactions s(t)
i
s(t)

j
. In this way, we can obtain an estimate of 

the computations of nonlinear neurons such as complex cells. 
This is similar to the spike-triggered covariance method (Van 
Steveninck and Bialek, 1988; Rieke et al., 1997; Rust et al., 2005; 
Pillow and Simoncelli, 2006) but more general, as we can still 
include the effect of the spike history. In principle, one can add 
arbitrary features to the description of both the stimulus as well as 
the spiking history. As a consequence, it is possible to approximate 
any arbitrary point process under mild regularity assumptions 
(see Daley and Vere-Jones, 2008). Like in standard least squares 
regression the actual merit of the Bayesian fitting procedure 
described in this paper is to have mechanisms for finding linear 
combinations of these features that provide a good description 
of the data. Therefore, it often makes sense to use a set of basis 
functions whose span defines the space of candidate functions 
(Pillow et al., 2005). We should choose a sufficiently rich ensem-
ble of basis functions such that any plausible kind of stimulus 
or history dependence can be realized within this ensemble. We 
denote the feature space for the spiking history by 

h
 and the 

feature space for the stimulus by 
s
. The concatenation of both 

feature vectors is denoted by 
s,h

. Together we can write down 
the log-likelihood of observing a spike train { } :,t j

i
j i

log { } , log ( )
,

p t t s sj
i

s h
i

j
i i

T

ii j

w w d
0  

(6)

Although the likelihood factorizes over different neurons i, this 
does not imply that the neurons fire independently. In fact, every 
neuron can affect any other neuron i via the spiking history term 

h
(t). Thus, by fitting the weighting term wh

i  to the data we can 
also infer effective couplings between the neurons.

In order to evaluate Eq. 4 we have to calculate the integral 

0
T

s
i

h h
if ( ( ) ( ) )s w w d  numerically. In terms of computation 

time, this easily becomes a dominating factor when the record-
ing time T is large. Many artificial stimuli used for probing sen-
sory neurons such as white noise can be described as piecewise 
constant functions. For example, the stimulus used for the retinal 
ganglion cells in Section “Population of Retinal Ganglion Cells” 
had a refresh rate of 180 Hz. In this case, the stimulus s(t) only 
changes at particular points in time. Further, if we use the spike 
histogram vector mentioned above to describe the spiking history 
of the neurons, then also 

h
( ) is a piecewise constant function. 

Thus, we can find time points 
1
, ,

z
 between which neither the 

stimulus nor the vector describing the spiking history changes. 
We call the 

i
 “discretization-points”. Also in cases in which the 

features are not piecewise constant such a discretization can be 
approximately obtained in a data-dependent manner, which we 
show in Section “Data-Dependent Discretization of the Time-Axis”. 
By decomposing the integral over (0, T) into a sum of integrals over 
the intervals [

k
, 

k 1
) within which the integrand stays constant, 

the log-likelihood can be simplified to:

log { } , log
,

p t f t tj
i

s
i

h
i
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s
i

h j
i

h
i

i j

k

w w s w w

1 k k s
i

h k h
i

k i

f s w w( ) ( )
,

 (5)

Note that 
h
(

k
) and 

s
(

k
) are constant, since the features do 

not change in the interval [
k
, 

k 1
).

EXTENDING THE COMPUTATIONAL POWER OF GLMs
To increase the flexibility of a GLM, several extensions are pos-
sible. For example, one can add hidden variables (Kulkarni and 
Paninski, 2007; Nykamp, 2008) or weaken the Poisson assump-

FIGURE 1 | Illustration of the generative encoding model associated with a GLM: the stimulus s(t) as well as the spiking history h(t) are filtered with 
their corresponding receptive fields ws and wh. A nonlinearity f is applied to the sum of the outputs to produce an instantaneous rate, which then is used to 
generate new spikes.
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and the Laplace prior,

p w
n

k
k

n

( ) exp exp .w w
2 2

1
1  

(10)

Given a prior distribution, one can write down the posterior 
distribution,

p D p p D( ) ( ) ( )w w w

which specifies how likely a set of weights w is, given the observed 
data D and the prior belief over the weights. The data D contains 
both, observed spike trains as well as stimuli.

To obtain a particular choice of parameter values a popular point 
estimate is MAP estimate, that is the point of maximal posterior 
density 

w
 p(w  D). The MAP estimate is equivalent to the 

maximum likelihood estimate regularized with the log-prior. As 
mentioned above, the use of Laplace priors can yield advantageous 
regularization properties (Tibshirani, 1996; Lewicki and Olshausen, 
1999; Ng, 2004; Steinke et al., 2007; Mineault et al., 2009). For a 
sparse prior, most of the features are likely to have zero weight, but 
if they have a non-zero weight, the amplitude is less constrained. 
In order to favor sparse solutions, the direct approach would be to 
penalize the number of non-zero parameter entries. The number 

log
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DATA-DEPENDENT DISCRETIZATION OF THE TIME AXIS
If we choose the features 

h
, 

s
 such that they do not change 

between distinct discretization-points 
k
, i.e., 

s,h
 is constant in 

the interval [
k
, 

k 1
) the likelihood can be simplified to:

log , log
,

p t f t tj
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s h h j
i

h
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 (8)

When approximating the features by describing the spike history 
dependence with a piecewise constant function, this yields a finite 
number of discretization-points in time between which, the result-
ing conditional rate, given the spiking history, does not change. 
In order to illustrate this process, consider the following simple 
scenario illustrated in Figure 2. Suppose there is only one neuron, 
which receives a constant input. Accordingly, the feature describing 
the stimulus is constant 

s
(t)  1, which appear as the last entry 

in the combined feature vectors 
h,s

(t) in the figure. The spiking 
history H

t
 up to time t is represented by two dimensions, which are 

approximated by piecewise constant functions, changing only at 
2 and 10 ms. Note, that the time axis, labeled with time-parameter 
s in Figure 2 is pointing into the past and centered at the current 
time point t. As long as we did not observe a spike, the feature 
values of the two basis functions are zero, i.e., 

h
(t)

1
 = 

h
(t)

2
 = 0 

for t  t
1
. Once we have observed a spike, this enters in both fea-

tures via the first constant value. Hence in this example 
h
(t)

1
 = 5, 

h
(t)

2
 = 1 for 

1
 = t

1
  t  

2
 = 

1
  2 ms. When the observed spike 

leaves the 2 ms window and enters the second time window of the 
basis functions the feature values change to 

h
(t)

1
 = 1, 

h
(t)

2
 = 2 

for 
2
  t  

3
 = 

2
  8 ms. In order to calculate the conditional 

rate, we have to evaluate f (
h
(t)Tw

h
  

s
(t)Tw

s
). For the weights in 

Figure 2, this gives the qualitative time course of the conditional 
rate (t|H

t
, s(t)) as depicted in Figure 2.

USING LAPLACE PRIORS FOR BETTER REGULARIZATION
The expansion of the stimulus and the spiking history in high-
dimensional feature spaces comes at the cost of having a large 
number of parameters to deal with. As we only have access to a 
limited amount of data, regularization is necessary to avoid over-
fitting. In the Bayesian framework, this can be done by choosing 
a prior distribution p(w) = p((w

s
, w

h
)) over the linear weights w

s
 

and w
h
. As these parameters enter the log-likelihood linearly, the 

prior distribution can be interpreted as specifying how likely we 
think that a particular feature is active, or necessary for explaining 
a typical data set. The prior distribution becomes more important 
as we increase the number of parameters.

Two commonly used priors are the Gaussian,

p( ) exp expw w w w
1

2

1

2

1

2

1

22 2
2

2 2  (9)

FIGURE 2 | Illustration of the data-dependent time discretization. Two 
spikes from one neuron have been observed at time points t1 and t2. Since we 
assume a constant input (s(t )  1) the last entry in the combined feature vector 

h,s(t ) is always 1. The spiking history up to time t, denoted with Ht is described 
with two basis functions, ( h(t ))1, ( h(t ))2. Each of these could have its own 
discretization, but here both have the same, namely at 0, 2 and 10 ms. That is, 
the basis functions are approximated with a piecewise constant function with 
jumps at 0, 2 and 10 ms. Each spiking history feature has its own weight, as 
has the stimulus. Thus, the feature vector describing both, the stimulus as 
well as the spiking history s,h(t) is a three-dimensional vector, changing its 
value at discretization-points k. In each interval [ k, k 1) the rate ( k  Ht, s( k)) 
can be calculated. In this specific case, it only assumes three different values, 
exp( s,h(t )Twh,s) = exp(  27), exp(  2), exp(1), assuming that the weight for the 
stimulus is ws = 1.
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in log-likelihood of the different models measures how well the 
estimated model does at predicting spike times from the ground 
truth model.

Mean squared error reconstruction
A different way of quantifying the performance of an estimation 
algorithm for synthetic data would be to check how closely the 
estimated parameters ( )ŵ  match those that were put into the model 
as ground truth (w). In particular for judging the quality of the 
reconstructed filter shapes a popular choice is to look at the mean 
square error between the true and estimated parameters:

l j j
j

w  w w w, ˆ ˆ 2

 
(12)

APPROXIMATING THE POSTERIOR DISTRIBUTION USING EP
It has been shown that the MAP yield a good prediction perform-
ance (Pillow et al., 2008) but there are a couple of reasons why 
one would like to know more about the posterior than just its 
maximum. For example the posterior mean is known to be the 
optimal point estimate with respect to the mean squared error 
(Eq. 12). Furthermore, in many cases we are not only interested 
in a point estimate of the parameters, but we also want to know 
the dispersion of the posterior. In other words, we want to have 
confidence intervals indicating how strongly the parameters of a 
model are constrained by the observed data.

The resulting uncertainty estimate in turn can be used for opti-
mal design (Lewi et al., 2008; Seeger, 2008), that is we can decide 
which stimulus to present next, in order to maximally reduce our 
uncertainty about the parameters. Furthermore, a distribution 
of the full posterior distribution gives rise to the marginal likeli-
hood, which is the likelihood of the data under the model, with-
out assuming specific linear filters. The marginal likelihood can be 
used to optimize the parameters of the prior without performing 
a crossvalidation (Chib, 1995; Seeger, 2008). Mathematically, the 
uncertainty is encoded in the dispersion of the posterior distribu-
tion over parameters w given observed data D :

p D
Z

p D p( ) ( ) ( )w w w
1

 
(13)

where

Z p D p( ) ( )w w wd .

Taken together there are strong arguments why it is useful to 
investigate the information conveyed by the posterior other than 
just the location of its maximum. The posterior is really the sum-
mary of all we can learn from the data about the given model.

Unfortunately, exact Bayesian inference (calculation of the 
normalization constant Z) is intractable in our case. Therefore, 
we are interested in finding a good approximation to the full pos-
terior. If we can determine the posterior mean and covariance, 
this naturally leads to a Gaussian approximation of the posterior. 
Furthermore, we note that the true posterior in our case is unimo-
dal, as both likelihood and prior are log-concave (Paninski, 2004). 
We employ the Expectation Propagation (EP) algorithm in order 
to compute a Gaussian approximation to the full posterior (Opper 
and Winther, 2000, 2005; Minka, 2001; Seeger, 2005) (see Nickisch 

of non-zero entries is sometimes referred to as the “L0-norm” 
of the parameter vector (despite the fact that it is not a proper 
norm). Unfortunately, finding the L0-norm regularized weights is 
a hard problem. Using the L1-norm however, is a useful relaxation 
which in some cases even gives an equivalent solution (Donoho 
and Stodden, 2006). The log of the Laplace prior-probability (see 
Eq. 10) of a given parameter vector is proportional to the L1-norm 
of this vector. Therefore, using a Laplace prior is equivalent to 
penalizing the L1-norm of the parameters. Finally using a Gaussian 
prior is equivalent to penalizing the L2-norm of the parameter 
vector (see Eq. 9).

From a practical point of view, log-concavity is another desir-
able property of the prior distribution as it here ensures that the 
posterior p(w|D)  p(w)p(D|w) is also log-concave and there-
fore finding the maximum of the posterior (i.e., computing the 
MAP estimator) is a convex optimization problem (Paninski 
et al., 2004). For the GLM, log-concavity and convexity of the 
link function f is also required to guarantee log-concavity of the 
posterior. Both priors, the Gaussian as well as the Laplacian are 
log-concave. Although the posterior is log-concave when a Laplace 
prior is used, calculating the MAP is still a non-trivial problem. 
As the Laplace prior is non-differentiable at zero, the gradient at 
any point containing a zero in at least one component cannot be 
calculated. Thus standard techniques like conjugate gradient or 
iterative reweighted least squares fail. For the case of a Gaussian 
likelihood and Laplace prior the LASSO algorithm (Tibshirani, 
1996) can be used. For the case of a likelihood originating from 
a GLM, the posterior is differentiable in each orthant, and hence 
subgradients can be calculated. In our implementation, we use the 
algorithm of Andrew and Gao (2007).

PERFORMANCE MEASURES
After we have obtained an estimate of the parameters of a GLM, 
we would like to evaluate the quality of the estimate.

Prediction performance
To measure the performance of an estimate, we calculated the dif-
ference between the estimated model and the ground truth model 
with respect to the log-likelihoods on a test set. The test set was 
generated with the same weights for each trial. In this way we can 
assess how likely a previously unseen spike train sampled from the 
ground truth model is under the estimated model. The difference 
between the average log-likelihoods can be seen as an approxima-
tion to the Kullback–Leibler distance of the estimated model from 
ground truth.

l
N

p D p D

p D

p D

i i
i
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w w w w

w

w

, ˆ ˆ

log
ˆ

1

1

log log

p D D

D p p

w

w w

d

KL
ˆ

 
(11)

Here D
i
 is a spike train in the i-th of N trials generated with 

the true weights w whereas the estimated weights are ŵ. The 
more likely the spike trains are, the better is the weight estimate, 
which specifies the estimated model. Therefore, the difference 
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where D
KL

 denotes the Kullback–Leibler divergence or relative 
entropy. Q(u

i
) is the marginal Gaussian distribution in the direction 

of 
s,h

(
i
). It is the Gaussian distribution one obtains, when taking 

the complete approximation Q(w) and projects it on 
s,h

(
i
). In other 

words, we require the approximation to be consistent in the sense 
that, if we replace the approximating factor exp( / )1 2 2

i i i iu b u  
with the true factor f

i
(u

i
), the marginal moments in the direction 

of 
s,h

(
i
) should not change. To achieve this consistency, EP cycles 

through the factors and updates the parameters of each approximat-
ing factor such that Eq. 23 holds. For Eq. 23 to hold, only moments 
of a one-dimensional distributions have to be calculated. This can 
efficiently be done using numerical integration (Piessens et al., 
1983). We omit the details of this updating scheme here and refer 
to the Appendix. The interested reader is referred to our MATLAb 
code and to further literature (Heskes et al., 2002; Qi et al., 2004; 
Seeger et al., 2007). The computational cost of EP is quadratic in 
the number of parameters (as the posterior covariance has to be 
estimated) and linear in the number of factors (in the GLM setting 
this is the same as the number of discretization-points) per cycle 
through the factors. In our simulations 30 iterations through all 
factors were sufficient for convergence.

Another frequently used way of approximating the posterior dis-
tribution with a Gaussian, is the so called Laplace approximation or 
Laplace’s method (MacKay, 2003; Rasmussen and Williams, 2006; 
Lewi et al., 2008). A second-order Taylor expansion is calculated 
around the MAP. As the posterior is unimodal, the MAP can be 
found efficiently. Calculating the Hessian at a particular point can 
also be obtained analytically, given the posterior is differentiable at 
that point. The Laplace prior we use, however, is non- differentiable 
at zero. Therefore, the posterior is not differentiable at any point 
which contains at least one zero in one component. As we expect the 
MAP to assign many components zero weight, we cannot calculate 
the Hessian at that point. Furthermore, in a different setting it has 
been shown that the quality of the Laplace approximation is inferior 
to the one achieved by the EP approximation (Kuss and Rasmussen, 
2005; Koyama and Paninski, 2009). The Laplace approximation is 
only sensitive to the local curvature at the point of maximal posterior 
density. As the EP approximation is based on moment matching it 
is influenced by the shape of the full posterior distribution.

POTENTIAL USES AND LIMITATIONS
In the following, we systematically compare the different point 
estimates, posterior mean and MAP. We vary the assumed prior 
distribution as well as the loss function in terms of which the per-
formance is measured. In particular, we also investigate cases in 
which the assumed prior distribution differs from the “true” dis-
tribution used to generate the parameters. Finally, we also look at 
the possible effects of data discretization.

MAP VERSUS POSTERIOR MEAN
Tibshirani (1996) showed that for Gaussian likelihood and Laplace 
priors, the MAP gives sparse solutions and performs best, given 
the true underlying weights are sparse. If the data is assumed to be 
distributed according to a logistic likelihood, a similar result has 
been found by Ng (2004). Here, for the case of data generated by a 
GLM, we would like to see whether the same holds true, and also 
compare the MAP to the posterior mean.

and Rasmussen, 2008 for alternative approximations schemes). The 
key observation is that the likelihood as well as the Laplace prior 
factorizes over simple terms, each of which is intrinsically one-
dimensional. We have three types of factors:

f u f u f u f u f ui i i i i i i1 exp log exp
 

(14)

f u f ui i i2 exp
 

(15)

f u ui i3 exp( )
 

(16)

where, u
i
 : = 

s,h
(

i
)Tw

s,h
 defines the one-dimensional direction for 

each of these factors. 
s,h

 and w
s,h

 denote the concatenation of the 
feature vectors describing the spiking history and the stimulus his-
tory respectively. Equation 14 corresponds to a factor or individual 
term in the sum of the log-likelihood (Chichilnisky, 2001) if there 
was a spike at 

i 1
 and no spike in the interval (

i
, 

i 1
) of length 

i
 : = (

i 1
  

i
). Equation 15 corresponds to a factor if there was 

no spike at time 
i 1

. Finally, Eq. 16 represents the Laplace terms 
for the prior in the product for the posterior distribution. The 
Expectation Propagation algorithm approximates each of those 
factors with a Gaussian factor:

f u u b ui i i i i iexp
1
2

2

 
(17)

Thus, if we multiply all of these approximating factors, we obtain 
a Gaussian distribution, which is straightforward to normalize:
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The task now is to update the parameters 
i
, b

i
 for the approxi-

mating factors such that the moments of the resulting approxi-
mation are as close to the true moments as possible. The crucial 
consistency equation which the EP algorithm tries to attain is given 
by Opper and Winther (2005):

D f u
Q u

u b u
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i i i i
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are sampled from a Gaussian distribution. Analogously, Figure 3B 
shows the results for the Laplace distribution and Figure 3C for the 
strongly sparse weights. We plot the average KL-divergence over 
5000 trials  1 SD. As can be seen, the EP estimate for the Laplace 
(L1) prior performs best, if the true underlying weights are sparse. 
If the weights are sampled from a Laplace or a Gaussian distribu-
tions, the parameter vector of the true model is non-sparse and the 
L2 regularized MAP performs best. Interestingly, even for the case 
in which the weights are sampled from a Laplace distribution, the 
MAP performs best when using an L2-penalty term. Since we know 
the prior variance that was used to generate the weights, we did 
not perform a crossvalidation to set the regularization parameter, 
neither for the MAP estimates, nor for the posterior mean estimates 
(EPL1, EPL2). (Note that, in cases where the true distribution of 
weights is different to the prior used, it is possible that the predic-
tion performance could be increased by picking a variance which 
is different to the “true” one).

In cases, in which the parameters are really drawn from the prior 
distribution, the posterior mean estimate can be shown to be the 
optimal parameter estimate, as it will minimize the mean squared 
error. Thus, in the two cases, in which we sampled the weights 
according to a Gaussian and a Laplacian distribution respectively, 
we expect the EP approximation to be superior to the MAP esti-
mate in terms of the mean squared error. In the situation where 
the weights are actually sparse the performance is less clear, as the 
EP estimates assume a prior which is different to the one used to 
generate the weights. Therefore, it is not guaranteed in this case, 
that the posterior mean will be the optimal parameter estimate 
with respect to the mean squared error.

In general, we expect the MAP estimate to give a sparser solution 
than the posterior mean. If we have not seen much data, we expect 
the prior to dominate the posterior. In this case the maximum of the 
posterior will be at zero, resulting in a zero weight for the MAP. 
However, as the likelihood factors are not symmetric, the posterior 
is also not symmetric in general. Thus, even for weights for which 
the MAP is at zero, the probability mass is not symmetrically dis-
tributed around that maximum. Hence, the posterior mean in this 

To illustrate the effect of a Laplace prior when increasing the 
number of features in the GLM of spiking neurons, we considered 
the following examples. We made a series of simulations with GLM 
neurons for which the space of possible features was successively 
increased from 10 to 230 dimensions. The stimulus was Gaussian 
white noise discretized into 10 ms bins. The stimulus history s(t) 
was set to contain the stimulus values of the last 20 bins describing 
the stimulus history for a period of 200 ms. From the 20 dimen-
sional stimulus history s(t) we constructed the full 230 dimensional 
quadratic feature space:

s t s t s t

s t s t s t s t s t

s

( ) ( ( ), , ( ),

( ) , ( ) ( ), , ( ) ( ),

(

20

202

tt s t s t

s t

) , ( ) ( ), ,

, ( ) )

2

2

2

20

with  = 10 ms, similar as in Rust et al. (2005). From this basis of 
the 230 dimensional feature space a subset of increasing size was 
selected. That is, the dimensionality of the weight vector increased 
from 10 to 230, too. For all simulations, a GLM neuron was simu-
lated until the likelihood consisted of 400 factors, i.e., 400 

k
 in the 

sum in Eq. 8 (alternatively one could also fix the time-duration of 
a trial or the number of spikes per trial).

We compared three different choices of priors, and use models 
which either had matching priors, or different ones:

1. Gaussian weights: Each weight was sampled independently from 
a Gaussian distribution. The variance was set to 20/dim(

s
).

2. Laplacian weights: Each weight was sampled independently from 
a Laplace distribution. The variance was set to 20/dim(

s
).

3. Sparse weights: A subset of only 10 dimensions was assigned 
with non-zero weights. For the assignment of the 10 weights, 
we draw 10 samples from a Laplace distribution with variance 
2 and zero mean.

In Figure 3 the Kullback–Leibler distance is plotted as a function 
of the dimensionality of the feature space for each of the generating 
distributions. In Figure 3A the weights of the ground truth model 

FIGURE 3 | Prediction performance in high-dimensional feature spaces of 
increasing size. The mean across 5000 trials of the differences in the 
log-likelihoods is plotted as a function of increasing stimulus dimension. The 
different point estimates are MAP with Laplace regularization (MAPL1, solid 
red), MAP with a Gaussian prior (MAPL2, dashed red) and the posterior mean 
approximated with EP for the Laplace (solid blue) as well as for the Gaussian 

prior (dashed blue). Confidence intervals indicate standard error of the mean 
difference. Panel (A) shows the performance when a Gaussian distribution is 
used for sampling the weights and (B) for a Laplace distribution. (C) Shows the 
prediction performance if the weights are actually sparse, that is the true 
dimensionality is constantly 10. The overall variance for the generation of 
weights in panels (A) and (B) were kept fix to the same value as in (C).
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means of a simple example. For some areas, for example in the 
auditory cortex, the precise timing of spikes is important (Carr 
and Konishi, 1990; Wightman and Kistler, 1992). By binning spikes 
into a discrete set of bins, one might lose this precise timing. If 
one discretizes the time axis directly and wants to keep the precise 
timing, one needs to specify very small time bins. This leads to a 
large number of discretization-points and hence very many factors 
for the likelihood. Alternatively, if one discretizes the features, the 
discretization is adapted to the spike times and thus could lead to 
possibly fewer discretization-points while still achieving a high tem-
poral resolution. However, if a lot of spike times have been observed, 
discretization of the basis functions for the features could lead to 
a time discretization which is too fine for optimization purposes. 
A compromise would be to adaptively add discretization-points 
when needed, but constrain the minimal inter discretization-point 
interval. In general, the discretization of the features allows one to 
specify the resolution and (given that resolution) produces then 
the minimal number of discretization-points.

To illustrate possible differences between a discretization of 
features versus a discretization of the time axis, we considered the 
following example: two GLM neurons were simulated. One of them 
had a stimulus filter, while the other one was only dependent on 
the spikes from the first neuron. The filters for the stimulus as well 

case will be non-zero and the solution less sparse. In Figure 4 we 
plotted the mean squared reconstruction error for the different 
estimators. As can be seen the EP approximation to the posterior 
mean performs better than the MAP. This is also true for the sparse 
setting, however the effect gets less prominent if the dimensionality 
of the parameter space is increased.

The quality of the different point estimates, quantified by the 
mean squared error and by the prediction performance are sum-
marized in Table 1. To obtain a single number for the overall per-
formance, we summed the errors for each individual dimension 
of parameter space (integral over each curve in Figures 3 and 4). 
The posterior mean gives a good estimate in all settings when a 
Laplacian prior is used. For the prediction performance the MAP 
with the L2 prior can lead to better results if the true prior is 
Gaussian or Laplacian.

BINNING AND IDENTIFIABILITY
In Section “Generalized Linear Modeling for Spiking Neurons” 
we specified the log-likelihood in terms of time-discretized fea-
tures. This results in a binning with not necessarily equidistant 
discretization-points 

j
. Another popular way to simplify the log-

likelihood is to bin the time axis directly. In this section we would 
like to illustrate the possible effects of the two discretizations by 

FIGURE 4 | Mean squared error as a function of increasing dimensionality 
of the parameter space. The same data as in Figure 3 is plotted, but instead 
the performance is measured in mean squared error between the estimated 
weights and the true underlying weights as opposed to the differences in 
log-likelihoods shown in Figure 3. (A) Shows the performance if the underlying 

weights are sparse, in panel (B) a Laplace distribution is used to sample the 
weights and in (C) a Gaussian distribution is used. In each panel the mean 
across 5000 trials is plotted  standard error of mean. In solid black the prior 
variance is plotted, which is the expected mean squared error of the constant 
estimator.

Table 1 | Comparison of different quality measures and point estimates. In the left table integrated KL-divergence is shown for the MAP and the posterior 
mean point estimates when either a Laplace or a Gaussian prior is assumed. Each row corresponds to a ground truth prior which was used to sample the 
weights. Each number corresponds to an integral of a curve in Figure 3. The right table reports the same when the mean squared error is used as a loss 
function. Thus, each number is the integral over one curve in Figure 4 and therefore reports the overall performance of the different estimators. For each 
ground truth model and loss function the best overall estimator is colored in red.

 Integrated KL-divergence Integrated MSE

 MAP with EP-mean with MAP with EP-mean with

 Laplace Gauss Laplace Gauss Laplace Gauss Laplace Gauss

GROUND TRUTH
Gauss 3.93  10 3 3.39  10−3 3.532  10 3 3.5  10 3 195.996 186.095 186.248 185.992
Laplace 3.87  10 3 3.46  10−3 3.52  10 3 3.58  10 3 194.246 185.52 184.99 185.391
Sparse 3.66  10 3 3.83  10 3 3.41  10−3 3.96  10 3 188.698 183.685 180.536 183.542
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shift toward the second scenario. That is, the stimulus filter for the 
second neuron in that case is slightly elevated, whereas the strength 
of the coupling filter is diminished.

POPULATION OF RETINAL GANGLION CELLS
To compare the different methods for the analysis of real data, we 
applied the algorithms to multi-electrode recordings of seven sala-
mander retinal ganglion cells. Our goal was to describe the stimulus 
selectivity of the population by fitting a GLM with history terms and 
cross-neuron terms to the recorded data. We used multi-electrode 
recordings of salamander retinal ganglion cells generously provided 
by Michael J Berry II. The dataset has been published in Fairhall 
et al. (2006), where all recording details are described. We selected 
a recording of seven neurons, which had an average firing rate of 
1.1 spikes per second and a minimal interspike-interval of 2.8 ms. 
The stimulus used in the experiments consisted of 20 min white 
noise full-field flicker with a refresh rate of 180 Hz. To illustrate 
the ability of the model to also infer population models from small 
data sets, we fitted the population recording to the first 2 min of 
the recording.

For the features describing the spiking history, we used the den-
sity function of the -distribution with different parameters as 
basis functions:

f t t ti i
i

i

i

i

( ) exp ,1

 
(24)

as the spiking history filters are illustrated in Figure 5 (black lines). 
Because the second neuron was positively coupled to the first one 
with a small latency, we expect it to produce spikes which have a 
small temporal offset with respect to the spikes of the first neuron. 
Intuitively, the observed spikes trains could be explained by two 
different settings:

1. The weights are exactly as the ones used for simulating the 
spike trains.

2. The second neuron is not coupled to the first neuron at all, 
but has the same stimulus filter as the first one, however, with 
a small latency. Therefore it responds to the same stimulus but 
at later times.

If spikes were generated deterministically, these two setting can-
not be distinguished. In the noisy case, however, given a sufficient 
amount of data, one should be able to disentangle the two scenarios, 
as finding the maximum likelihood point is a convex problem. 
However, for finite amount of training data and in the presence of 
binning noise, the situation is less clear. Therefore, we sampled 3 s 
of spike trains and estimated the parameters from the data, once 
when the features are discretized and once when the time axis is 
discretized. The time bins were chosen such that at most one spike 
fell into a bin.

The estimate for the approximated posterior mean are plot-
ted in Figure 5. If the features are discretized the filter could be 
recovered. If we discretize the time directly, we see indeed a slight 

FIGURE 5 | Identifyability in the presence of binning noise. (A) Estimated 
filters, when the features are discretized (approximated with a piecewise 
constant function, see Figure 2). (B) Estimated filters when the spike times 
are binned. The binning was performed such that at most one spike fell into 
one bin. All spikes were aligned to the right hand side of their corresponding 

bins. When the time axis is binned directly and hence the precise timing of a 
spike is lost, the estimated filter for the spiking history are slightly weaker than 
the true ones (black), whereas the stimulus filters are slightly positive at a 
small latency. For the sake of readability we only plotted the approximated 
posterior mean ( 2 ).
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where the means 
i
/

i
 as well as the variances i i/ 2 were logarith-

mically spaced between 1 and 700 ms and 1 and 1000 respectively 
(A similar basis consisting of raised cosines was also used in Pillow 
et al. (2005, 2008). Due to the logarithmic spacing, we have a finer 
resolution for small time-lags and coarser resolution for long time-
lags. For example, we expect the first basis function, which has a 
sharp peak at zero to be mainly active or associated with the refrac-
tory period. As we discretize the basis functions rather than directly 
the time axis, each spike generates as many discretization-points 

j
 

as there are discretization-points for the basis functions (see Section 
“Generalized Linear Modeling for Spiking Neurons”). For the stim-
ulus we used the same basis function set. As for the spike history 
dependence these functions were approximated with a piecewise 
constant function. The discretization for the basis- function time 
axis in this case was the same as for the original stimulus and there-
fore slightly coarser than the one for the spike history features. The 
basis functions are plotted in Figure 6.

For this setup we computed the different point estimates and 
posterior approximations for the weights corresponding to the fea-
tures describing the spike history dependence (Figure 7) as well 
as for the weights corresponding to the stimulus filters (Figure 8). 

FIGURE 6 | Set of 23 basis functions to span the spiking history as well as 
the stimulus dependence. Each function is a density function of a -distribution 
with different means and variances, see Eq. 24. The time axis for the features 
describing the spiking history was logarithmically discretized up to 1000 ms.

FIGURE 7 | Inferred connectivity in the network of seven retinal ganglion 
cells. Plotted are the induced dependencies by the weights, that is the 
superposition of basis functions, weighted by the inferred weights from two 
different estimators: maximum likelihood (MLE) and approximated posterior 
when a Laplace prior is used (EPL1). For the EP approximation the posterior 
mean together with 2 SD is plotted. Each row corresponds to one output neuron 
and each column corresponds to a input neuron. Thus, the entry (i, j ) describes 

the influence of a spike of neuron j on the firing rate of neuron i. For example on 
the diagonal a strong negative coupling on a short time-scale can be observed, 
representing the refractory period of a neuron. The maximum likelihood 
estimate as well as thee posterior mean agree on the self-feedback but exhibit a 
large difference on some couplings, e.g., neuron 1  4. In general, neuron 1 
seems to be less constrained than other neurons, which is also indicated by the 
large uncertainty intervals for the connections from and to neuron 1.
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both, stimulus and spike trains. To illustrate this, we also plotted 
confidence regions of 2 SD for the coupling parameters of the 
population. The confidence intervals for the Gaussian approxima-
tion are plotted in red when a Laplacian prior is used and in gray 
when a Gaussian prior is used. Based on the confidence intervals 
for the coupling filters, only a few of the connections are actually 
significant, as can be seen in Figure 7. This cannot be concluded 
from the couplings estimated via MAP or MLE. For example, we 
see that connections to neuron 1 (first column in Figure 7) as well 
as connections from neuron 1 to any other neuron (first row) are 
underconstrained by the data, indicated by the large uncertainty 
for those connections compared to those for others. Consequently, 
the connections are set to zero by the prior and hence effectively 
excluded from the model. The strong negative self-feedback cou-
pling, indicating the refractory period can be estimated with a 
much higher degree of certainty. We also find some significant 
couplings between neurons, both negatively coupled (e.g., neuron 

For training, only 2 min out of the 20 min of recording were used. 
Another 2 min were used for setting hyperparameters, i.e., prior 
variances. Given the posterior variances for each of the weights and 
the basis functions, we can calculate errorbars on the time course 
of the coupling and stimulus filters. The filters are defined as the 
weighted sum of the basis functions. For example, the gamma-
functions f

i
 in Eq. 24 are weighted by the weights, corresponding to 

the entry in the feature vector 
h
. Errorbars on the coupling filter 

f(t) can then be estimated using the marginal variances:

Var Var

Cov

[ ( ) ] ( )

( ) [ ] ( ),

f t D t D

t D t

f w

f w f
 

(25)

where f(t) is a vector of the corresponding basis functions f
i
(t) and 

Cov[w|D] is part of the posterior covariance matrix correspond-
ing to the weights for the features described by f

i
(t). In the above 

equation D represents the dataset used for training, containing 

FIGURE 8 | Statistical dependence of the neural activity of seven 
neurons on the stimulus specified by the superposition of the basis 
functions plotted in Figure 6 weighted by the estimated weights. The 
same colors for the different estimators as in Figure 7 are used. Additionally 
the posterior mean ( 2  confidence intervals) for the EP approximation with 

a Gaussian prior is plotted in red. Each plot corresponds to one neuron in the 
same order as in Figure 7. As can be seen, the maximum likelihood 
estimator is overfitting. One sees, that the posterior uncertainty for neuron 1 
and also for neuron 3 are much larger as for the other neurons analog to 
Figure 7.
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2  5) and positively coupled (e.g., 7  2). The maximum likeli-
hood estimator assigns a non-zero filter to almost every coupling 
between neurons. The EP-mean, however, forces most of the filters 
to be zero. To quantify the difference in the estimated filters, we 
calculated the squared difference between the maximum likeli-
hood and the EP-mean weights. This squared difference is 1.5 times 
larger than the average squared norm of the individual parameter 
vectors, which indicates that not only the absolute value of the 
maximum likelihood estimator is larger but also the qualitative 
shape is different. On the other hand the differences in prediction 
performance as measured by the likelihood is rather small (see 
Table 2). Thus, proximity in terms of one quality measure need 
not necessarily imply proximity in terms of the other as well. If the 
posterior uncertainty is small, the parameter vectors are much more 
constrained by the data and the filters estimated by the maximum 
likelihood estimator are closer w.r.t. the mean squared distance to 
the EP-mean. For example this is true for most of the stimulus filters 
(see Figure 8). In contrast, if the posterior uncertainty is rather 
large, for example for the stimulus filters of neuron 1 and neuron 
3, the estimated weights differ more. This suggests, that we do not 
have sufficient information to estimate all parameters, but we are 
able to extract some weights from the given data.

To compare the different estimators quantitatively, we used the 
same performance measure as for Figure 3, namely the negative 
log-likelihood on a test set. To obtain confidence intervals on the 
performance measure we split the part of the dataset, neither used 
for training nor for validation into 16 different test sets (10%, i.e., 
2 min for training, 10% for validation and 80% for testing, split 
into 16 sets of 1 min length). The performance values are sum-
marized in Table 2. By this performance measure the EP estimate 
with a Laplacian prior performs significantly better than the MAP 
estimate with the same prior. The performance difference to the 
maximum likelihood estimator is not huge, this indicates, that the 
weights are not sufficiently constrained by 1 min slices of the data. 
Especially the coupling terms not well constrained as can be seen 
by the difference in the estimated filter by the maximum likeli-
hood and the posterior mean, see Figure 7. By judging from the 
data, we do not know if the couplings are needed, hence excluding 
them from the model, i.e., setting the corresponding weights to 
zero, seems to be a safe choice. This can be achieved by using a 
strong prior distribution. The difference between a Gaussian and 
a Laplace prior is not large for the coupling terms (not shown), 
for the stimulus filters we see a small difference for the first three 

neurons, see Figure 8. Note, that in cases where there is a significant 
coupling between neurons, the EP and the maximum likelihood 
fit agree.

DISCUSSION
Bayesian inference methods are particularly useful for system iden-
tification tasks where a large number of parameters need to be 
estimated. By specifying a prior over the parameters a full proba-
bilistic model is obtained that provides a principled framework for 
regularizing the model complexity. Furthermore, knowledge of the 
posterior distribution allows one both to derive point estimators 
that are optimized for loss functions that are suitable to the problem 
at hand and to quantify the uncertainty about such estimates.

A major hurdle for using a Bayesian approach is that computing 
the posterior distribution is often intractable. Even for numerical 
approximation techniques of the posterior distribution there is 
 usually – a priori – no guarantee how well they work. Therefore, it 
is important to perform careful quality control studies if such meth-
ods are to be applied to a new estimation problem. In this paper, we 
presented such control studies for approximate Bayesian inference in 
the GLMs of spiking neurons using Expectation Propagation (EP) 
and compared it to standard methods like maximum likelihood and 
MAP estimates. Expectation Propagation provides both a posterior 
mean and a posterior covariance approximation. These first and 
second-order moments are sufficient to obtain a rough sketch of the 
location and dispersion of the posterior distribution. The posterior 
mean, in particular, can be used as a point estimator which is known 
to minimize the mean squared error loss. This loss function is an 
expedient choice if one aims at reconstructing the filter shapes. As 
we have shown in this work, the posterior mean estimate obtained 
with EP yields a smaller mean squared reconstruction error of the 
parameters than maximum likelihood or MAP estimation.

It should be noted, however, that the filter shapes represent sta-
tistical couplings only. Clearly, the existence of a statistical coupling 
does not necessarily imply the existence of a physical coupling as well. 
Statistical dependence could, for example, also be a consequence of 
common input, or other indirect couplings. In fact, it is known that 
noise correlations between retinal ganglion cells are mainly due to 
common input, and not direct synaptic couplings (Trong and Rieke, 
2008). In the model an inferred coupling simply indicates that there 
is a dependence between the neurons which cannot be explained by 
the stimulus filters or the neural self-couplings.

Receptive field estimation aims at a functional characterization 
of neural response properties. Therefore, it is natural to compare 
different estimates by asking how well they can predict spike trains 
generated in response to new test data. Evaluating the performance 
of predicting a particular spike train is often based on the use of 
a spike train metric (Victor and Purpura, 1997), as the predicted 
spike trains have to be compared to the observed spike trains. In 
general, one wants to compare models, and not only particular spike 
trains, and therefore averages the prediction performance across 
very many samples from the two models one wants to compare.

The Bayesian framework offers a principled way to obtain an 
optimal point estimate which minimizes the loss function averaged 
across the posterior distribution. Although it is unlikely that this 
optimization problem can be solved analytically, one can sample 
weights from the posterior and then sample several spike trains 

Table 2 | Mean prediction performance of different point estimates 
averaged over 16 test sets of 1 min length. As we do not have access to 
the true underlying model, the prediction performance here is measured in 
negative log-likelihood score not in differences in likelihoods.

Estimate Negative log likelihood  2

MLE 3.609  10 2  3.665  10 4

MAPL1 3.521  10 2  2.836  10 4

MAPL2 3.497  10 2  2.592  10 4

EPL1 3.461  10−2  2.459  10−4

EPL2 3.716  10 2  2.973  10 4

p-value for EPL1< MAPL2: 0.0219.
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any control to what extent the result is actually constrained by the 
data. By also computing the posterior covariance rather than just 
a point estimator, we obtain confidence intervals which can serve 
exactly to this purpose. For the retinal ganglion cell data analyzed 
in Section “Population of Retinal Ganglion Cells”, for example, 
it allowed us to distinguish between neuronal couplings, that are 
significant and others which were not (see neuron 1 in Figure 7). 
One can also see that whenever the confidence intervals were large, 
the maximum likelihood estimator deviated substantially from the 
Bayesian point estimators.

APPENDIX
EXPECTATION PROPAGATION WITH GAUSSIANS
Finding the posterior moments
In the following we will explain the essentials for approximat-
ing posterior distributions with a Gaussian distribution via the 
Expectation Propagation algorithm.

Suppose the joint distribution of a parameter vector of interest 
w and n independent observations D = {x

1
, ,x

n
} factors as:

p D p p xi
i

n

( , ) ( ) ,w w w
1  

(A1)

where p(w) is a chosen prior distribution. Further we assume, that 
each of the likelihood factors depends on a linear projection of the 
parameters w only. That is, a likelihood factor can be written as:

p x p xi i iw w .
 

(A2)

Hence, each likelihood factor is intrinsically one-dimensional. 
Next, we choose an (un-normalized) Gaussian t i  with which we 
would like to approximate each of those factors:

p x bi i i i i iw w wexp
1

2

2

 
(A3)

exp
1

2 i i i i i i ib t ww w w
 

(A4)

Plugging this into Eq. A1, we obtain for the approximation 
Q(w|D) to the posterior:
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The prior distribution p(w) is allowed to have two different 
forms. It can either be a Gaussian in which case the inverse prior 
covariance has to be added to the outer products of the features 

i
. Another option is, that the prior distribution also factorizes 

into intrinsic one-dimensional terms. This would be the case for 
example, if a Laplace prior is used.
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for these given weights. In other words, we can generate samples 
from the predictive distribution. For the prediction performance 
measure specified by the loss in Eq. 11, for example, an optimal 
point estimate would be given by those weights which on average 
yield the largest likelihood for the ensemble of spike trains drawn 
from the predictive distribution. Neither the MAP nor the poste-
rior mean is optimal with respect to this criterion. Theoretically, 
the MAP is optimized for the zero-one-loss, whereas the posterior 
mean is optimized for the squared error loss (Lehmann and Casella, 
1998). In Appendix “Bayes-Optimal Point Estimate for Average Log-
Loss”, we demonstrate on a simple, concrete example (estimation 
of the probability of a coin flip and log-loss as loss function) that 
an optimized predictor will perform better (on average) than the 
MAP estimate, irrespective of what data was observed. Clearly, this 
approach is only possible if one has at least an approximate model 
of the posterior, as we have presented here.

For a single GLM this will yield a set of parameters which are 
guaranteed to be optimal on average. The optimality of course 
only holds if the model is correct (i.e., the observed spike trains 
are indeed samples from a GLM), the prior is appropriately cho-
sen, and the posterior distribution can be calculated precisely. In 
practice, it is not clear how justifiable each of the the three assump-
tions is going to be. Therefore, it is an interesting open question 
of how much better point estimates which are optimized using 
this approach will perform when compared to other optimization 
methods. Empirically, we observed that the posterior mean estimate 
obtained with EP is always better then the MAP with respect to 
squared error loss. With respect to the prediction error, the MAP 
performed slightly better than the EP posterior mean estimate if 
the weights were drawn from a Gaussian or Laplacian distribution, 
while the EP posterior mean was better than the MAP estimator 
if the weights were drawn from the truly sparse distribution. Of 
course, one could also directly use the predictive distribution as 
it will in general assign higher likelihood to unseen spikes than 
any point estimate. However, the predictive distribution cannot be 
described by a single GLM as it is an average over many models.

Our study also provides some insights about the effect of differ-
ent kinds of prior distributions on the estimation performance. The 
choice of prior in the Bayesian framework offers a principled way 
of regularization. Here, we compared specifically a Gaussian and a 
Laplacian prior. While there was almost no difference in performance 
between the EP posterior mean estimator for the Laplacian and the 
Gaussian prior if the true prior was Gaussian or Laplace, the assump-
tion of a Laplacian prior led to a substantial advantage when the true 
weight vectors had only a few non-zero components. This confirms 
the intuition that one can profit from using a Laplacian prior if one 
sets up a large number of candidate features of which only a few are 
likely to be useful in the end. Interestingly, for the MAP estimator, 
the use of a Laplacian prior almost always led to a substantial impair-
ment and resulted in a relatively small improvement only w.r.t. the 
prediction performance if the weights were sampled from a sparse 
distribution for which almost all coefficients are zero.

While the posterior mean, and even more so the MAP estimator 
can strongly depend on the particular choice of prior distribution, 
this indeterminacy is a problem only if the dispersion of the poste-
rior distribution is not taken into account appropriately. This is a 
strong case for the use of EP as the MAP estimator does not provide 
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tors. The idea of Expectation Propagation is not to stop after one 
such sweep over the factors. EP rather tries to fulfill the consistency 
(Opper and Winther, 2005):
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That is, we replace one of the approximating factors with the 
original one and require the moments not to change. To achieve 
this, one usually select an arbitrary factor i and divide it out of the 
current approximation. The resulting distribution is called the cavity 
distribution Q\i(w). If we call the current moments of the approxi-
mation µ, , the moments in the direction of 

i
 are given by:

i i  (A16)
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Thus, we have for the cavity distribution:
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Where we have abbreviated ui i w. By using the same algebra 
as before, we have for the moments of the cavity distribution:
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Now, we are in the same situation as before, because we want 
to update the parameters 

i
, b

i
 in order to match the moments of 

the approximation to the ones of the cavity distribution times the 
original factor. These moments have to be calculated numerically, 
which can efficiently be computed as the involved integrals are only 
one-dimensional. We call these numerical moments i i, :
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The moments have to match those of the complete approxima-
tion which gives:
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In order to obtain the desired Gaussian approximation to the 
true posterior, the problem is now to find the parameters 

i
, b

i
. 

Once these parameters are found, we get the desired  approximation 
via Eq. A1. If the posterior consists of a single factor, then the 
desired parameters 

1
, b

1
 are easily obtained via moment matching. 

The moments usually have to be calculated by a numerical one-
 dimensional integration along the direction 

1
. To  incorporate a 

new factor, we fix the parameters of the first one and try to find 
suitable b

2
,

2
 for the second factor. More precisely, we want to mini-

mize the Kullback–Leibler distance:

D Q x x Q x p xKL w w w1 2 1 2 2,
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1 2 2
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As both Q distributions are the same and all other factors vary 
only along one dimension 

2
, the only degree of freedom we have 

are the moments in that direction (see Seeger, 2005). Technical 
speaking, we can split the integration of the Kullback–Leibler dis-
tance into two parts. One over the direction 

2
 and one in the 

orthogonal direction. Now, for notational simplicity, we denote 

2 2w u . The moments of the Gaussian side in Eq. A8 can easily 
be computed by looking at the exponent. Let µ

1
, 

1
 be the moments 

of the Q distribution in the direction of 
2
:

1
2

1
21

2 1

2

2 2
2

2 2u u b u
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Thus the moments µ
2
, 

2
 are:

2
1

2

1
1

 
(A11)

2 2
1

1
2b

 
(A12)

Now, these moments have to be matched with the numerically 
obtained ones 2 2,  of Q(u

2
|{x

1
}) p(x

2
|u

2
) by adjusting 

2
, b

2
. This 

can be done, by choosing the parameters according to:

2
2 1

1 1

 
(A13)

b2 2
1

2
1

1

1

 
(A14)

In this fashion we can incorporate one likelihood factor after 
another. This procedure is known as assumed density filtering 
(see Minka, 2001). The obtained approximation to the posterior 
depends on the order in which we incorporate the likelihood fac-
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However, if we want to approximate the marginal likelihood we 
need the C

i
 explicitly:

L P C ti i
i

n

( , ) ( , ) ( , )Model Model Model dw w w
1  

(A34)

The idea is to not only match the moments but the 0th moments 
as well. We require the expectation of P(x

i
  w) and t i ( )w  under 

Q\i(w) to be the same for all i, from which we obtain:

Z E P x E C t C E ti Q i Q i i i Q i

Z

i i i

i

\ \ \( ) ( )w w w

 

(A35)

For the Zi  we have:
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Therefore, we have for the marginal likelihood:
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One can also calculate gradients of the marginal likelihood with 
respect to hyperparameters (see Seeger, 2005).

MATLAB toolbox
Along with the paper we publish a MATLAB toolbox for inference 
in a generalized linear models 

. The code provides rou-
tines for:

1. Sampling spike trains from a GLM
2. Calculation of different point estimators: maximum like-

lihood, MAP, posterior mean
3. Approximation of the posterior covariance via EP.

Either a Laplacian or a Gaussian prior can be specified. For the 
Gaussian prior an arbitrary covariance matrix is allowed.

         
i

i
i i

i
i

i
i ib!
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Now we can plug in the definition of the moments of the cavity 
distribution to get an update for the parameters:

i
new old

 (A28)

b b bi
new old

 (A29)

Together with Eq. A5 this results in a rank one update of the full 
distribution over the complete parameter vector w. More precisely 
we have a rank one update of the covariance matrix of the approxi-
mating Gaussian as well as an update of the mean:

new old

new old

i i
i

i i

i i i

i i
i

b

1

1  
(A30)

Where we have used the Woodbury identity to obtain Eq. A30. 
To implement these equations in a numerically stable manner, one 
usually represents the covariance by it Cholesky decomposition:

LL  (A31)

where L is a lower triangular matrix. To calculate the moments 
for the Laplace factors, we used a technique by Seeger (2008) as 
numerical integration of Laplace factors can unstable.

Marginal likelihood
The marginal Likelihood for the hyperparameters  is defined by:

L P D

P D

P P xi
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w w
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(A32)

When considering only the parameters 
i
, b

i
, EP gives us an un-

normalized approximation to the likelihood factors t i ( ).w  As long as 
one is interested in the posterior only, this does not matter, because:
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Therefore the posterior mean optimizes the expected prediction 
performance as measured by the average log-loss. We can also cal-
culate the difference in expected performance between the posterior 
mean and the MAP, which is given by 

MAP
 = k/N. The difference 

in expected performance is given by:
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The difference in expected log-loss is the Kullback–Leibler diver-
gence between the distribution corresponding to the optimized esti-
mate (the posterior mean) and the distribution induced by the MAP 
estimate. As the Kullback–Leibler divergence is always non-negative, 
this shows that the loss incurred by the MAP estimate is greater than 
the optimized estimate, irrespective of the data (k) that was observed. 
In the extreme cases, i.e., k = 0 or k = N, the difference becomes 
infinite. This simple example shows that, in principle, an extra gain 
in performance can be achieved by optimizing the parameters for 
the expected performance over the posterior distribution.
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BAYES-OPTIMAL POINT ESTIMATE FOR AVERAGE LOG-LOSS
In the following we consider a simple example of a coin flip to 
illustrate the potential benefit of an optimized point estimate 
for the expected loss after having observed the data. Let x be 
Bernoulli distributed with unkown parameter   [0, 1]. If we 
observe N data points x

i
  {0, 1} with k ones and assume a 

uniform prior over   U[0, 1], we can compute the posterior 
distribution for :
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which is a Beta-distribution with parameters  = k  1,  = N  1. 
The posterior mean is given by µ = (k  1)/(N  2). We define the 
average log-loss to be:

loss , ˆ ( )log ˆ
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Then, we can calculate the expected average log-loss after having 
observed the data {x

i
}:
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F can now be minimized with respect to the point estimate ˆ. 
The derivative with respect to ˆ  is given by:
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the approach rarely succeeds in giving a complete account of the 
recorded activity on the population level. For instance, many inter-
esting features of the population response may go unnoticed if 
they have not been explicitly looked for. Furthermore, the strongly 
 distributional nature of the population response, in which indi-
vidual neurons can be responsive to several task parameters at once, 
is often left in the shadows.

Principal component analysis (PCA) and other dimension-
ality reduction techniques seek to alleviate these problems by 
providing methods that summarize neural activity at the popu-
lation level (Nicolelis et al., 1995; Friedrich and Laurent, 2001; 
Zacksenhouse and Nemets, 2008; Yu et al., 2009; Machens et al., 
2010). However, such “unsupervised” techniques will usually 
neglect information about the relevant task variables. While 
the methods do provide a succinct and complete description of 
the population response, the description may yield only limited 
insights into how different task parameters are represented in 
the population of neurons.

In this paper, we propose an exploratory data analysis method 
that seeks to maintain the major benefits of PCA while also extract-
ing the relevant task variables from the data. The primary goal of 
our method is to improve on dimensionality reduction techniques 
by explicitly taking knowledge about task parameters into account. 
The method has previously been applied to data from the prefrontal 
cortex to separate stimulus- from time-related activities (Machens 
et al., 2010). Here, we describe the method in greater detail, derive 
it from first principles, investigate its performance under noise, and 
generalize it to more than two task parameters. Our hope is that this 
method provides a better visualization of a given data set, thereby 

INTRODUCTION
Higher-order cortical areas such as the prefrontal cortex receive 
and integrate information from many other areas of the brain. 
The activity of neurons in these areas often reflects this mix 
of influences. Typical neural responses are shaped both by the 
internal dynamics of these systems as well as by various external 
events such as the perception of a stimulus or a reward (Rao 
et al., 1997; Romo et al., 1999; Brody et al., 2003; Averbeck et al., 
2006; Feierstein et al., 2006; Gold and Shadlen, 2007; Seo et al., 
2009). As a result, neural responses are extremely complex and 
heterogeneous, even in animals that are performing relatively 
facile tasks such as simple stimulus–response associations (Gold 
and Shadlen, 2007).

To make sense of these data, researchers typically seek to relate 
the firing rate of a neuron to one of various experimentally control-
led task parameters, such as a sensory stimulus, a reward, or a deci-
sion that an animal takes. To this end, a number of statistical tools 
are exploited such as regression (Romo et al., 2002; Brody et al., 
2003; Sugrue et al., 2004; Kiani and Shadlen, 2009; Seo et al., 2009), 
signal detection theory (Feierstein et al., 2006; Kepecs et al., 2008), 
or discriminant analysis (Rao et al., 1997). The population response 
is then characterized by quantifying how each neuron in the popu-
lation responds to a particular task parameter. Subsequently, neu-
rons can be attributed to different (possibly overlapping) response 
categories, and population responses can be constructed by averag-
ing the time-varying firing rates within such a category.

This classical, single-cell based approach to electrophysiological 
population data has been quite successful in clarifying what infor-
mation neurons in higher-order cortical areas represent. However, 

Demixing population activity in higher cortical areas
Christian K. Machens*
Group for Neural Theory, INSERM Unité 960, Département d’Etudes Cognitives, École Normale Supérieure, Paris, France

Neural responses in higher cortical areas often display a baffling complexity. In animals performing 
behavioral tasks, single neurons will typically encode several parameters simultaneously, such 
as stimuli, rewards, decisions, etc. When dealing with this large heterogeneity of responses, 
cells are conventionally classified into separate response categories using various statistical 
tools. However, this classical approach usually fails to account for the distributed nature of 
representations in higher cortical areas. Alternatively, principal component analysis (PCA) or 
related techniques can be employed to reduce the complexity of a data set while retaining the 
distributional aspect of the population activity. These methods, however, fail to explicitly extract 
the task parameters from the neural responses. Here we suggest a coordinate transformation 
that seeks to ameliorate these problems by combining the advantages of both methods. Our 
basic insight is that variance in neural firing rates can have different origins (such as changes 
in a stimulus, a reward, or the passage of time), and that, instead of lumping them together, 
as PCA does, we need to treat these sources separately. We present a method that seeks an 
orthogonal coordinate transformation such that the variance captured from different sources 
falls into orthogonal subspaces and is maximized within these subspaces. Using simulated 
examples, we show how this approach can be used to demix heterogeneous neural responses. 
Our method may help to lift the fog of response heterogeneity in higher cortical areas.

Keywords: prefrontal cortex, population code, principal component analysis, multi-electrode recordings, blind source 
separation

Edited by:
Jakob H. Macke, University College 
London, UK

Reviewed by:
Byron Yu, Carnegie Mellon University,  
USA
Satish Iyengar, University of Pittsburgh,  
USA

*Correspondence:
Christian K. Machens, Département 
d’Etudes Cognitives, École Normale 
Supérieure, Paris, France.
e-mail: christian.machens@ens.fr

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/computational_neuroscience/10.3389/fncom.2010.00126/abstract
http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Frontiers in Computational Neuroscience www.frontiersin.org October 2010 | Volume 4 | Article 126 | 101

Machens  Demixing population activity

limited, the response heterogeneity increases strongly when more 
components are allowed (see Figures 3A,B for an example with 
three components).

PRINCIPAL COMPONENT ANALYSIS FAILS TO DEMIX THE RESPONSES
The standard approach to deal with such data sets is to sort cells into 
categories. In our example, this approach may yield two overlapping 
categories of cells, one for cells that respond to the stimulus and one 
for cells that respond to the decision. While this approach tracks 
down which variables are represented in the population, it will fail 
to quantify the exact nature of the population activity, such as the 
precise co-evolution of the neural population activity over time.

A common approach to address these types of problems are 
dimensionality reduction methods such as PCA (Nicolelis et al., 
1995; Friedrich and Laurent, 2001; Hastie et al., 2001; Zacksenhouse 
and Nemets, 2008; Machens et al., 2010). The main aim of PCA 
is to find a new coordinate system in which the data can be repre-
sented in a more succinct and compact fashion. In our toy example, 
even though we may have many neurons with different responses 
(N = 50 in Figure 1, with five examples shown in Figure 1B), the 
activity of each neuron can be represented by a linear combination 
of only two components. In the N-dimensional space of neural 
activities, the two components, z

1
(t,s) and z

2
(t,d), can be viewed 

as two coordinates of a coordinate system whose axes are given 
by the vectors of mixing coefficients, a

1
 and a

2
. Since the first two 

coordinates capture all the relevant information, the components 
live in a two-dimensional subspace. Using PCA, we can retrieve 
the two-dimensional subspace from the data. While the method 
allows us to reduce the dimensionality and complexity of the data 
dramatically, PCA will in general only retrieve the two-dimensional 
subspace, but not the original coordinates, z

1
(t,s) and z

2
(t,d).

To see this, we will briefly review PCA and show what it does to 
the data from our toy model. PCA commences by computing the 
covariances of the firing rates between all pairwise combination 
of neurons. Let us define the mean firing rate of neuron i as the 
average number of spikes that this neuron emits, so that

r
M M M

r t s di
t s d

i
d

M

s

M

t

M dst1

111

( , , )
 

(4)

: ( , , ) .
, ,

r t s di t s d  
(5)

We will use the angular brackets in the second line as a short-
hand for averaging. The variables to be averaged over are indicated 
as subscript on the right bracket. Here, the average runs over all 
time points t, all stimuli s, and all decisions d. For the vector of 
mean firing rates we write r = (r

1
, ,r

N
)T.

The covariance matrix of the data summarizes the second-order 
statistics of the data set,

C t s d t s d
T

t s d
r r r r( , , ) ( , , ) ,

, ,  
(6)

and has size N  N where N is the number of neurons in the data 
set. Given the covariance matrix, we can compute the firing rate 
variance that falls along arbitrary directions in state space. For 
instance, the variance captured by a coordinate axis given by a nor-
malized vector u is simply L = uTCu. We can then look for the axis 

yielding new insights into the function of higher-order areas. We 
will first explain the main ideas in the context of a simple example, 
then show how these ideas can be generalized, and finally discuss 
some caveats and limitations of our approach.

RESULTS
RESPONSE HETEROGENEITY THROUGH LINEAR MIXING
Recordings from higher-order areas in awake behaving animals 
often yield a large variety of neural responses (see e.g., Miller, 1999; 
Churchland and Shenoy, 2007; Jun et al., 2010; Machens et al., 2010). 
These observations at the level of individual cells could imply a com-
plicated and intricate response at the population level for which a 
simplified description does not exist. Alternatively, the large hetero-
geneity of responses may be the result of a simple mixing procedure. 
For instance, response variety can come about if the responses of 
individual neurons are random, linear mixtures of a few generic 
response components (see e.g., Eliasmith and Anderson, 2003).

To illustrate this insight, we will construct a simple toy model. 
Imagine an animal which performs a two-alternative-forced choice 
task (Newsome et al., 1989; Uchida and Mainen, 2003). In each trial 
of such a task, the animal receives a sensory stimulus, s, and then 
makes a binary decision, d, based on whether s falls into one of 
two response categories. If the animal decides correctly, it receives 
a reward. We will assume that the activity of the neurons in our toy 
model depends only on the stimulus s and the decision d.

To obtain response heterogeneity, we construct the response 
of each neuron as a random, linear mixture of two underlying 
response components, one that represents the stimulus, z

1
(t,s), and 

one that represents the decision, z
2
(t,d), see Figure 1A. The time-

varying firing rate of neuron i is then given by

r t s d a z t s a z t d c ti i i i i( , , ) ( , ) ( , ) ( ).1 1 2 2  (1)

Here, the parameters a
i1
 and a

i2
 are the mixing coefficients of 

the neuron, the bias parameter c
i
 describes a constant offset, and 

the term 
i
(t) denotes additive, white noise. We assume that the 

noise of different neurons can be correlated so that

i j t ijt t H( ) ( ) ( ) ,
 

(2)

where the angular brackets denote averaging over time, and H
ij
 is the 

noise covariance between neuron i and j. We will assume that there 
are N neurons and, for notational compactness, we will assemble 
their activities into one large vector, r(t,s,d) = (r

1
(t,s,d), ,r

N
(t,s,d))T. 

After doing the same for the mixing coefficients, the constant offset, 
and the noise, we can write equivalently,

r a a c n( , , ) ( , ) ( , ) ( ).t s d z t s z t d t1 1 2 2  (3)

Without loss of generality, we can furthermore assume that the 
mixing coefficients are normalized so that a ai

T
i 1 for i {1,2}. Since 

we assume that the mixing coefficients are drawn at random, and 
independently of each other, the first and second coefficient will 
be uncorrelated, so that on average, a a1 2 0T , implying that a

1
 and 

a
2
 are approximately orthogonal.
With this formulation, individual neural responses mix informa-

tion about the stimulus s and the decision d, leading to a variety of 
responses, as shown in Figure 1B. While with only two underly-
ing components, the overall heterogeneity of responses remains 
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where the trace-operation, tr(·), sums over all the diagonal entries 
of a matrix, and I

n
 denotes the n  n identity matrix.

Mathematically, the principal axes u
i
 correspond to the eigenvec-

tors of the covariance matrix, C, which can nowadays be computed 
quite easily using numerical methods. Subsequently, the data can 
be plotted in the new coordinate system. The new coordinates of 
the data are given by

y r r( , , ) ( , , ) .t s d U t s dT

 
(8)

that captures most of the variance of the data by  maximizing the 
 function L with respect to u subject to the normalization constraint 
uTu = 1. The solution corresponds to the first axis of the coordinate 
system that PCA constructs. If we are looking for several mutually 
orthogonal axes, these can be conveniently summarized into an 
N  n orthogonal matrix, U = [u

1
, ,u

n
]. To find the maximum 

amount of variance that falls into the subspace spanned by these 
axes, we need to maximize

L C U CU U U Ii
T

i
T T

n
i

n

u u tr subject to( ) ,
1  

(7)

Mixing + Noise

De−Mixing

PCA

Variance Separation

0 1 2 3 4
−100

0

100

re
la

tiv
e 

ra
te

 (
H

z)

time (sec)
     

0 1 2 3 4
0

10

20

30

time (sec)

fir
in

g 
ra

te
 (

H
z)

                    

0 1 2 3 4
−100

0

100

re
la

tiv
e 

ra
te

 (
H

z)

time (sec)
     

0 1 2 3 4
−100

0

100

re
la

tiv
e 

ra
te

 (
H

z)

time (sec)
     

A

B

C

D

FIGURE 1 | Mixing and demixing of neural responses in a simulated 
two-alternative forced choice task. (A) We assume that neural responses are 
linear mixtures of two underlying components, one of which encodes the 
stimulus (left, colors representing different stimuli), and one of which encodes the 
binary decision (right) of a two-alternative-forced choice task. For concreteness, 
we assume that the task comprised Ms = 8 stimuli and Md = 2 decisions. (B) 
Single cell responses are random combinations of these two components. We 
assume that N = 50 neurons have been recorded, five of which are shown here. 
The noisy variability of the responses was obtained by transforming the 
deterministic, linear mixture of each neuron into 10 inhomogeneous Poisson spike 

trains, and then re-estimating the firing rates by low-pass filtering and averaging 
the spike trains. This type of noise may be considered more realistic, even if it 
deviates from the assumptions in the main text. In our numerical example, this did 
not prove to be a problem. To systematically address such problems, however, one 
may apply a variance-stabilizing transformation to the data, such as taking the 
square-root of the firing rates before computing the covariance matrix (see e.g., 
Efron, 1982). (C) PCA uncovers the underlying two-dimensionality of the data, but 
the resulting coordinates do not demix the separate sources of firing rate variance. 
(D) By explicitly contrasting these separate sources, we can retrieve the original 
components up to a sign.
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DEMIXING RESPONSES USING COVARIANCES OVER  
MARGINALIZED DATA
To solve these problems, we need to separate the different causes of 
firing rate variability. In the context of our example, we can attribute 
changes in the firing rates to two separate sources, both of which 
contribute to the covariance in Eq. 6. First, firing rates may change 
due to the externally applied stimulus s. Second, firing rates may 
change due to the internally generated decision d.

To account for these separate sources of variance in the popu-
lation response, we suggest to estimate one covariance matrix for 
every source of interest. Such a covariance matrix needs to be spe-
cifically targeted toward extracting the relevant source of firing 
rate variance without contamination by other sources. Naturally, 
this step is somewhat problem-specific. For our example, we will 
first focus on the problem of estimating firing rate variance caused 
by the stimulus separately from firing rate variance caused by the 
decision. When averaging over all stimuli, we obtain the marginal-
ized firing rates r(t,d) = r(t,s,d)

s
. The covariance caused by the 

stimulus is then given by the N  N matrix

C t s d t d t s d t ds

T

t s d
r r r r( , , ) ( , ) ( , , ) ( , ) .

, ,  
(13)

We will refer to C
s
 as the marginalized covariance matrix for the 

stimulus. We can repeat the procedure for the decision-part of the 
task. Marginalizing over decisions, we obtain r(t,s) = r(t,s,d)

d
 and

C t s d t s t s d t sd

T

t s d
r r r r( , , ) ( , ) ( , , ) ( , ) .

, ,  
(14)

Having two different covariance matrices, one may now per-
form two separate PCAs, one for each covariance matrix. In turn, 
one obtains two separate coordinate systems, one in which the 
principal axes point into the directions of state space along which 
firing rates vary if the stimulus is changed, the other in which they 
point into the directions along which firing rates vary if the deci-
sion changes.

For the toy model, it is readily seen that the marginal-
ized covariance matrices are given by C M Hs

T
sa a1 1 11,  

and C M Hd
T

da a2 2 22,  with M
s,11

 = (z
1
(t,s)  z

1
(t))2  and 

M
d,22

 = (z
2
(t,d)  z

2
(t))2 . Consequently, the principal eigenvec-

tors of C
s
 and C

d
 will be equivalent to the mixing coefficients a

1
 

and a
2
, at least as long as the variances M

s,11
 and M

d,22
 are much 

larger than the size of the noise, which is given by tr(H).
If the noise term is not negligible, it will force the eigenvectors 

away from the actual mixing coefficients. This problem can be alle-
viated by using the orthogonality condition, a a1 2 0T , which implies 
that there are separate sources of variance for the stimulus- and 
decision-components. To this end, we can seek to divide the full 
space into two subspaces, one that captures as much as possible 
about the stimulus-dependent covariance C

s
, and another, that cap-

tures as much as possible about the decision-dependent covariance 
C

d
. Our goal will then be to maximize the function

L U C U U C UT
s

T
dtr tr1 1 2 2  

(15)

with respect to the two orthogonal matrices U
1
 and U

2
 whose 

columns contain the basis vectors of the respective subspaces. 
The first term in Eq. 15 captures the total variance falling into 

These new coordinates are called the principal components. Note 
that the new coordinate system has a different origin from the 
old one, since we subtracted the vector of mean firing rates, r. 
Consequently, the principal components can take both negative 
and positive values. Note also that the principal components are 
only defined up to a minus sign since every coordinate axis can 
be reflected along the origin. For our artificial data set, only two 
eigenvalues are non-zero, so that two principal components suffice 
to capture the complete variance of the data. The data in these two 
new coordinates, y

1
(t,s,d) and y

2
(t,s,d), are shown in Figure 1C.

Our toy model shows how PCA can succeed in summarizing the 
population response, yet it also illustrates the key problem of PCA: 
just as the individual neurons, the components mix information 
about the different task parameters (Figure 1C), even though the 
original components do not (Figure 1A). The underlying problem 
is that PCA ignores the causes of firing rate variability. Whether 
firing rates have changed due to the external stimulus s, due to the 
internally generated decision d, or due to some other cause, they 
will enter equally into the computation of the covariance matrix 
and therefore not influence the choice of the coordinate system 
constructed by PCA.

To make these notions more precise, we compute the cov-
ariance matrix of the simulated data. Inserting Eq. 3 into Eq. 6, 
we obtain

C M M M HT T T Ta a a a a a a a1 1 11 2 2 22 1 2 2 1 12 ,
 

(9)

where M
11

 and M
22

 denote firing rate variance due to the first 
and second component, respectively, M

12
 denotes firing rate 

variance due to a mix of the two components, and H is the 
covariance matrix of the noise. Using the short-hand notations 
z

1
(t) = z

1
(t,s)

s
, z

2
(t) = z

2
(t,d)

d
, and z

i
 = z

i
(t)

t
 for i [1,2], the 

different variances are given by

M z t s z
t s11 1 1

2( ( , ) ) ,
,  

(10)

M z t d z
t d22 2 2

2( ( , ) ) ,
,  

(11)

M z t z z t z
t12 1 1 2 2( ( ) )( ( ) ) .

 
(12)

Principal component analysis will only be able to segregate the 
stimulus- and decision-dependent variance if the mixture term M

12
 

vanishes and if the variances of the individual components, M
11

 and 
M

22
, are sufficiently different from each other. However, if the two 

underlying components z
1
(t,s) and z

2
(t,d) are temporally correlated, 

then the mixture term M
12

 will be non-zero. Its presence will then 
force the eigenvectors of C away from a

1
 and a

2
. Moreover, even if 

the mixture term vanishes, PCA may still not be able to retrieve the 
original mixture coefficients, if the variances of the individual compo-
nents, M

11
 and M

22
 are too close to each other when compared to the 

magnitude of the noise: in this case the eigenvalue problem becomes 
degenerate. In general, the covariance matrix therefore mixes differ-
ent origins of firing rate variance rather than separating them. While 
PCA allows us to reduce the dimensionality of the data, the coordinate 
system found may therefore provide only limited insight into how the 
different task parameters are represented in the neural activities.
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forth between the single cell and population level description of the 
neural activities. Just as in PCA, we can project the original firing 
rates of the neurons onto the new coordinates,

y r r( , , ) ( , , ) ,t s d U t s dT

 (18)

and the two leading coordinates for the toy model are shown in 
Figure 1D. These components correspond approximately to the 
original components, z

1
(t,s) and z

2
(t,d). In turn, we can reconstruct 

the activity of each neuron by inverting the coordinate transform,

r y r( , , ) ( , , ) .t s d U t s d  (19)

For every neuron this yields a set of N reconstruction coefficients 
which correspond to the rows of U.

Since two coordinates were sufficient to capture most of the vari-
ance in the toy example, the firing rate of every neuron can be recon-
structed by a linear combination of these two components, y

1
(t,s,d) 

and y
2
(t,s,d). For each neuron, we thereby obtain two reconstruction 

coefficients, u
i1
 and u

i2
. The set of all reconstruction coefficients 

constitutes a cloud of points in a two-dimensional space. The distri-
bution of this cloud, together with the activities of several example 
neurons are shown in Figure 2. This plot allows us to link the single 
cell with the population level by visualizing how the activity of each 
neuron is composed out of the two underlying components.

GENERALIZATIONS TO MORE THAN TWO PARAMETERS
In our toy example, we have assumed that each task parameter 
is represented by a single component. We note that this is a fea-
ture of our specific example. In more realistic scenarios, a single 

the  subspace spanned by the columns of U
1
, and the second term 

the total  variance falling into the subspace given by U
2
. Writing 

U = [U
1
,U

2
], we obtain an orthogonal matrix for the full space, and 

the orthogonality conditions are neatly summarized by UUT = I. 
As shown in the Appendix, the maximization of Eq. 15 under these 
orthogonality constraints can be solved by computing the eigenvec-
tors and eigenvalues of the difference of covariance matrices,

D C Cs d .  (16)

In this case, the eigenvectors belonging to the positive eigenval-
ues of D form the columns of U

1
 and the eigenvectors belonging 

to the negative eigenvalues of D form the columns of U
2
. As with 

PCA, the positive or negative eigenvalues can be sorted according 
to the amount of variance they capture about C

s
 and C

d
.

For the simulated example, we obtain

D M MT
s

T
da a a a1 1 11 2 2 22, , ,

 
(17)

where the noise term H has now dropped out. Diagonalization 
of D results in two clearly separated eigenvalues, M

s,11
 and M

d,11
, 

and in two eigenvectors, a
1
 and a

2
, that correspond to the original 

mixing coefficients.

LINKING THE POPULATION LEVEL AND THE SINGLE CELL LEVEL
As a result of the above method, we obtain a new coordinate sys-
tem, whose basis vectors are given by the columns of the matrix U. 
This coordinate system provides simply a different, and hopefully 
useful, way of representing the population response. One major 
advantage of orthogonality is that one can easily move back and 
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FIGURE 2 | Linking the single cell and population level. Using the coordinate 
system retrieved by separating variances, we can illuminate the contributions of 
each component to the individual neural responses. The center shows the 

contribution of the stimulus- and decision-related components to each individual 
neuron. The surrounding plots show the activity of eight example neurons, 
corresponding to the respective dots in the center.
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Eq. 24 with standard gradient ascent methods. In any case, it may 
often be a good idea to use PCA on the full covariance matrix of the 
data, Eq. 6, to reduce the dimensionality of the data set prior to the 
demixing procedure. Indeed, this preprocessing step was applied in 
Machens et al. (2010).

FURTHER GENERALIZATIONS AND LIMITATIONS OF THE METHOD
The above formulation of the problem may be further generalized 
by allowing individual components to mix parameters in non-
trivial ways. To study this scenario in a simple example, imagine that 
in the above two-alternative-forced choice task, in addition to the 
stimulus- and decision-dependent component, there were a purely 
time-dependent component, z

3
(t), locked to the time structure of 

the task, so that

r a a a c n( , , ) ( , ) ( , ) ( ) ( ).t s d z t s z t d z t t1 1 2 2 3 3  (25)

This scenario is illustrated in Figures 3A,B. As before, we can 
compute marginalized covariance matrices, that capture the covari-
ance due to the stimuli s, the decisions d, or the time points t. While 
the marginalized covariance matrices for the stimuli and decisions, 
C

s
 and C

d
, have one significant eigenvalue each, and thereby capture 

the relevant component (Figure 3C), the marginalized covariance 
matrix for time, C

t
, now has three significant eigenvalues, and there-

fore does not allow us to retrieve the purely time-dependent com-
ponent z

3
(t). The reason for this failure is that all three components 

in Eq. 25 have a time-dependence that cannot be averaged out. By 
design, the stimulus-averaged first component, z

1
(t) = z

1
(t,s)

s
, and 

the decision-averaged second component, z
2
(t) = z

2
(t,d)

d
 do not 

vanish. In other words, the stimulus- and decision-components 
have intrinsic time-dependent variance that cannot be separated 
from the stimulus- or decision-induced variance.

Consequently, the subspace spanned by the first three eigenvec-
tors of C

t
 overlaps with the respective subspaces spanned by the 

first eigenvectors of C
s
 and C

d
. One way to visualize this overlap 

is to take the five relevant eigenvectors (three for C
t
, one for C

s
, 

and one for C
d
) and compute how much of the variance of each 

marginalized covariance matrix they capture. To do so, we compute 
the “confusion matrix”

S
C

Cij
i
T

j i

j

u u

tr( )
.

 

(26)

This confusion matrix measures what percentage of the variance 
attributed to the j-th cause is captured by the i-th coordinate. For 
the above example, it is illustrated in Figure 3D. If in one row of this 
matrix, more than one entry is significantly above 0, then more than 
one covariance matrix has significant variance along that direction of 
state space. Whereas the eigenvectors of the C

s
 and C

d
 matrix do not 

interfere with each other, i.e., they are approximately orthogonal, the 
eigenvectors of the C

t
 matrix interfere with both the C

s
 and C

d
 eigen-

vectors, i.e., the respective subspaces overlap. The method introduced 
above will still yield a result in this case, however, the new coordinate 
system will generally not retrieve the original components.

An ad hoc solution to this problem may be to section the three-
dimensional eigenvector subspace of C

t
, and identify a direction 

that is orthogonal to the first eigenvectors of C
s
 and C

d
, which will 

task parameter could potentially be represented by more than 
one  component. For instance, if one set of neurons fires tran-
siently with respect to a stimulus s, but another set of neurons 
fires tonically, then the firing rate dynamics of the stimulus rep-
resentation are already two-dimensional, even without taking the 
decision into account. In such a case, we can still use the method 
described above to retrieve the two subspaces in which the respec-
tive components lie.

However, the number of task parameters will often be larger than 
two. In the two-alternative-forced choice task, there are at least four 
parameters that could lead to changes in firing rates: the timing of 
the task, t, potentially related to anticipation or rhythmic aspects 
of a task, the stimulus, s, the decision, d, and the reward, r. Even 
more task parameters could be of interest, such as those extracted 
from previous trials etc.

These observations raise the question of how the method can be 
generalized if there are more than two task parameters to account 
for. To do so, we write the relevant parameters into one long vector 

 = (
1
,

2
, ,

M
), and assume that the firing rates of the neurons 

are linear mixtures of the form

r a a( , ) ( , ) ( , )t z t z t11 11 1 12 12 1  (20)

a a21 21 2 22 22 2z t z t( , ) ( , )  (21)

aM M Mz t1 1( , ) ,  (22)

where each task parameter is now represented by more than one 
component. For each parameter, 

i
, we can compute the marginal-

ized covariance matrix,

C t t t ti

T

t
i i

r r r r( , ) ( , ) ( , ) ( , ) ,
,  

(23)

which measures the covariance in the firing rates due to changes in 
the parameter 

i
. Diagonalizing each of these covariance matrices 

will retrieve the various subspaces corresponding to the different 
mixture coefficients. For instance, when diagonalizing C

1
, we obtain 

the subspace for the components that depend on the parameter 

1
. The relevant eigenvectors of C

1
 will therefore span the same 

subspace as the mixture coefficients a
11

, a
12

, etc., in Eq. 22.
As before, the method’s performance under additive noise can 

be enhanced by maximizing a single function (see Appendix)

L U C Ui
T

i i
i

M

tr
1  

(24)

subject to the orthogonality constraint UTU = I for U = [U
1
,U

2
, ,U

M
]. 

Maximization of this function will force the firing rate variance due 
to different parameters 

i
 into orthogonal subspaces (as required by 

the model). If M = 1, then maximization results in a standard PCA. 
In the case M = 2, maximization requires the diagonalization of the 
difference of covariance matrices C

1
  C

2
, as in Eq. 16. In the case 

M  2, various algorithms can be constructed to find local maxima 
of L (see e.g., Bolla et al., 1998). To our knowledge, a full understand-
ing of the global solution structure of the maximization problem 
does not exist for M  2. In the Appendix, we show how to maximize 
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decision-components. The rank of C
t
 then reduces to one, and the 

different components separate nicely (Figures 3E,F,G). While feasi-
ble in our toy scenario, these ad hoc procedures are not guaranteed 
to work for real data, when more dimensions are involved, and 

then  correspond to the purely time-dependent component z
3
(t). 

Alternatively, we could restrict the estimation of C
t
 to the time 

before stimulus onset, so that the covariance matrix is no longer 
contaminated by time-dependent variance from the stimulus- or 
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FIGURE 3 | Heterogeneous responses as a result of linear mixture of three 
components. (A) We now assume that neural responses are constructed from 
three underlying components, one of which encodes only the task rhythm (left), 
while the two others encode stimuli and responses, as in Figure 1. (B) Single 
cell responses are random combinations of these three components. We again 
assume that N = 50 neurons have been recorded, five of which are shown here, 
and response noise was generated as in Figure 1. (C) Whereas the marginalized 
covariance matrices for stimulus and decision, Cs and Cd, have only one 
significant eigenvalue, the one for time, Ct, features three eigenvalues above the 
noise floor. (D) The confusion matrix displays the percentage of variance 

captured by the different components (y-axis) with respect to the different 
marginalized covariance matrices (x-axis). The Cs row shows, for instance, that 
the first eigenvector of Cs captures a significant amount of variance from the Cs 
matrix (which is good), but it also captures a significant amount of variance from 
the Ct matrix (which is bad). (E) By estimating the time-dependent covariance 
over a time window limited to t [0,2], we can reduce the number of significant 
eigenvalues to one. (F) In turn, every row of the confusion matrix has only one 
entry, showing that every component captures the variance of one 
marginalized covariance matrix only. (G) The firing rates projected onto the 
components from (F).
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individual neural responses is often not sufficient, hence the quest 
for methods that provide a useful and interpretable summary of 
the population response.

To provide such a summary, we made one crucial assump-
tion. We assumed that the heterogeneity of neural responses 
is caused by a simple mixing procedure in which the firing 
rates of individual neurons are random, linear combinations 
of a few fundamental components. We believe that such a sce-
nario is likely to be responsible for at least part of the observed 
response diversity. Higher-level areas of the brain are known to 
integrate and process information from many other areas in the 
brain. The presumed fundamental components could be given 
by the inputs and outputs of these areas. If such components 
are mixed at random at the level of single cells, then upstream 
or downstream areas can access the relevant information with 
simple linear and orthogonal read-outs. Such linear popula-
tion read-outs have long been known to work quite well in 
various neural systems (Seung and Sompolinsky, 1993; Salinas 
and Abbott, 1994).

To retrieve the components from recorded neural activity, 
and thereby at least partly reduce the response heterogeneity, 
we suggest to estimate the covariances in the firing rates that 
can be attributed to the experimentally controlled, external task 
parameters. Using these marginalized covariance matrices, we 
showed how to construct an orthogonal coordinate system such 
that individual coordinates capture the main aspects of the task-
related neural activities and the coordinate system as a whole 
captures all aspects of the neural activities. In the new coordinate 
system, firing rate variance due to different task parameters is 
projected onto orthogonal coordinates, making visualization and 
interpretation of the data particularly easy. We note, though, that 
the existence of a useful, orthogonal coordinate system is not 
guaranteed by the method, but can only be a feature of the data. 
Our method will generally not return useful results if mixing is 
linear, but not orthogonal, or if mixing is non-linear. Nonetheless, 
the case of non-orthogonal, linear mixing, may still be inves-
tigated through separate PCAs on the different marginalized 
covariance matrices.

Other methods exist that address similar goals. Most promi-
nently, application of canonical correlation analysis (CCA) to 
the type of data discussed here would also construct a coordinate 
system whose choice is influenced by knowledge about the task 
structure. In our context, CCA would seek a coordinate axis in 
the state space of neural responses and a coordinate axis in the 
space of task parameters, such that the correlation between the 
two is maximized. Whether this method would yield a useful, i.e., 
interpretable, coordinate system for real data sets remains open 
to investigation. CCA has recently been proposed as a method to 
construct population responses in sensory systems (Macke et al., 
2008) and as a way to correlate electrophysiological with fMRI data 
(Biessmann et al., 2009).

Further extensions and generalizations of PCA exist, some of 
which are specifically targeted to the type of data we have dis-
cussed here. The work of Yu et al. (2009), for instance, explicitly 
addresses the problems that are incurred by estimating firing rates 

more complex  confusion matrices may result. However, the latter 
solution demonstrates that by a judicious choice of marginalized 
covariance matrices, one may sometimes be able to avoid such 
problems of non-separability.

CONNECTION TO BLIND SOURCE SEPARATION METHODS
In all of these scenarios, we assumed that the firing rates r are 
linear mixtures of a set of underlying sources z, each with mean 
0, so that

r z c.A  (27)

The problem that we have been describing then consists in 
estimating the unknown sources, z, the unknown mixture coef-
ficients, A, and the unknown bias parameters c from the observed 
data, r. Without loss of generality, we can assume that the sources 
are centered so that z  = 0. Ours is therefore a specific version 
of the much-studied blind source separation problem (see e.g., 
Molgedey and Schuster, 1994; Bell and Sejnowski, 1995). In many 
standard formulations of this problem, one assumes that the 
sources are uncorrelated, or even statistically independent, which 
implies that the covariance matrix of the sources, M = zzT

t
, 

is diagonal.
In our case, we do not want to make this assumption, which 

rules out the use of many blind source separation methods, such 
as independent component analysis (Hyvärinen et al., 2001). On 
the upside, we do have additional information, in the form of n 
task parameters, that provide indirect clues toward the underlying 
sources. More specifically, we assume that the sources are of the 
form z

k
(t,

k
) where 

k
 denotes a single task parameter, or a specific 

combination of task parameters. For each task parameter, we can 
estimate the marginalized covariance matrix C

i
, which in turn is 

given by C
i
 = AM

i
AT with

M t t t ti

T

t
i i

z z z z( , ) ( , ) ( , ) ( , )
,  

(28)

As long as different task parameters are distributed over differ-
ent components, the matrix M

i
 will be block-diagonal. In the most 

general case, however, as discussed above, this will not be true. If one 
parameter is shared among several components, then the respec-
tive marginalized covariance matrix will capture variance from all 
of these components, and maximization of Eq. 24 will not neces-
sarily retrieve the original components. Future work may show 
how this general, semi-blind source separation problem can be 
solved by using knowledge about the structure of the marginalized 
M-matrices. For now, we suggest that in many practical scenarios, 
a judicious choice of covariance measurements, for instance, by 
focusing on particular time intervals of a task etc., may help to 
partly reduce the problem to those that are completely separable, 
as in Eq. 22.

DISCUSSION
In this article, we addressed the problem of analyzing neural 
recordings with strong response heterogeneity. A key problem for 
these data sets is first and foremost the difficulty of visualizing the 
neural activities at the population level. Simply parsing through 
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previously studied data set (Machens et al., 2010). Many other 
data sets with strong response heterogeneity may be amenable to 
a similar analysis.
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prior to the dimensionality reduction. They show how to com-
bine these two separate steps into a single one using the theory 
of Gaussian processes. Their work is therefore complementary to 
ours, and could potentially be incorporated into the methodology 
introduced here.

Methods to summarize population activity have been employed 
in many different neurophysiological settings (Friedrich and 
Laurent, 2001; Stopfer et al., 2003; Paz et al., 2005; Narayanan and 
Laubach, 2009; Yu et al., 2009). Our main aim here was to modify 
these methods such that experimentally controlled parameters 
are taken into account and influence the construction of a new 
coordinate system. A first application of this method to neural 
responses from the prefrontal cortex revealed new aspects of a 
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APPENDIX
MAXIMIZATION FOR TWO COVARIANCE MEASUREMENTS
Assume that our goal is to separate the state space into two mutually 
orthogonal subspaces, such that most of the variance measured by 
C

1
 falls into one subspace, and most of the variance measured by C

2
 

into the orthogonal subspace. To do so, we define a matrix U
1
 whose 

columns contain a set of vectors u
i
 with i = 1, ,M, and a matrix 

U
2
 whose columns contain a set of vectors u

i
 with i = M  1, ,N. 

All vectors are mutually orthonormal, so that u ui
T

j ij. Our goal 
will then be to maximize

L U C U U C UT Ttr tr1 1 1 2 2 2 .
 

(29)

The orthogonality constraint is given by the condition 
U U U U IT T

1 1 2 2 . By the rules of traces, and using this constraint, 
we obtain

L U U C U U C

U U C I U U C

U U

T T

T T

T

tr tr

tr

tr

1 1 1 2 2 2

1 1 1 1 1 2

1 1 (CC C tr C1 2 2) ( ).

The last line is maximized if the matrix U
1
 contains all the 

eigenvectors that correspond to the positive eigenvalues of C
1
  C

2
. 

Consequently, the matrix U
2
 will contain all the eigenvectors cor-

responding to the negative eigenvalues of C
1
  C

2
. The extremal 

eigenvalues of the difference matrix, i.e., the largest and the small-
est, correspond to the two eigenvectors that capture most of the 
variance in C

1
 and C

2
 under the given trade-off.

ADDITIVE NOISE DOES NOT AFFECT THE MAXIMUM
To study the maximization problem under condition of additive 
noise, we assume n covariance measurements so that

C S Hi i ,  (30)

where S
i
 is the signal-part and H the noise part of the covariance 

matrix. Since the noise acts additively on the firing rates, every 
covariance measurement is polluted with the same amount of noise, 
H, compare Eq. 23. When maximizing Eq. 24 with respect to an 
orthogonal transform, U = [U

1
, ,U

n
], we will then target only the 

signal part of the covariance matrices, but not the noise part. To 
see that, we note that

L U C Ui
T

i i
i

n

tr
1  

(31)

tr U U Ci i
T

i
i

n

1  
(32)

tr U U C I U U Ci i
T

i i i
T

i

n

n
i

n

1

1

1

1

 
(33)

tr U U C C Ci i
T

i n n
i

n

( )
1

1

 
(34)

tr trU U S S S Hi i
T

i n
i

n

n( ) ( ).
1

1

 
(35)

Accordingly, the projection operators, U Ui i
T , which project 

the variance into the relevant subspaces, target the difference of 
covariance matrices, C

i
  C

n
, so that the noise drops out, since 

C
i
  C

n
 = S

i
  S

n
.

MAXIMIZATION FOR N COVARIANCE MEASUREMENTS
Maximization of Eq. 24,

L U C U UUi
T

i i
T

i

n

tr subject to 1
1  

(36)

is a quadratic optimization problem under quadratic constraints 
which can be solved numerically by any of a standard set of meth-
ods. A specific method to solve a related problem has been proposed 
in Bolla et al. (1998). Here, we present an algorithm based on a 
simple gradient ascent.

First, we need an initial guess for the U
i
. We suggest to use the 

first principal axes (eigenvector with largest eigenvalue) of the mar-
ginalized covariance matrix C

i
. This procedure, however, will gener-

ally yield a set of matrices U
i
 which are not mutually orthogonal. 

To orthogonalize these vectors, one can use the method of sym-
metric orthogonalization. Given the initial guess for the matrix, 
U = [U

1
, ,U

n
], the transform

U U U UT( ) /1 2

 (37)

will yield a matrix with mutually orthogonal columns so that 
UTU = I. We will use this matrix U as our initial guess for the 
gradient ascent.

Next, let us define the matrix Q
i
 as an n  n matrix of zeros 

in which only the entry in the i-th column and i-th row is 1. The 
maximization over the captured variances, Eq. 36, can then be 
rewritten as

L U C UQ U U IT
i i

T

i

n

tr subject to ,
1  

(38)

which allows us to compactly write the matrix derivative of L as

L

U
C UQ

i

n

i i
1

.
 

(39)

Hence, to maximize L on the manifold of orthogonal matrices, 
U, we need to iterate the equations,

U U
L

U  
(40)

U U U UT( ) ,/1 2

 (41)

where the first equation performs a step toward the maxi-
mum, whose length is determined by the learning rate , 
and the second step projects U back onto the manifold of 
orthogonal matrices.
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et al., 2000; Brown et al., 2004). In particular, whether or not 
coincident spikes of pairs of neurons participate in synchronized 
“cluster-events” cannot be decided on measurements of pairwise 
correlation alone; this can only be achieved by the systematic 
assessment of higher-order correlations, i.e., statistical couplings 
among triplets, quadruplets, and larger groups (Martignon et al., 
1995; Staude et al., 2010). Importantly, the nonlinear dynamics of 
spike generation makes neurons extremely sensitive for synchrony 
in their input pools (Softky, 1995; König et al., 1996). Ignoring 
these higher-order correlations in the statistical description of 
spiking populations is therefore hardly advisable (Bohte et al., 
2000; Kuhn et al., 2003).

Initially, the main obstacle for assessing the higher-order struc-
ture of neuronal populations were limitations in experimental 
methodology, as until recently state-of-the-art electrophysiologi-
cal setups allowed to record only few neurons simultaneously. The 
advent of multi-electrode arrays and optical imaging techniques, 
however, now reveals fundamental shortcomings of available analy-
sis tools (Brown et al., 2004). Mathematical frameworks to model 
and estimate higher-order correlations typically assign one “interac-
tion parameter” for every subgroup of the population, leading to a 
2N  1 dimensional model for a population comprising N neurons 
(Martignon et al., 1995, 2000). The associated estimation problem 
greatly suffers from this combinatorial explosion: the number of 
parameters to be estimated from the available sample size (a popu-
lation of N = 100 neurons implies 1030 parameters while 100 s of 
data provide only 106 samples) illustrates the principal infeasibil-
ity of this approach. In fact, the estimation of such higher-order 

INTRODUCTION
It has long been suggested that fundamental insight into the nature 
of neuronal computation requires the understanding of the coop-
erative dynamics of populations of neurons (Hebb, 1949). A con-
troversial issue in this debate is the role of correlations among 
nerve cells. On the one hand, an increasing body of both experi-
mental (e.g., Gray and Singer, 1989; Vaadia et al., 1995; Riehle et al., 
1997; Bair et al., 2001; Kohn and Smith, 2005; Shlens et al., 2006; 
Fujisawa et al., 2008; Pillow et al., 2008) and theoretical (Abeles, 
1991; Diesmann et al., 1999; Kuhn et al., 2003) literature supports 
the concept of cooperative computation on various temporal and 
spatial scales. On the other hand, the mostly detrimental effect of 
correlations on rate-based information transmission and process-
ing (Abbott and Dayan, 1999; Averbeck and Lee, 2006; Josić et al., 
2009) has generated a strong opposition toward correlation-based 
concepts of cortical coding (Shadlen and Newsome, 1998; Averbeck 
et al., 2006; Schneidman et al., 2006; Ecker et al., 2010). Evidently, 
a thorough description of the correlation structure of neuronal 
populations is an indispensable prerequisite to resolve these oppos-
ing theoretical viewpoints (Brown et al., 2004).

Experimental reports on coordinated activity at the level of 
spike trains resort almost exclusively to correlations between pairs 
of nerve cells (e.g., Eggermont, 1990; Vaadia et al., 1995; Kreiter 
and Singer, 1996; Riehle et al., 1997; Kohn and Smith, 2005; Sakurai 
and Takahashi, 2006; Fujisawa et al., 2008; Ecker et al., 2010). Such 
pairwise correlations cannot, as a matter of principle, resolve the 
cooperative activity of neuronal populations to the extent required 
for rigorous hypothesis testing (Gerstein et al., 1989; Martignon 

Higher-order correlations in non-stationary parallel spike 
trains: statistical modeling and inference
Benjamin Staude1, Sonja Grün2,3 and Stefan Rotter1*
1 Bernstein Center Freiburg and Faculty of Biology, Albert-Ludwig University, Freiburg, Germany
2 Unit of Statistical Neuroscience, RIKEN Brain Science Institute, Wako-Shi, Japan
3 Bernstein Center for Computational Neuroscience, Humboldt Unverstität zu Berlin, Berlin, Germany

The extent to which groups of neurons exhibit higher-order correlations in their spiking activity is 
a controversial issue in current brain research. A major difficulty is that currently available tools 
for the analysis of massively parallel spike trains (N 10) for higher-order correlations typically 
require vast sample sizes. While multiple single-cell recordings become increasingly available, 
experimental approaches to investigate the role of higher-order correlations suffer from the 
limitations of available analysis techniques. We have recently presented a novel method for 
cumulant-based inference of higher-order correlations (CuBIC) that detects correlations of 
higher order even from relatively short data stretches of length T = 10–100 s. CuBIC employs 
the compound Poisson process (CPP) as a statistical model for the population spike counts, 
and assumes spike trains to be stationary in the analyzed data stretch. In the present study, 
we describe a non-stationary version of the CPP by decoupling the correlation structure from 
the spiking intensity of the population. This allows us to adapt CuBIC to time-varying firing 
rates. Numerical simulations reveal that the adaptation corrects for false positive inference of 
correlations in data with pure rate co-variation, while allowing for temporal variations of the 
firing rates has a surprisingly small effect on CuBICs sensitivity for correlations.

Keywords: multiple unit activity, higher-order correlations, non-stationarity, statistical population model

Edited by:
Jakob H. Macke, Max Planck Institute 
for Biological Cybernetics, Germany

Reviewed by:
Yasser Roudi, NORDITA, Sweden
Don H. Johnson, Rice University, USA
Jonathan D. Victor, Weill Cornell 
Medical College, USA

*Correspondence:
Stefan Rotter, Bernstein Center 
Freiburg and Faculty of Biology, 
Albert-Ludwig University, Hansastrasse 
9a, 79104 Freiburg, Germany.  
e-mail: stefan.rotter@biologie.
uni-freiburg.de

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/computational_neuroscience/10.3389/fncom.2010.00016/abstract
http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Frontiers in Computational Neuroscience www.frontiersin.org July 2010 | Volume 4 | Article 16 | 111

Staude et al. Non-stationary higher-order correlations

 correlations runs into severe practical  problems even for populations 
of N  10 neurons (Martignon et al., 1995, 2000; Del Prete et al., 
2004; Shlens et al., 2006; Montani et al., 2009). The severeness of this 
limitation is further underscored by the fact that the significance 
of higher-order correlations computed from small populations 
(N  10; Schneidman et al., 2006; Shlens et al., 2006) can generally 
not be extrapolated to large populations (Roudi et al., 2009). Taken 
together, while recent progress in experimental technique allows 
for the simultaneous recording of the spiking activity of tens to 
hundreds nerve cells, a faithful statistical description of the resulting 
activity that includes correlations of higher order is greatly ham-
pered by the limitations of available data analysis techniques.

We have recently presented a novel method for a cumulant-based 
inference for the presence of higher-order correlations (CuBIC) 
that avoids the need for extensive sample sizes (Staude et al., 2007, 
2009). Instead of directly estimating correlation parameters from 
all subgroups, CuBIC aims only at population-average correlations, 
estimated via the cumulants of the pooled and discretely sampled 
spiking activity of all recorded neurons (population spike counts). 
The presence of higher-order correlations is then inferred from 
measured cumulants of low order by exploiting certain constrain-
ing relations among correlations of different orders in a statistical 
model of correlated spiking. CuBIC avoids the direct estimation 
of higher-order correlations, but decides whether or not lower 
order cumulants require the presence of higher-order correla-
tions. Focusing on such less specific questions drastically reduces 
the requirements with respect to the sample size: when applied to 
artificial data, CuBIC reliably infers higher-order correlations from 
large (N  100), even weakly correlated populations (pairwise cor-
relation coefficient c  0.01) that were generated with reasonable 
sample sizes (T  100 s, Staude et al., 2009).

As a statistical model, CuBIC employs the compound Poisson 
process (CPP), where correlations are induced by the insertion of 
coincident events in continuous time, i.e., before binning is applied 
(Ehm et al., 2007; Johnson and Goodman, 2007; Brette, 2009; Staude 
et al., 2010). Interestingly, this model of correlation fits perfectly to 
measuring (higher-order) correlations via connected cumulants of 
the binned spike trains (Staude et al., 2010), a common framework 
for (higher-order) correlation measures. The simple relationship 
of the unknown model parameters, i.e., the orders of correlation 
present in the data, and the observable cumulants of the popula-
tion spike count allows to devise null-hypotheses concerning the 
orders of correlation in the data (the details of the CPP and CuBIC 
are explained in Section “The Stationary Case”). Combining tests 
against different null-hypothesis yields a lower bound  for the 
maximal order of correlation in the data.

A central assumption in the original presentation of CuBIC 
(Staude et al., 2009) was that the statistics of spiking in the popula-
tion does not change over time (stationarity). As both experimental 
cues and/or internal processes often induce transients or fluctua-
tions of firing rates, this central assumption is frequently violated 
in electrophysiological data.

In the present study, we describe a non-stationary version of 
the CPP by decoupling the correlation structure from the spike 
intensity of the population (see Section “The Non-stationary Case”). 
Using the “law of total cumulance” we are able to incorporate non-
stationarities in firing rate into the computation of the cumulants of 
the population spike counts. These rate-adjusted cumulants are then 

used to adapt CuBIC to infer higher-order correlations also from 
non-stationary data. This adaptation requires a specification of the 
kind of non-stationarity in terms of a parametric family of distribu-
tions for the bin-wise mean firing rates (the “carrier distribution”). 
Allowing for uniform rate fluctuations, for instance, yields as a result 
that the data must have correlations of some minimal order  even 
if firing rates fluctuated uniformly from bin to bin. In this sense, the 
choice of a family for the carrier distribution implies a demarcation 
line between “genuine” correlation and “artifacts” due to rate (co-)
variation (Staude et al., 2008). Numerical simulations reveal that 
the adaptation corrects for false positive inference of correlations 
in data with pure rate co-variation, while allowing for potential 
variations in firing rates has a surprisingly small effect on CuBIC’s 
sensitivity for correlations (see Case Studies). Furthermore, we find 
that a perfect match between the true carrier family and the family 
allowed in the adapted CuBIC does not seem to be fundamentally 
important to guarantee reliable test performance.

THE STATIONARY CASE
CUMULANTS AND THE COMPOUND POISSON PROCESS
Population spike count
The basic observable of this study is the pattern vector 
X(s): = (X

1
(s), ,X

N
(s)), where X

i
(s) is the discretized spike count 

of the ith neuron in the bin [sh,(s  1)h) of width h (a complete list 
of symbols is provided in Section “List of Symbols” in Appendix). 
Given X(s), we define the population spike count Z(s) as the total 
number of spikes in the population in the sth bin (Figure 1)

Z s X si
i

N

( ) ( ).
1

In the case where the X
i
 are binary (“1” for one or more spikes in 

the bin, “0” for no spike), Z(s) is simply the number of neurons that 
spike in the sth bin. As opposed to other frameworks for correlation 
analysis (e.g., Aertsen et al., 1989; Martignon et al., 1995; Grün et al., 
2002a; Nakahara and Amari, 2002; Shlens et al., 2006), however, the 
method presented in this study does not assume binary variables.

We here assume that Z(s) and Z(s  k) are independent for 
k  0 (zero memory). Furthermore, let us for now assume that 
the distribution of Z(s) does not depend on the time bin s (sta-
tionarity). This critical assumption will be relaxed in Section “The 
Non-stationary Case”.

Correlations and cumulants
In the present framework, correlations among the variables X

i
 are 

measured by mixed or “connected” cumulants. Like the more famil-
iar (raw) moments E[Zm] of a random variable Z, the univariate 
cumulants 

m
[Z] characterize the shape of its distribution (see, e.g., 

Stratonovich, 1967; Gardiner, 2003). For the first two cumulants, 
the expectation value and the variance, the latter can be expressed 
in terms of the former by the well-known expressions 

1
[Z] = E[Z] 

and 
2
[Z] = E[Z2]  E[Z]2 = Var[Z]. Similar equalities for higher 

cumulants are exceedingly complicated, but algorithms for their 
computations are available (see Stuart and Ord, 1987 for explicit 
expressions for m  10, Section “Cumulants of the Non-stationary 
CPP” for a straightforward, and Di Nardo et al., 2008 for a more 
advanced algorithm). For notational consistency, we will from now 
on use the cumulant notation, e.g., use the terms “first/second 
cumulant” instead of the more familiar “mean/variance”.
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Theorem 1 The mth cumulant 
m
[Z] of Z Xi

N
i1  depends on the 

summed correlations among the X
i
 of all orders m, but is independ-

ent of correlations of orders m.
By the above theorem, 

m
[Z] is a measure for the total cor-

relation in the population of all orders m. While a correction 
of the second cumulant for the influence of the single proc-
ess statistics would be straightforward (subtracting i

N
iX1Var[ ] 

in Eq. 1, see Staude et al., 2009), correcting higher cumulants 
for the influence of correlations of lower order is exceedingly 
complicated. We therefore employ a parametric model for Z, 
the CPP (see next section), the parameters of which can be 
interpreted straightforwardly in terms of higher-order correla-
tions among the X

i
.

Before a discussion of our model, we wish to stress that the 
cumulant correlations presented here do not comply with the 
interaction parameters of the more familiar log-linear model. In 
particular, data sets can have higher-order log-linear interactions 
without having higher-order cumulant correlations and vice versa 
(see Staude et al., 2010 for concrete examples, and e.g., Darroch 
and Speed, 1983; Streitberg, 1990; Staude et al., 2009 for more 
general discussions).

The compound poisson process
As opposed to the discretized, binned population spike count Z(s) 
of the previous section, the proposed model operates in continuous, 
i.e., unbinned time. That is, we model the process z t x ti

N
i( ) ( )1 , 

where x t t ti j j
i( ) ( ) denotes the ith unbinned, continuous-time 

spike train with spike event times t j
i  (i = 1, ,N, j  ). The model 

we propose for z(t) is that of a CPP

z t t t aj j
j

( ) ,
 

(2)

Multivariate, or “connected”, cumulants arise when the variable 
under consideration is a sum of correlated variables. For m = 2 and 
Z Xi

N
i1 , for instance, we have the well-known formula

2
1 1

[ ] [ ] [ ] [ , ]Z Z X X X Xi
i

N

i
i

N

i j
i j

Var Var Var Cov

 
(1)

   
: [ ] [ , ].,2

1
1 1X X Xi

i

N

i j
i j

Hence, the second-order cumulant correlations 
Cov[X

i
,X

j
] = 

1,1
[X

i
,X

j
] measure the degree of additive linearity of 

2
[Z]. Higher-order cumulant correlations are generalizations of the 

covariance in exactly this sense, and mth order correlations arise when 

m
[Z] is decomposed into expressions involving the individual X

i
. The 

following definition fixes the notation used in the remainder of this 
study, for a precise definition we refer to the literature (e.g., Stuart and 
Ord, 1987; Gardiner, 2003; Staude et al., 2009; for details on cumulant 
correlations see also Streitberg, 1990; Staude et al., 2010).

Definition 1 Let X = (X
1
, ,X

N
) be an N-dimensional  random varia-

ble, e.g., the spike counts of N parallel spike trains, let M = {m
1
, ,m } 

be a subset of {1, ,N} of size k, and denote by (M)  {0,1}N the 
binary indicator vector of the set M, whose ith component is 1 if 
i M and 0 otherwise. Then we measure kth order correlations among 
( , , )X Xm mk1

 by the connected cumulant 
(M)

[X]. We say that X has 
correlations of order k if and only if at least one kth order connected 
cumulant of X is non-zero.

The following generalization of Eq. 1 is a straightforward 
 consequence of the construction of connected cumulants (Staude 
et al., 2010).

FIGURE 1 | Schema of the compound Poisson process and its 
measurement. Left: spike event times (horizontal bars) of individual neurons 
x1(t), ,xN(t) and tick marks of the carrier process z(t) (top) with the associated 
amplitudes (numbers above the ticks). The population spike count Z(s) (below 
the spike trains) counts the number of spikes across all neurons in bins of width 
h (dotted lines). Right: distributions of the amplitudes aj, fA (top) and of the 
population spike counts, fZ, (bottom; blue bars: fZ from 100 s of data with the 
given amplitude distribution, estimated using a bin size of h = 5 ms; dashed line: 

Poisson fit, corresponding to an independent population with the same firing 
rates). To construct a population of correlated spike trains, amplitudes aj are 
drawn for all events tj in the carrier process i.i.d from fA. Individual processes xi(t) 
are constructed by assigning subsequent events of the carrier process z(t) into aj 
“child” processes xi(t) (here, events are assigned randomly to the specific 
process IDs). Correlations of order  are induced, whenever events in the carrier 
process are copied into more than  processes, i.e., if the amplitude distribution 
assigns non-zero probabilities for amplitudes .
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CuBIC
This section summarizes the stationary version of CuBIC to the 
extent that is needed to understand its adaptation to non-stationary 
populations (see Staude et al., 2009 for details). In brief, CuBIC 
quantifies the following thought experiment. Consider the situation 
of four simultaneously recorded neurons, where all neuron pairs 
have a correlation coefficient of c = 1. As c = 1 implies identity for 
all pairs of spike trains, all four spike trains must in fact be identi-
cal. In the framework of the CPP, this translates to the existence 
of events of amplitude a

j
 = 4, and hence correlation of order 4 

(Theorem 1). This illustrates that it is possible, in principle, to infer 
the existence of fourth order correlations from estimated pairwise 
correlations. In Staude et al. (2009), this inference was generalized 
by a hierarchy of statistical hypothesis tests H m

0
, , labeled by the 

order m of the correlation estimated from the population spike 
count, and the test parameter , which indicates the maximal order 
of correlation allowed in the null hypothesis. For given m and , the 
rejection of a hypothesis H m

0
,  means that estimated correlations of 

order m in the data imply the presence of correlations of at least 
order   1. Combining tests for different values  then provides 

m
mHmax is rejected{ | },
0 1 as a lower bound on the order of 

correlation in the data. In the thought experiment above, we esti-
mated pairwise correlation, hence m = 2, and rejected tests with 

 = 1,2,3, such that 2 4. In principle, the order of the estimated 
correlation m is a free parameter. However, as shown in Staude et al. 
(2009), tests with m = 3 are already extremely sensitive, such that 
we will present both the stationary CuBIC and the non-stationary 
adaptation only for the case m = 3.

Assume one is given the first three cumulants of a population 
spike count variable Z . Then, for a fixed value of the test parameter 

, consider the following constrained maximization problem

     3 3, ,: [ ]max fA
Z  (5)

subject to 
2
[Z ] = 

2
[Z]

1
[Z ] = 

1
[Z]

      f
A
(k) = 0 for k  ,

where Z is the population spike count of a model with parameters 
 and f

A
. The model that solves Eq. 5 has the maximal third cumu-

lant, i.e., triplet correlations, among all models that do not have 
any correlations beyond order , and have the same population-
averaged first- and second-order properties, i.e., firing rates and 
pairwise correlations, as the given spike count variable Z . As a 
consequence, 3 3 Z  implies that the third order correlations 
in Z  cannot be realized with correlations of orders . Thus Z  
must have correlations of order   1.

To solve Eq. 5, we use Eq. 4 and obtain the equivalent problem

      
3 3,
* max h

 
(6)

subject to 2 2

1

Z h

Z h1 .

In Eq. 6, the objective function and the constraints depend linearly 
on the model parameters . Problems of this type, so-called Linear 
Programming Problems, are uniquely solvable, e.g., by the Simplex 

where the event times t
j
 constitute a Poisson process, and the marks 

a
j
 are i.i.d. integer-valued random variables, drawn independently 

for all t
j
 (Figure 1, left). The marks a

j
 determine the number of 

neurons that fire at time t
j
, and will be referred to as the “ampli-

tude” of the event at time t
j
. The probability that an event has a 

specific amplitude is determined by the amplitude distribution 
f

A
, i.e., f

A
( ) = Pr{a

j
 = } for all j   (Figure 1, top right). The 

Poisson process that generates the events t
j
 is called the “carrier 

process” of the model and its rate  is the “carrier rate”. Processes 
of this type are also referred to as generalized, or marked, Poisson 
processes (see e.g., Snyder and Miller, 1991 for a general defini-
tion, and Ehm et al., 2007 for an alternative application to spike 
train analysis).

With the above model, the generation of a population of spike 
trains proceeds in two steps. First, realize a Poissonian carrier 
processes m(t) = 

j
(t = t

j
) and draw for each of its events t

j
 

an i.i.d. amplitude a
j
 from the amplitude distribution f

A
. In the 

second step, assign the spike at t
j
 to a

j
 individual processes, where 

the process IDs are determined from a separate “assignment dis-
tribution”. The simplest scenario assumes uniform assignment, 
where the a

j
 neuron IDs that receive the spike at t

j
 are drawn 

randomly from {1, ,N}, resulting in a homogeneous population. 
As CuBIC only aims for a lower bound on the order of correla-
tion, irrespective of the neuron IDs that realize these correlations, 
we here ignore the assignment distribution, and focus on the 
amplitude distribution only. The following theorem clarifies the 
relationship between cumulant correlations and the amplitude 
distribution in the framework of the CPP (see Staude et al., 2009 
for a proof).

Theorem 2 Let z t x ti
N

i( ) ( )1  be a CPP with amplitude  distribution 
f
A
 and carrier rate , and let X = (X

1
, ,X

N
) be the vector of counting 

variables obtained from the x
i
(t) with bin width h. Then:

1. The components of X have correlations of order m (in the sense 
of Definition 1) if and only if f

A
 assigns non-zero probabilities to 

amplitudes m.
2. With m

m
k
N m

AA k f: [ ] ( )E 1 , the cumulants of Z are 
given as

m mZ h[ ] . (3)

Note that correlations in the above theorem are measured strictly 
on the basis of the discretized counting variables X

i
. As a conse-

quence, they do not resolve (and do not depend on) the perfect 
temporal precision of the coincident events in the CPP. That is, if 
the events of z(t) were assigned to the individual processes with a 
temporal jitter that is small with respect to the bin size h, the effect 
of the jitter on the correlations is negligible.

Now let   N be the maximal order of correlation in the model, 
i.e., f

A
(k) = 0 for k  , and denote by 

k
 (k = 1, ) the compound 

rates of events of amplitude k, i.e., 
k
 = ·f

A
(k). Then Eq. 3 can be 

written as

m mZ h[ ] ,
 

(4)

where m
m m( , , )1 , : ( , , )1 , and m i

m
ii: 1  is the 

vector dot product.
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be included into the CPP by allowing a time-dependent  carrier 
rate, amplitude distribution, assignment distribution, or 
 combinations thereof.

Rather than presenting a general model for non-stationary 
populations, the focus of this study is to adapt the analysis tech-
nique CuBIC for potential variations in the firing rates. CuBIC, 
however, aims only at the population-average correlation struc-
ture f

A
, and inference is based on the population spike count Z. 

Time dependencies in the assignment distribution only change 
the neuron IDs that realize correlations over time, but do no alter 
the order of correlations. As a consequence, the population spike 
count Z is not influenced by potential temporal variations of the 
assignment distribution (see Figure 2A). Furthermore, CuBIC 
aims only at a lower bound for the maximal order of correlation, 
not on the precise values of correlations of different orders. As 
such, it aims for the largest entry with non-zero probability in 
the amplitude distribution, irrespective of whether this entry was 
present in the whole data stretch or if it occurred only within a 
short period. Taken together, CuBIC is blind for non-stationarities 
in the amplitude distribution and the assignment distribution. 
We therefore assume both these objects to be constant over time 
and consider only time-varying carrier rates (t) (see top panels 
in Figures 2B,C).

CUMULANTS OF THE NON-STATIONARY CPP
To relate the model parameters to the cumulants of Z for time  varying 

(t), observe that the value of Z(s) in the window [sh,(s  1)h) does 
not depend on the precise time course of the carrier rate (t) in this 
window, but only on the integral R h t dts sh

s h: / ( ) .( )1 1  Substituting 
the carrier rate (t) with a piecewise constant function whose value 
in the interval [sh,(s  1)h) is R

s
 thus results in an identical popula-

tion spike count Z. Furthermore, CuBIC ignores the temporal order 
of Z(1), ,Z(L) and assumes subsequent values of Z to be i.i.d. 
variables. As a consequence, CuBIC is also blind for the temporal 
order of the rate values R

s
, and we therefore assume them to be 

i.i.d. with a common “carrier distribution” f
R
 (compare panels B 

and C of Figure 2).
The above setting characterizes the population spike count Z 

as a parameter-dependent random variable, where the outcome 
of Z in the sth bin depends not only on the outcome of the CPP 
realization, but also on the (random) value of the rate variable 
R

s
. For such “doubly stochastic” variables, the raw moments are 

given as

m
m R mZ Z Z R m[ ]: [ ] [ | ] ( ),E E E

where the inner expectation is the expectation value of Zm for 
a given value of the rate R, and the outer expectation is with 
respect to the distribution f

R
. Now recall the definition of the 

moments as the coefficients of the Taylor series expansion of the 
characteristic function

Z
isZs e( ) : E

 
(10)

   
i

s

m
Zm

m

m

m!
[ ],

 
(11)

Method or any of its variants (Press et al., 1992, Chapter 10.8). The 
solution yields an upper bound for the third cumulant 3,  and the 
corresponding parameter vector . As it turns out, the only non-zero 
components of the solver ( , , )1  are 1  and , i.e., k 0 for 
all k {1, } (see The Solution of the Maximization in Appendix). The 
carrier rate and amplitude distribution of the CPP that maximizes 
Eq. 6 are then given by 1  and f l

A l( ) / .

With the solution of Eq. 5, the null hypothesis H0
3,  is

H Z0
3

3 3
,

,: [ ] .

To test a sample { } { , , }Z Z ZL1  against H0
3, , we estimate its 

cumulants by the so-called k-statistics k
m
 (Stuart and Ord, 1987; 

the well-known sample mean and unbiased sample variance are 
the first two k-statistics). To derive the required distribution of 
the test statistic k

3
 under H0

3, , we assume that Z  is the popula-
tion spike count of the model with parameters  and fA

, i.e., the 
solution of Eq. 6 after the unknown cumulants 

1
[Z ] and 

2
[Z ] 

have been replaced by their estimates k
1
 and k

2
. Thus, under H0

3,  
the distribution of k3 has expectation value 3, , and its variance is 
given as (e.g., Stuart and Ord, 1987)

Var[ ]
[ ] [ ] [ ] [ ]

( )( )
,k

Z
L

Z Z
L

Z
L L3

6 2 4 2
3

9
1

6
1 2  

(7)

where 
i
[Z ] are the cumulants of Z , obtained by inserting  and 

fA
 into Eq. 3. Finally, with sample sizes of L  10000 (corresponding 

to a data set of 10 s duration, sampled with a bin width of h = 1 ms), 
the distribution of k

3
 is well approximated by a normal distribution, 

such that the p-value of H0
3,  is given by

p
k

t

k
dt

km
3

3

3

2

3

1

2 2,

,

[ ] [ ]
.

Var
exp

Var
 

(8)

As mentioned above, the rejection of a specific hypothesis 
H0

3,  implies that the data have correlations beyond order  or, 
in other words, that   1 is a lower bound for the order of cor-
relation. The final result of CuBIC is the maximum of these 
lower bounds

: { | } ,,max p3 1
 

(9)

where  is a predefined test level (see Staude et al., 2009 
for details).

THE NON-STATIONARY CASE
THE MODEL
In the previous section, the CPP was presented as a model for 
populations with constant firing rates. However, (co-)varia-
tions in firing rate are a common feature of neuronal popula-
tions. To incorporate potential non-stationarities into the CPP, 
recall its central ingredients: the intensity of the population is 
described by the carrier rate , the population-averaged correla-
tion structure is determined by the amplitude distribution f

A
, 

and the precise composition of spikes and correlations within 
the population is determined by the assignment distribution. 
Given this parametrization, non-stationarities can in  principle 
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m m mZ G Z Z[ ] [ ], , [ ] .1  
(16)

With these maps at hand, the mth cumulant of the non- stationary 
CPP can be computed by the following procedure.

1. For i = 1, ,m express the conditional moment µ
i
[Z | R] in 

terms of the first i cumulants, i.e., write 
 µ

i
[Z | R] = F

i
(

1
[Z | R], ,

i
 [Z | R]).

2. Apply Eq. 3 to the individual cumulants, such that 
µ

i
[Z | R] = F

i
(µ

1
Rh, ,µ

i
Rh), where, as before, µ

i
 = µ

i
[A] are the 

moments of the amplitude distribution f
A
.

3. Compute the mth cumulant of Z by applying G
m

  m m m mZ G F Rh F Rh Rh[ ] ( ), , ( , , ) .1 1 1  
(17)

The results are summarized as the “law of total cumulance”. The 
first three orders read

1 1 1[ ] [ ]Z R h  
(18)

2 2 1 1
2

2
2[ ] [ ] [ ]Z R h R h  (19)

3 3 1 1
3

3
3

1 2 2
23[ ] [ ] [ ] [ ] .Z R h R h R h  (20)

A similar parameter transformation that leads from Eq. 3 to 
Eq. 4 simplifies Eqs. 18–20. In slight abuse of notation, we use the 
same symbol for the expected compound rates as for the constant 
compound rates of Eq. (4), i.e., write 

k
: = f

A
(k)·

1
[R]. Using the 

such that the moments can be obtained from 
Z
 via

m m

m
Z
m

s

Z
i

s

s
[ ]

( )
.

1

0

Analogously, cumulants are the coefficients of the logarithm of 
the characteristic function

Z
isZs( ) [ ]logE e  

(12)

   
i

s
m

Zm

m

m

m!
[ ],

 
(13)

such that

m m

m
Z
m

s

Z
i

s
s

[ ]
( )1

0  
(14)

A straightforward strategy to relate cumulants to moments is to 
insert Eq. 11 into the right hand side of Eq. 12, writing the logarithm 
as a power series, and collecting coefficients for identical powers of 
s. This procedure illustrates in particular that the mth cumulant is 
a function of the first m raw moments only, and, reversely, that the 
mth moment can be expressed as a function of the first m cumu-
lants. We denote the maps relating cumulants to moments and 
moments to cumulants by F

m
 and G

m
, respectively, such that

m m mZ F Z Z[ ] [ ], , [ ]1  
(15)
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FIGURE 2 | Non-stationarities in the CPP. Panels (A–C) show carrier rates (t) 
in Hz (top panels), the distributions of the bin-wise mean carrier rates (“carrier 
distributions” fR, small panels on the right; bin size h = 20 ms), the event-times 
of the carrier process z(t) (second panels from top), raster plots (third panels 
from top) and population spike counts Z(s) (bottom panels) for three different 
data sets. (A) Time varying assignment distribution produces non-stationary 
single processes, although the carrier process z(t) is stationary (constant carrier 
rate (t) = 50 Hz; all carrier events with tj  1 s are assigned randomly, all carrier 
events with tj  1 and amplitude aj = 1 are assigned to neuron 3). (B) Cosine 
carrier rate results in non-stationary carrier process z(t), the subsequent uniform 
assignment to N = 25 neurons generates a homogeneous, non-stationary 

population. (C) The carrier rate is constant in bins of length h = 20 ms and 
subsequent values of (t) are i.i.d. realizations with the carrier distribution of the 
cosine carrier rate in (B). Carrier events in (C) are assigned uniformly to N = 50 
neurons. As illustrated by the virtually identical population spike count 
distributions shown in (D) (estimated from 1000 s of artificial data, color code as 
in B,C; note logarithmic y-scale), the differences in both the carrier rate, in 
particular the temporal order of the bins, and the assignment, in particular the 
number of neurons of the generated population, do not influence the statistics 
of the population spike count Z. (E) Amplitude distributions of all three data sets 
are superpositions of a “background-peak” at  = 1 and a binomial distribution 
B(10,0.3) (color code as in A–C).
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a convex quadratic maximization problem. Problems of this type 
have a unique solution, and effective implementations of numerical 
solvers are available.

Gamma-distributed carrier rate
If the carrier variable R follows a Gamma-distribution, the 
third cumulant can be expressed in terms of the first two as 

3 2
2

12[ ] [ ] / [ ]R R R . For the normalized third cumulant 
3
 

we thus have 3 2
2

1
4

2
22 2[ ] / [ ]R R . The objective function 

then reads

F h k k k1 2 3 2 1 2 1
3

2
23, , , .

 
(27)

As for symmetric carrier distributions, the objective function in 
Eq. 25 is linear in the expected component rates 

k
 (k = 1, , ) and 

quadratic in 
2
. Thus, the resulting problem is also a convex quadratic 

programming problem and can be solved with the same solvers.
We wish to stress once again that the choice made here concerns 

only the family of the carrier distribution, not its particular shape. 
That is, if we chose e.g., a uniform distribution, we only deter-
mine that 

3
[R] = 0 but do not fix the support of the distribution. 

Finally, we note that the only non-zero components of the solution 

1 , ,  to the maximization problem are 1  and , i.e., 

k 0 for all k {1, }, as in the stationary case (see The Solution 
of the Maximization in Appendix).

Variance of test statistic
As a final ingredient, CuBIC requires the variance of the test statistic k

3
 

in order to be able to compute the p-values. Assuming that the solution 
of Eq. 25 is available, we compute the second, fourth and sixth cumu-
lant of the solution by inserting the solving  and 2 into the algorithm 
leading to Eq. 17. Plugging these cumulants into Eq. 7 yields Var[k

3
], 

the variance of the test statistic k
3
 under the non- stationary null-

 hypothesis. Insertion into Eq. 8 yields the corresponding p-value.

CASE STUDIES
To illustrate the application of the adapted CuBIC, we consider here 
two typical experimental situations. In the first situation, data are 
recorded in early sensory systems, where characteristic firing rate pro-
files closely follow the stimulus. In such a scenario, information about 
the rate distribution can be obtained from the type of the stimulus. 
In the second situation, there is no direct relation between the experi-
mental paradigm and non-stationarities in firing rates. In this case, ad 
hoc assumptions of the family of carrier rate are the only option. We 
illustrate both scenarios and the steps required when applying the non-
stationary version of CuBIC by analyzing simulated spike trains.

STIMULUS-DRIVEN NON-STATIONARITY
Pure non-stationarity
Our first example mimics a recording in visual cortex with a ori-
ented sinusoidal grating as stimulus. We model the population 
response in such an experiment by a CPP model with sinusoidal 
carrier rate (t), i.e.,

( ) cos( ),t B C t d2  (28)

where B is the offset, C  B is the amplitude of the modulation, 
 is the temporal frequency of the stimulus and d is the phase, 

i.e., the sum of the stimulus phase and the delay it takes for the 
stimulus-driven activity to propagate to the recording electrodes 

standardized cumulants of the rate variable k k
kR R: [ ]/ [ ]1  and 

the vector notation : ( , , )1  and m
m m( , , )1 , Eqs. 18–20 

can be written as

1 1[ ]Z h
 

(21)

2 2 1

2
2

2[ ]Z hh
 

(22)

3 3 1

3
3

3 1 2
2

23[ ]Z h h h
 

(23)

CuBIC FOR NON-STATIONARY DATA
To adapt CuBIC to non-stationary populations, we need to formu-
late the general maximization problem (Eq. 5) for the case of time-
 dependent carrier rates. Using Eqs. 21–23 instead of Eq. 4, we obtain

3,
,

, ,
maxns h h

2 3
3 1

3
3

3 1 13 22
2

2h
 

(24)

subject to 2 2 1

2
2

2[ ]Z h h

    1 1[ ] ,Z h

with [ , )0 , 
2
  [0,  and 

3
  ( , ). After some algebra 

and substitution of the unknown cumulants 
i
[Z ] by their esti-

mates k
i
, we arrive at the equivalent problem

3 3 1
3

3 1
3

2
2

1 2 2
2 3

3 3,
,

, ,

ns h k k k kmax
 

(25)

subject to k h k

k h

2 2 1
2

2

1 1 .

As opposed to the Linear Programming Problem of the station-
ary case (Eq. 6), the constraints in Eq. 25 do not apply to all free 
variables: the third standardized cumulant of the rate variable 

3
 

can, in principle, be arbitrarily large. As a consequence, also the 
objective function in Eq. 25 is unbounded. We therefore have to 
impose additional constraints on the carrier distribution f

R
 in order 

to ensure convergence of the maximization. The approach taken 
here is to prescribe a two-dimensional parametric family for the 
distribution of the rate variable, such that its third (standardized) 
cumulant can be expressed in terms of its first two cumulants. The 
choice for the family of carrier distributions determines the form of 
the objective function. Let us present two specific cases (see Section 
“Discussion” for more details on the role of this choice).

Symmetric carrier distributions
If the carrier distribution is symmetric about its mean, like e.g., the 
uniform distribution, we can exploit the fact that the third cumulant 

3
[R] of symmetric distributions vanishes1. As a consequence, also 

3
 = 

3
[R]/

1
[R]3 = 0. The objective function of the maximization 

problem (Eq. 25) for symmetric carrier distributions thus becomes

F h k k k1 2 3 2 1 2 1
3

2
23 3, , , .  

(26)

This objective function is linear in the (expected) compound 
rates 

k
 (k = 1, , ) and quadratic in 

2
. As the constraints are 

also linear, using Eq. 26 as the objective function in Eq. 25 yields 

1Generally, 
3
[R] is a measure for the skewness of f

R
, such that 

3
[R]  0 for  

left- skewed, 
3
[R] = 0 for symmetric, and 

3
[R]  0 for right-skewed distributions.
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panel). We found that only the p-value with  = 1 fell below the 
chosen significance level of  = 0.05 (Figure 3, green arrowhead 
in bottom left panel). Hence, H0

3 1,  was rejected while all hypotheses 
with   1 were retained. As a consequence, the stationary CuBIC 
yields max{ | },p3 1 2  (Eq. 9) as a lower bound for the 
maximal order of correlation. As the data do not contain correlations 
beyond those induced by the population-wide non-stationarity, the 
stationary CuBIC thus leads to false positive inference.

Application of the adapted CuBIC requires the specification of a 
parametric family of carrier distributions f

R
 (“carrier family”). We 

put ourselves in the position of an experimenter, to whom the carrier 
rate is unknown and cannot be estimated directly; the only observ-
able quantity is the population activity, which is a combination of 
the carrier rate and potential events of high amplitude. However, 
as the stimulus was a cosine, we assume also the carrier rate to be a 
cosine as in Eq. 28, only that the parameters B, C and d are unknown 
(  can be estimated from the stimulus frequency). Now recall that 
the adaptation of CuBIC does not require knowledge of the exact 
time-course of the carrier rate: what matters is a model for the dis-
tribution of the average rate values in the bins R h t dts sh

s h1 1/ ( ) .( )  
Given h  1/ , we can assume that the sequence of rate values R

s
 

(Figure 3, top panels of left and right columns). The first data set of 
this example models the case of pure rate non-stationarity (Figure 3, 
left column). The amplitude distribution is a delta-peak at  = 1, 
such that all events of the marked process z(t) have amplitude a

j
 = 1. 

As a consequence, z(t) is a simple Poisson process with rate (t). 
Setting B = C = 500 and  = 500 ms, d = 0, and assigning the carrier 
spikes uniformly to a population of N = 50 spike trains, we obtain a 
homogeneous population where each neuron oscillates with a tem-
poral frequency of 2 Hz, assuming firing rates between 0 and 20 Hz 
(second panel from top of Figure 3, left). Note that assigning the 
events of z(t) to individual spike trains was done only for illustrative 
purposes, as it does not influence the results of CuBIC.

To analyze the data, we chose a bin size of h = 5 ms, computed 
the population spike count Z(s), and estimated its distribution 
f
Z
(k) = Pr{Z = k} from a total simulation time of T = 100 s (Figure 3, 

third and fourth panels from top, respectively). Note that the popula-
tion spike count Z does not provide unambiguous information about 
the carrier rate. Next, we applied the stationary version of CuBIC 
with m = 3. That is, we ignored the apparent non- stationarities that 
are present in the data and computed p-values p

3,
 for  = 1, ,7 

as described in Section “CuBIC” (Figure 3, green bars in bottom 
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FIGURE 3 | Population statistics and CuBIC results for cosine-like non-
stationarity for three data sets. Shown are the carrier rate (t) (top panels), 
raster plots of N = 50 spike trains (second panels from top) and population spike 
counts Z(s) obtained with a bin width of length h = 5 ms (third panels from top) 
for the first 2 s of a data stretch of length T = 100 s. Below are the empirical 
distributions fZ(k) = Pr{Z = k} estimated from the entire data set (second panel 
from bottom; blue bars: linear y-scale with axes on the left, green solid line: 
logarithmic y-scale with axes on the right). Bottom panels show p-values of the 
stationary CuBIC (green), the adapted CuBIC with cosine-like rate variations (red) 
and with bimodal rate variations (blue), where rejected null-hypotheses, i.e., 
p-values below a significance level of  = 0.05, are marked by arrowheads. 

Outlined bars and arrowheads in bottom panel show results of data where 
interspike intervals below 2 ms were removed before the analysis. Data with 
pure rate non-stationarity (left column) have a sinusoidal carrier rate (t) (top 
panel) and an amplitude distribution with mass concentrated at  = 1 (fA(k) = 0 for 
k >1; see text for details). Pure correlation (middle column) is modeled with a 
stationary carrier rate and correlation up to order 7 ( (t) = const., fA(k) = 0 for 
k {1,7}). The probability for the high-amplitude events results in a pairwise 
correlation coefficient of c = 0.01 if the events of the carrier process are 
distributed uniformly among the processes N = 50. The combined data set with 
non-stationarity and correlation (right column) has the same correlation structure 
as the data in the middle column, and the same carrier rate as in the first column.
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In this data set, the stationary CuBIC rejects all hypotheses up 
to a value of  = 6. Hence, CuBIC performs optimally in this data 
set, as the resulting lower bound 7 corresponds to the maximal 
order of correlation 

syn
 = 7 in this data set.

To our big surprise and satisfaction, p-values for the adapted ver-
sion of CuBIC were very similar to those of the stationary CuBIC 
(Figure 3, bottom panel in middle column, red and green bars respec-
tively). In particular, the adapted CuBIC rejected the same hypoth-
eses, and, as a consequence, also yielded the same lower bound 7. 
Contrary to our assumption, the proposed adaptation thus did not 
compromise CuBIC’s sensitivity in this stationary data set.

Combined effects
Finally, we generated a third data set that combined the properties 
of the first two examples (Figure 3, right column). The amplitude 
distribution was the same as in the example of pure correlation, 
i.e., with an additional entry at 

syn
 = 7, while the carrier rate was 

the same cosine as in the data with pure non-stationarity (Figure 3, 
top panels of right and left columns, respectively).

For this data set, we expected the stationary CuBIC to overestimate 
the order of correlation, i.e., to yield syn 7, as the considerable 
rate co-variation produces correlation among the X

i
 in addition to 

the events of high amplitude (Staude et al., 2008). To the contrary, 
however, p-values for the stationary CuBIC fell below the significance 
level only up to  = 4 (Figure 3, green arrowheads in the bottom 
panel of the left column), yielding 5. Allowing for cosine-like 
non-stationarities in the null-hypotheses reduces the lower bound 
to 3 (Figure 3, red arrowheads in the bottom panel of the left 
column). Thus, rather than a false positive inference of correlation, 
the additional non-stationarity resulted in a reduction of the inferred 
order of correlation as compared to the stationary scenario.

Different carrier family
To investigate the robustness of the proposed adaptation with 
respect to faulty choices for the carrier family, we also analyzed the 
data under the assumption that the carrier rate switches between a 
state of low rate, 

min
, and of high rate, 

max
. This can be described 

by a bimodal carrier distribution

f
R
( ;

min
,

max
, ) = (1  ) (   

min
)  (   

max
),

where ( ) is the Dirac-delta function and [0,1] parametrizes 
the relative proportion of bins where (t) is in the low (high) rate 
state. Inspecting the time course of Z(s), we chose the mass of 
the two peaks identical (  = 0.5), which leaves a two-parameter 
family for f

R
 (its cumulants are derived in Section “Cumulants 

of Carrier Distributions” in Appendix). For the data shown in 
Figure 3, allowing for such drastic rate dynamics hardly changed 
p-values as compared to the cosine carrier rate (compare red with 
blue bars in bottom panel of Figure 3). Most importantly, the 
bimodal adaptation resulted in the same lower bounds  as the 
cosine adaptation.

INTERNALLY GENERATED NON-STATIONARITIES
Gamma-distributed carrier rate
In the examples of the previous section, we inferred the type of 
non-stationarity from the experimental paradigm, i.e., from the 
properties of the stimulus. In many experimental situations, such 

samples the cosine faithfully, such that both the phase offset d and the 
oscillation frequency  do not influence f

R
. In this case, the moments 

(and cumulants) of all orders can be computed from the parameters 
B and C in a straightforward manner (see Cumulants of Carrier 
Distributions in Appendix). In our example, f

R
 is symmetric, which 

implies 
3
 = 0 (see Symmetric Carrier Distributions). Furthermore, 

as the carrier rate (t) has to be non-negative, the model parameters 
must satisfy B  C, which implies 

2
  1/2. The red bars of the lower 

left panel in Figure 3 show the p-values computed from Eq. 8, after 
(a) the solution of stationary problem, 3, , has been substituted 
with the solution of Eq. 25 with objective function Eq. 26 and addi-
tional constraint 

2
  1/2, and (b) Var[k

3
] was computed with the 

algorithm explained in Section “Variance of Test Statistic” with the 
cumulants of the rate variable R given in Section “Cumulants of 
Carrier Distributions ” in Appendix. We find that p

3,
  0.05 for all 

 = 1, ,7, hence no hypothesis is rejected and the lower bound is 
1. Thus, the adapted CuBIC does not infer correlation in this data 

set, and the adaptation successfully corrects for the faulty inference 
of correlation of the stationary version.

Reduced sensitivity in stationary data?
In the first data set, the stationary CuBIC assigned the rate-generated 
correlation among the counting variables X

i
 to events of ampli-

tude 2. Allowing for potential (co-)variations of firing rates in the 
adapted CuBIC corrected for this faulty inference of correlations. 
Mathematically, allowing for rate (co-)variations allows non-zero 
values of the parameter 

2
 in the maximization of the third cumu-

lant (Eq. 25). Maximizing over a larger parameter space may then 
increase 3,

,ns  as compared to the stationary maximum 3, . Thus, 
hypotheses that are rejected by the stationary CuBIC may be retained 
by the adapted version, as the latter can produce larger maximal 
third cumulants for a given value of . Consequently, we expected 
the adapted version to be generally less sensitive for existing events 
of high amplitude. To investigate this issue, we generated a data set 
of pure correlation by choosing a constant carrier rate, but allow-
ing for events of amplitude 

syn
 = 7 on top of the “background 

spikes” with  = 1 (Figure 3, middle column). The probability of 
these events was set to f

A
(7) = 0.0125, which resulted in a average 

pairwise correlation coefficient of c = 0.01 if the events of z(t) were 
assigned homogeneously to a population of N = 50 spike trains. The 
value for  = 500 Hz was chosen to match the average carrier rate 
of the first example. Note that the additional events of amplitude 

 = 7 resulted in a slight increase of the population spike count 
from 

1
[Z] = 

1
[R]hµ

1
 = 500·0.005·1 = 2.5 in the first example to 

1
[Z]  500·0.005·1.0753  2.7 in this example, and thereby also 

increased the firing rates of the N = 50 spike trains. The remain-
ing parameters in this and all following examples were: bin width 
h = 5 ms, simulation time T = 100 s.

Compared to the size of the population (N = 50), the rate of 
the high-amplitude events (

7
 = 

1
[I]·f

A
(7)  6 Hz) is relatively 

small. As a consequence, these are hardly visible in the raster 
displays and population spike counts (Figure 3, second and third 
panels from top in the middle column). In the distributions of 
the population spike count, they lead to a slight increase for the 
frequency of patterns of size k  10, visible only on a logarithmic 
scale (Figure 3, middle column, green solid line in fourth panel 
from top).
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the three examples shown in Figure 4 are as in those of Figure 3. 
In data with pure rate non-stationarity (Figure 4, left column) 
the amplitude distribution has an isolated peak at  = 1. For pure 
correlation (Figure 4, middle column), the carrier rate is constant 
[ (t) = 500 Hz] and the amplitude distribution has an additional 
peak at 

syn
 = 7 that resulted in a pairwise correlation coefficient 

of c = 0.01 among the N = 50 spike trains. Finally, the combined 
data set has the same time-varying carrier rate as the purely non-
stationary data, and the same amplitude distribution as the data 
with pure correlation (Figure 4, right column).

The gamma-distributed rate variable generates strongly fluc-
tuating rate profiles, with peak values of the carrier rate above 
3000 Hz. This leads to strong fluctuations in the population spike 
count even in the case of pure rate non-stationarity (Figure 4, 
third panel from top in left column), such that its distribution 
has a fairly elongated tail (Figure 4, fourth panel from top in 
left column).

Results of the stationary CuBIC
Despite quantitative differences, stationary CuBIC performs quali-
tatively similarly for gamma- and cosine-like carrier rate. For pure 
rate non-stationarity, it wrongly interprets the rate-induced cor-
relations among the X

i
 as events of high amplitudes. The null-

hypotheses are rejected up to  = 3, yielding a lower bound of 
4 (Figure 4, green arrowheads in the bottom panel of the 

left column). Similarly, adding gamma-like non-stationarities to 
a data set with correlation decreases the inferred lower bound, 
here from 7 in the stationary data (Figure 4, green  arrowheads 

a priori assumptions on the rate variable cannot be justified, 
and changes in firing rates can have diverse statistical properties. 
General excitability of the tissue can change firing rates either in 
the form of slow drifts or abrupt transitions between so called 
up- and down-states. Furthermore, both local computations and 
additional cortical or sub-cortical inputs may change firing rates 
of the recorded population.

A further feature of the previous examples was that the carrier 
rate (t) changed rather slowly. As mentioned above, however, the 
temporal dynamics of the carrier rate does not influence the sta-
tistics required for CuBIC, i.e., the population spike count Z, as 
long as the distribution of the rate values per bin, f

R
, is not altered. 

The carrier rate (t) of the second class of examples is a piecewise 
constant function that changes its value in subsequent bins, i.e.,

( ) ( ),t R ts s
s

L

1

where L = T/h is the sample size (number of bins) 
s
(t) = 1 for 

t [sh,(s  1)h) and 
s
(t) = 0 otherwise, and the R

s
 are the rate values 

drawn i.i.d. from the carrier distribution f
R
 (compare the model 

of rate-covariations in Staude et al., 2008 and the carrier rate in 
Figure 2C). Here, f

R
 is a gamma distribution, i.e., f r kR

r
k

rk

k( ; , )
( )

/1

e  
where (k) is the gamma function. As in the previous section, the 
parameters of the carrier rate (k and ) are such that distribut-
ing the events of the carrier process z(t) uniformly among N = 50 
spike trains leads to time varying firing rates (t) with mean value 
10 Hz, and we set its variance to 40 Hz2. The maximal value of (t) 
in the entire simulation was 79 Hz. The remaining parameters in 
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FIGURE 4 | Population statistics and CuBIC results for non-stationarities with gamma-distributed carrier rate. The figure has the same setup as Figure 3, only 
that the bottom panels show results for stationary CuBIC (green bars and arrowheads), allowed uniform carrier distribution (red bars and arrowheads) and 
gamma-distributed carrier rate (blue bars and arrowheads).
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If p-values changed, they increased, which makes CuBIC more 
 conservative but does not generate false positives. From all simu-
lation, the increased p-value reduced the lower bound  only in a 
single instance (cosine rate modulation with correlation, analyzed 
with stationary CuBIC at  = 4; green arrowhead in bottom right 
panel of Figure 3); in all remaining cases the refractory period 
changed p-values where they were above the significance level of 

 = 0.05. We thus conclude that CuBIC is reasonably robust if 
spike deviate from Poisson processes in terms of short refractory 
periods (here 2 ms).

DISCUSSION
The analysis of massively parallel spike trains for higher-order cor-
relations is a prerequisite for understanding the mechanisms of 
cooperative neuronal computation in the brain. However, analysis 
techniques to estimate higher-order correlations typically require 
enormous sample sizes, rendering the analysis of large (N  10) pop-
ulations for higher-order effects extremely difficult. In Staude et al. 
(2009), we have presented a novel method (CuBIC) that avoids the 
need for extensive sample sizes. Numerical simulations illustrated 
that CuBIC reliably infers correlations of very high order ( 10) 
from recordings of large (N  100), even weakly correlated neuronal 
populations (average pairwise correlation coefficient c  0.01) with 
sample sizes corresponding to 10–100 s recording time.

As a statistical model, CuBIC assumes the CPP, where correlation 
among the spike trains is modeled by the insertion of additional 
coincident events (Ehm et al., 2007; Johnson and Goodman, 2007; 
Brette, 2009; Staude et al., 2010). The linear relation between the 
model parameters, i.e., the orders of correlation present in the 
data, and the cumulants 

m
[Z] of the population spike count Z 

allows the computation of the maximal value of 
m
[Z] under the 

assumption that the orders of correlation in the data do not exceed 
a predefined value . Comparing the estimated cumulants to these 
upper bounds then yields a collection of statistical hypothesis tests 
H m

0
, , labeled by m, the order of the estimated cumulant, and , 

the maximal order of correlation allowed in the null-hypothesis. 
In this paper, we chose a fixed value of m = 3, and for given , the 
rejection of H0

3,  implies that the data must have correlations of 
order at least   1 (for a discussion on the choice of m see below). 
A combination of tests with different values for  finally yields a 
lower bound for the maximal order of correlation, denoted by . 
For a discussion of the properties and limitations of the CPP (e.g., 
positivity of correlations), general issues concerning CuBIC, and 
the relationship between cumulant-correlations and the higher-
order parameters of the log-linear model used by, e.g., Martignon 
et al. (1995), Schneidman et al. (2006), Shlens et al. (2006), we 
refer to the extensive discussion of Staude et al. (2009). The latter 
point is discussed in more detail also in Staude et al. (2010). In 
this section, we focus on issues that relate directly to the novelties 
of the present study.

Before going into detail, we need to make a general remark. 
CuBIC is a parametric procedure, and assumes that the data, i.e., 
the population spike count, can be described sufficiently well by a 
discretized, potentially non-stationary CPP. If this model does not 
fit, results of CuBIC may be unreliable. The extent to which results 
are reliable then depends on the mismatch between the CPP and 
the data. In practice, where single spike trains deviate from Poisson 

in the bottom panel of the middle column) to 6  in the  
non- stationary data (Figure 4, green arrowheads in the bottom 
panel of the right column).

The adapted CuBIC
As opposed to Section “Stimulus-driven Non-stationarity” where 
properties of the carrier rate could be inferred from the stimulus, 
we here cannot make qualitative guesses about the type of non-
stationarity. The fact that firing rates fluctuate on a bin-to-bin basis 
makes it very difficult to infer the type of non-stationarity from the 
raster plots, the population spike counts Z or its distribution f

Z
. As 

a consequence, we can only make ad hoc assumptions on f
R
. We 

consider two cases. First, we allow f
R
 to be a uniform distribution 

(Figure 4, red bars and arrowheads in bottom panels). As the uniform 
distribution is symmetric, we use Eq. 26 as the objective function 
with the additional constraint 

2
  1/3 imposed by the non-negativity 

of the carrier rate. The cumulants of the uniform distribution (see 
Cumulants of carrier distributions in Appendix) are then used for 
the computation of Var[k

3
]. Second, we allow for gamma-distributed 

non-stationarities, where we use Eq. 27 as the objective function and 
the cumulants of the gamma-distribution for the computation of 
Var[k

3
] (Figure 4, blue bars and arrowheads in bottom panels).

For the data with pure rate non-stationarity (Figure 4, left col-
umn), allowing a uniform rate variable rejects hypotheses up to 

 = 3 and thus yields a lower bound of 4 . Allowing f
R
 to be 

gamma-distributed, on the other hand, produces p-values above 
0.05 for all  = 1, ,7, thereby retaining all hypotheses. Thus, while 
the uniform null-hypotheses fail to reduce the lower bound as 
compared to the stationary version, allowing for the true, gamma-
distributed non-stationarities corrects for false positive inference 
of correlation.

For data with correlation, the choice of the carrier distribution 
has only little influence on the resulting p-values (Figure 4, bottom 
panels in middle and left column). For pure correlation, the lower 
bounds are identical for all three rate models ( 7 syn ). In the 
combined data set (Figure 4, right column), the additional non-
stationarity reduces the lower bound as compared to the stationary 
data with correlation to 6, irrespective of the non-stationarity 
allowed in the null-hypotheses.

REFRACTORY PERIODS
Besides the stationarity, CuBIC’s second central assumption is 
that spike trains of single neurons can be described as Poisson 
processes, i.e., have exponential interspike interval (ISI) distribu-
tions. While tails of ISI distributions can often be relatively well 
described by exponentials, the high probability for short intervals 
of the Poisson process contradicts the absolute refractory period of 
a few milliseconds found in most nerve cells. We investigated the 
extent to which refractoriness influences test results of CuBIC by 
re-analyzing the data of the previous sections after short ISIs were 
removed. Specifically, for each data set we assigned the events of 
the carrier process randomly to the N = 50 spike trains, removed 
spikes of all spike trains that occurred with a temporal difference 
of   2 ms, and constructed the population spike counts of these 
thinned spike trains. The analysis of the refractory data showed that 
introducing refractoriness has a very limited effect on test results 
(outlined bars and arrowheads in lower panels of Figures 3 and 4). 
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CORRECTING FOR RATE EFFECTS
Classically, correlations are measured on a small time scale, and 
subsequently corrected for effects from the firing rates. The estima-
tion of the firing rate, in turn, proceeds along one of the following 
two lines. Either, rate variations are identified with artifacts that 
are locked to the stimulus or some other external cue. Then, firing 
rates are estimated by averaging over repeated presentation of the 
stimulus, or trials (e.g., Perkel et al., 1967a,b; Aertsen et al., 1989). 
Alternatively, changes in firing rates are assumed to fluctuate only 
on slow time scales; they are then estimated by averaging over time. 
Although combinations, refinements and optimizations of both 
strategies have been developed (e.g., Grün et al., 2002b; Ventura 
et al., 2005; Shimazaki et al., 2009), we wish to stress that all such 
corrections make strong a priori assumptions on the differences 
between “genuine” correlations and “artifacts” induced by non-
stationary firing rates (see also Staude et al., 2008).

The correction of CuBIC, i.e. the choice of a carrier family, fol-
lows a fundamentally different strategy. Rather than assuming that 
firing rate profiles are identical over trials (first strategy) or that 
rate-fluctuations are band-limited (second strategy), the carrier 
family limits the extent to which correlations among the counting 
variables X

i
 are assigned to rate-variations. As discussed above, this 

choice ensures boundedness of the third standardized cumulant 

3
 = 

3
[R]/

1
[R]3 of the rate variable R. As 

3
[R] measures the skew-

ness of the carrier distribution, large values of 
3
 imply a long right 

tail. As a consequence, a population with large 
3
 has bins with very 

large values of the carrier rate R. If binned firing rates can assume 
arbitrary high values, however, the difference between global rate 
variations and precise spike coordination vanishes. Thus, the choice 
of the carrier family determines the extent to which one assigns 
patterns with high spike counts to (co-)variations of firing rates. 
In other words: the carrier family sets CuBICs demarcation line 
between rate co-variation and genuine correlation.

In Section “Case Studies”, we illustrated how CuBIC operates 
in two alternative scenarios. In Section “Stimulus-driven Non-
stationarity”, we assumed that properties of the firing rates can be 
inferred from the stimulus. Here, the stimulus was a cosine, but the 
reasoning there can be generalized to a broad class of stimuli. The 
effect of oriented bars, for instance, might be modeled by a bimodal 
carrier distribution as in Section “Different Carrier Family”,

fR ; , , ( ) ,min max min max1
 

(29)

where the mixing parameter  determines the relative duration 
of the respective stimulus phases (light/dark). The carrier family 
of Eq. 29 also describes experiments with a well-defined stimu-
lus onset, as e.g., odor presentation or whisker stimulation. In 
such a scenario,  has to be chosen as the relative duration of the 
 stimulus-off/stimulus-on epoch. Furthermore, properties of the 
carrier family in “free viewing” conditions might be estimated from 
the statistical properties of the visual scene.

In the second scenario (see Internally Generated Non-
stationarities), the experimental paradigm did not provide infor-
mation about the carrier family. Here, we argued that ad hoc 
assumptions are the only option. However, if the activity of indi-
vidual neurons is available, their statistics can provide additional 
information that can be exploited. If, for instance, individual spike 

processes, for example due to refractory properties, this mismatch 
may be evaluated by analyzing surrogate data (e.g., Grün, 2009). If, 
for instance, CuBIC returns 10 in a data set of non-Poissonian 
spike trains, and the analysis of surrogate data with the same single 
process properties but without correlation yields 1, we can con-
clude that the value of 10 is really due to existing correlations. 
This kind of analysis, however, has to be performed specifically for 
a given data set. As a first step, we have here investigated the effect 
of a spike train’s most obvious deviation from the Poisson proc-
ess: absolute refractory periods (here 2 ms, Figures 3 and 4). Its 
relatively small effect on p-values makes us confident that CuBIC 
is a promising analysis method even if single spike trains deviate 
from the Poisson assumption. The detailed analysis of CuBIC’s 
robustness with respect to these violation is a central aspect of our 
current research (e.g., Staude et al., 2007; Reimer et al., 2009). We 
wish to stress that in the case of small bin sizes and hard refrac-
tory periods, assuming single processes to have Poisson statistics is 
essentially identical to the popular assumption of independence of 
subsequent bins in Bernoulli models (as in e.g., Martignon et al., 
1995; Shlens et al., 2006). A more detailed discussion of this issue, 
together with an analysis of the parameter dependence of CuBIC 
can be found in Staude et al. (2009).

A central assumption in the original presentation of CuBIC 
(Staude et al., 2009) is that the statistics of the population does 
not change over time (stationarity). In the present study, we have 
adapted CuBIC to be able to analyze also non-stationary data. The 
basis of this adaptation is a non-stationary version of the CPP, where 
the intensity of the population, parametrized by the , is decou-
pled from the correlation structure, parametrized by the amplitude 
distribution f

A
. Describing the population spike count as a doubly 

stochastic CPP, potential non-stationarities in the data can by inte-
grated into the quantification of the null-hypotheses of CuBIC. We 
wish to stress once again, however, that non- stationarities in single 
neurons do not necessarily imply time varying carrier rates (see, e.g., 
Figure 2A), such that not every non-stationary data set requires the 
application of the adapted CuBIC.

In this study, we presented the adaptation only for the third 
cumulant, i.e., m = 3. Although the derivation of the mathematical 
equations is straightforward also for higher values of m, the result-
ing expressions become increasingly complicated. This may result 
in particular in strong non-linearities in the maximization prob-
lem, such that additional care is necessary to ensure convergence 
of numerical solvers at the global maximum. Furthermore, the 
estimation of cumulants of order 3 becomes unreliable and their 
estimators have large variance, which may compromise test power. 
As CuBIC proved to be very sensitive even for m = 3 (Staude et al., 
2009), we currently have not developed the theory for higher m. 
Nevertheless, this might be a fruitful direction of future research.

The main difference between the stationary CuBIC and its 
non-stationary adaptation lies in the maximization of the third 
cumulant of Z. Here, the adapted version requires that the third 
standardized cumulant 

3
 = 

3
[R]/

1
[R]3 of the binned carrier 

rate R does not assume arbitrary large values. In this study, this 
is achieved by prescribing a two-parameter family for the carrier 
distribution f

R
 (the “carrier family”). The remainder of this section 

is therefore primarily concerned with elucidating the role of this 
particular choice.
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variations, especially if the family assigns smaller values of 
3
 

(e.g., allowing a uniform carrier distribution if the data had a 
gamma-distributed carrier rate as in Figure 4).

3. For stationary data with correlation, allowing for non-
 stationarities in the null-hypotheses has no effect on the infer-
red lower bound. This result holds irrespective of the type of 
non-stationarity allowed in the null-hypotheses.

4. Non-stationarities in data with correlation reduce the inferred 
lower bound as compared to data with the same correlation 
structure but constant firing rates. The degree of reduction 
depends mostly on the kind of non-stationarity in the data. 
The family allowed for the carrier distribution did not affect 
the lower bound.

It is well-known that co-variations in firing rates induce cor-
relations between spike counts. Thus, it comes as no surprise that 
analyzing non-stationary data with the stationary CuBIC generates 
false positives (point 1). In the adaptation, parts of the correlation 
can be assigned to (co)-variations in firing rates. Allowing for non-
stationarities therefore corrects for this faulty inference (point 2).

To understand why the adaptation did not generally reduce 
the lower bound (point 3), we investigated the interplay between 
the constraints and the objective function in the maximization 
of the third cumulant in further detail. Due to the increased 
number of degrees of freedom, our intuition was that allowing 
for non- stationarities additional to the correlations of order  
would simply increase the maximal value of the third cumu-
lant 3,  as compared to the stationary version. This, however, 
seems not to be the case. In the data sets with pure correlation 
(Figures 3 and 4, middle panels), for example, the values of 3,  
and 3,

,ns are identical for   4 (Figure 5B shows results for sta-
tionary, uniform and gamma-distributed rate variables, results of 
combined data sets are very similar, data not shown). The reason 
is that for a given value of the first estimated cumulant k

1
, the 

constraint k h k2 2 1
2

2 penalizes stronger non-stationarity, 
i.e., larger values of the standardized variance 

2
, with a reduction 

of the (expected) component rates 
1
, , , and vice versa. In the 

objective function (Eq. 25)

F h k k k k1 2 3 1
3

3 1
3

2
2

1 2 23 3, , , ,  (30)

the component rates enter via 3 , while the 
2
-dependence is a 

parabola with negative curvature. As

3
1 1

k kk
k

k
k

3 2
2 ,

 
(31)

especially for large values of , the objective function profits more 
from high component rates than the constraint penalizes these. As 
a consequence, the maximization favors high component rates over 
strong rate fluctuations, especially for large . The results of the 
maximization procedure for the data with pure correlation sup-
ports this interpretation, as the standardized variance of the model 
that maximizes 

3
[Z], 2, decreases with  (Figure 5A). For   4, 

we have 2 0, and, as a consequence, the maximizing model of the 
adapted maximization problem is the same as that of the stationary 
maximization. Consequently, also the solutions 3,  and the p-values 

trains do not show evidence of time varying firing rates, or provide 
upper bounds for the cumulants of their firing rates, this informa-
tion may be extrapolated to the level of the carrier rate. Together 
with general moment inequalities (e.g., Kumar, 2002), such infor-
mation may help to dispose of the explicit choice of the carrier 
family by providing an explicit upper bound for 

3
. Although the 

absence of a precise parametric model for the carrier distribution 
impedes the faithful computation of Var[k

3
] under H0

3, , the close 
similarity of the error-bars in Figure 5A for the different methods 
makes us confident that Var[k

3
] can be reasonably approximated by 

any carrier distribution as long as the upper bound 3,
,ns is faithful 

(see also Section ‘What is the “true” Carrier Family?’ for conceptual 
issues concerning the choice for f

R
).

DISCUSSION OF CASE STUDIES
The analysis of artificial data (Figures 3 and 4) can be summarized 
by four major points:

1. For data with pure firing rate non-stationarity but no higher-
order correlations, the stationary CuBIC misinterprets the 
common rate variations as events of amplitude 2, i.e., as cor-
relations. The order of the inferred correlation depends on the 
kind of non-stationarity in the data ( 2  for cosine carrier 
rate, 4 for gamma-distributed rate variable).

2. Allowing for potential non-stationarities in the  null-hypotheses 
can reduce this lower bound. Using the correct family for the 
carrier distribution, i.e., a cosine-like model for the data in 
Figure 3 and a gamma-distribution for the data in Figure 4, 
corrects entirely for the false positive inference of the stationary 
CuBIC, such that the lower bound becomes 1. Choosing 
the wrong family, however, may not account properly for rate 

1 3 5 7
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1 3 5 7
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  k3
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FIGURE 5 | Results of the maximization (Eq. 25 with appropriate 
objective functions) for data with pure correlation (see legend of Figure 3 
for parameters). (A) Normalized variance of the rate variable 2 that solves 
Eq. 25 for  = 1, ,7 for different types of allowed non-stationarities (green: 
stationary CuBIC; red: non-stationary CuBIC allowing uniform carrier 
distribution; blue: non-stationary CuBIC allowing gamma carrier distribution). 
(B) The maximal third cumulant 3,  as a function of the test parameter  for 
different types of allowed non-stationarities (same color code as in A). Error 
bars denote 2 3Var[ ]k , corresponding to a significance level of   0.05, the 
dashed line is the value of the test statistic k3 and arrowheads denote rejected 
null-hypothesis where 3 3 32, [ ]Var k k  (compare bottom panel of middle 
column in Figure 4).
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In either case, the term “correlations beyond the rate” is biologically 
meaningful only after an explicit interpretation of the term “rate” 
by the experimenter. Finally, we stress that the different choices for 
the carrier family affected the test results only weakly, especially if 
the data had genuine spike correlations (Figures 3 and 4, left and 
right columns). Thus, a perfect match between the carrier distribu-
tion underlying a Monte Carlo simulation and the family assigned 
in CuBIC does not seem to be of great importance for a reliable 
interpretation of test results.

APPENDIX
LIST OF SYMBOLS
Symbol Meaning

xi(t) ith spike train in continuous time
Xi Counting variable of ith spike train
z(t) Carrier process, i.e., summed activity in continuous time
Z population spike count

i[Z] ith cumulant of Z
ki ith sample cumulant of Z, i.e., k-statistic
h Bin width
 Average firing rate of individual spike trains

fA Amplitude distribution, i.e., population-average   
 correlation structure
µi ith raw moment of amplitude distribution
 Carrier rate

k (Expected) compound rate of all events with amplitude k
 Vector of (expected) compound rates 1, ,

i Vector of ith powers of 1, ,
H0

3,  Null-hypothesis stating that the data has correlation of  
 maximal order 

3,  Maximal value of 3[Z ] given correlations of orders 
Rs Carrier variable, mean value of the carrier rate in the sth bin
fR Carrier distribution: distribution of the {Rs}s

k kth standardized cumulant of the carrier distribution

3,
,ns Maximal value of 3[Z] given correlations of orders   

 and non-stationarity

THE SOLUTION OF THE MAXIMIZATION
This Appendix shows that the solution ( , , )1  of the stationary 
(Eq. 6) and the non-stationary maximization problem (Eq. 25) 
fulfills k 0  for k = 2, ,   1.

The non-stationary problem (Eq. 25) has the objective 
function

F k k k k kk
k

3
1
3

3 1
3

2
2

1 2 2
1

3 3
 

(32)

with constraints

k k k
k

1
1  

(33)

k k kk
k

2
2

1
2

2
1  

(34)

are identical. Contrary to our initial  intuition, the maximization 
thus does not generally favor strong rate  variations. Evidently, 
however, the extent to which the inclusion of non- stationarities 
in the null-hypothesis alter test results depends crucially on the 
parameters of the data.

PARAMETER-DEPENDENCE OF TEST RESULTS
The results of the case studies summarized above suggest that 
including potential non-stationarities in the null-hypothesis is 
always a safe bet: it corrects for false positive inference if correla-
tion originates from rate effects, but does not alter p-values if the 
stationary CuBIC did not overestimate the order of correlation. 
To sketch the parameter range where including non-stationarities 
reduces p-values only if necessary, recall that we have identified the 
reason for the unchanged maximal third cumulant in the interplay 
between the constraint and the objective function. Considering 
the general objective function (Eq. 25) however, we find that the 
influence of the non-stationarity (via 

2
 and 

3
) depends on the 

value of the first sample cumulant k
1
. For k

1
  1, non-stationarities 

(positive 
2
 and 

3
) hardly influence the objective function, hence 

the maximization can be assumed to favor high component rates 
over non-stationarities, yielding identical test results for the sta-
tionary and the adapted CuBIC. For k

1
  1 a small increase in 

3
 

has a strong effect on the objective function, which may in turn 
favor strong non-stationarities, thereby producing different test 
results for the stationary and the adapted method. Thus, a crucial 
parameter for the performance of the adaptation is the first sample 
cumulant k

1
. Now k

1
 is the estimator of 1 1 1 1[ ] ,Z X hi

N
i i

N
i  

where 
i
 is the (average) firing rate of the ith neuron. Thus, given the 

summed firing rate i
N

i1  of the recorded population, we may chose 
the bin size h in order to keep k

1
 in a range where the adaptation 

can be expected to have reasonable test power. As all simulations 
of Section “Case Studies” had k

1
  2.5, achieving a value of k

1
  1 

is not always necessary.

WHAT IS THE “TRUE” CARRIER FAMILY?
In Section “Correcting for Rate Effects” we have presented a few 
guidelines for the choice of the family of carrier rate distributions. 
There are cases, however, where this choice is not easily justifiable 
by resorting to observable quantities. To discuss the status of this 
problem in more depth, we wish to stress that measures of correla-
tion and their various corrections are purely statistical in nature. To 
be of scientific value, statistical results have to be put in context and 
must be interpreted, e.g., in terms of biophysical mechanisms. The 
“firing rate” of a neuron, for example, is not a biophysical entity as 
such. The term arises only if one describes the variable behavior of a 
neuron using point processes. As a consequence, whether or not the 
choice of a chosen carrier family f

R
 is “valid” depends entirely on the 

intended biological interpretation. If, for example, the choice of f
R
 is 

guided by the properties of the stimulus, the natural interpretation 
of rejected null-hypothesis is that the dynamic properties of the 
neuronal network under investigation generates correlations beyond 
direct stimulus effects. In an alternative situation, f

R
 may be chosen 

to reflect the slow ongoing dynamics observed in a simultaneously 
recorded mass signal (as e.g., described in Tsodyks et al., 1999). 
Significant higher-order correlations are then interpreted as coor-
dinated activity that is not covered by such large-scale phenomena. 
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R as a function of the [0,1]-uniform variable T as R = g(T), with 
g(t) = B  Ccos(T). Denoting the uniform distribution by f

T
, the 

distribution function of R is thus given by

f r f g r
dg r

dr

C
R B

C

R T( ) ( )
( )1

1

2

1

1

The first six moments can be computed by solving 
the integrals

E R r

C
r B

C

drm m

B C

B C 1

1
2

,

which yields

E

E

E

E

E

R B

R B
C

R B
BC

R B B C
C

2 2
2

3 3
2

4 4 2 2
4

2
3

2

3
3

8

RR B B C
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R B
B C B C C

5 5 3 2
4

6 6
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5
15

8
15

2
45

8
5
16

E

Bimodal carrier rates

Let f
R
( ;

min
,

max
, ) = (1  ) (   

min
)  (   

max
) be a bimodal 

rate distribution, where [0,1] and 
min

,
max

  [0, . The raw 
moments of f

R
 are

E Rm m m( ) .1 min max

Uniform carrier rates
If R is uniformly distributed between a and b, the raw moments 
of R are given as

E R
b a

m b a
m

m m1 1

1( )( )
.

Gamma carrier rates
The moments of the gamma distribution f R k R

e

k
k

R

k( ; , )
( )

/
1  

with parameters k and  are given as

E R
k m

k
m

m ( )

( )
,

where  denotes the gamma-function.

Simple computations starting from Eqs. 33 and 34 yield

1 1 2 1
2

2
2

2

11

1
k k k k k k

k

1

1 2 1 1
2

2
2

2

1

( )
,k k k k k k

k

which, after insertion into Eq. 32 yield

F k k k Hk
k

1

1
13 2 2 2

2

1

,
 

(35)

with

H k k k k k k k1 1 2 2 1
3

3 1
3

2
2

1 2 21 1 3 3( ) ( ) .

Now for k = 2, ,   1 we have

F k
k k

k 1
12 2 2

 
(36)

   k k k k1 2 2 2

 
(37)

   k k k2 2 2
 (38)

   k k2 2 2

 
(39)

   2 2 2k  (40)

   2 0k  

(41)

The gradient of the objective function therefore points to nega-
tive values of 

k
 for k = 2, ,   1. Because 

k
  0, the maximum 

is achieved for 
k
 = 0. In the stationary maximization problem, 

insertion of the constraints into the objective function yields the 
same F as Eq. 35, only with H = k

2
(   1). Consequently, Eqs. 36–41 

hold also in the stationary scenario.

CUMULANTS OF CARRIER DISTRIBUTIONS
For the computation of Var[k

3
] (Eq. 7) from the solutions of 

the maximization procedure, i.e., the parameters  and 2, we 
require explicit expressions for the cumulants of the carrier dis-
tribution f

R
 up to order m = 6. Recall that we here considered only 

two-dimensional parametric families for f
R
, which implies that 

these parameters can be computed from the known mean value 
E[ ]R k k1  and the normalized variance 2 . In the following, we 
provide explicit expressions that relate the raw moments to these 
parameters. Expressions for the cumulants are then computed by 
applying the conversion map G constructed in Section “Cumulants 
of the Non-stationary CPP”.

Cosine carrier rates
For (t) = B  Ccos(2 t  d), we derive the distribution of the rate 
values R h t dts sh

s h1 1/ ( )( )  under the assumption that subsequent 
values of R

s
 sample the cosine faithfully. In this case, we can express 
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MATERIALS AND METHODS
SURGICAL PREPARATION
The experimental methods were similar to those used in our lab 
in the past (Uglesich et al., 2009). Housing, surgical and record-
ing procedures were in accordance with the National Institutes 
of Health guidelines and the Mount Sinai School of Medicine 
Institutional Animal Care and Use Committee. Adult macaque 
monkeys were anesthetized initially with an intramuscular injec-
tion of xylazine (Rompun, 2 mg/kg) followed by ketamine hydro-
chloride (Ketaset, 10 mg/kg), and then given propofol (Diprivan) 
as needed during surgery. Local anesthetic (xylocaine) was used 
profusely during surgery, and was used to infi ltrate the areas around 
the ears. Anesthesia was maintained with a mixture of propofol 
(4 mg/kg-hr) and sufentanil (0.05 µg/kg-hr), which was given 
intravenously (IV) during the experiment. Propofol anesthesia has 
been shown to cause no changes in blood fl ow in the occipital cor-
tex (Fiset et al., 1999), and appears to be optimal for brain studies. 
Cannulae were inserted into the femoral veins, the right femoral 
artery, the bladder, and the trachea. The animal was mounted in 
a stereotaxic apparatus. Phenylephrine hydrochloride (10%) and 
atropine sulfate (1%) were applied to the eyes. The corneas were 
protected with plastic gas-permeable contact lenses, and a 3-mm 
diameter artifi cial pupil was placed in front of each eye. The blood 
pressure, electrocardiogram, and body temperature were measured 
and kept within the physiological range. Paralysis was produced by 
an infusion of pancuronium bromide (Norcuron, 0.25 mg/kg-hr), 
and the animal was artifi cially respired. The respiration rate and 
stroke volume were adjusted to produce an end-expiratory value of 
3.5–4% CO

2
 at the exit of the tracheal cannula. Penicillin (750,000 

units) and gentamicin sulfate (4 mg) were administered IM to 
provide antibacterial coverage, and dexamethasone was injected 
IV to prevent cerebral edema. A continuous IV fl ow (3–5 ml/kg-
hr) of lactated Ringer’s solution with 5% dextrose was maintained 
throughout the experiment to keep the animal properly hydrated, 

INTRODUCTION
The brain processes information, and it is therefore natural to 
estimate the amount of information that a neuron transmits to 
its targets. In the past, several methods that derive such estimates 
from the fi ring pattern (Optican and Richmond, 1987; Richmond 
and Optican, 1987; Richmond et al., 1987; Bialek et al., 1991; Rieke 
et al., 1997; Strong et al., 1998; Brenner et al., 2000) or membrane 
potential (Borst and Theunissen, 1999; DiCaprio, 2004) of indi-
vidual neurons have been used. The information from spike trains 
was estimated by calculating the entropy associated with the vari-
ous temporal patterns of spike discharge, using Shannon’s formula 
(Shannon and Weaver, 1949).

Since all brain functions involve many neurons, it is desirable 
to provide similar information estimates for a neuronal popula-
tion (Knight, 1972). To simply add up the information amounts 
from individual neurons in the population would be valid only if 
the neurons were all independent of one another, an assumption 
that usually is incorrect (see, for example, Zohary et al., 1994; Bair 
et al., 2001; Pillow et al., 2008). Approaches like the Direct Method 
(Strong et al., 1998) are impractical for a population, because the 
multi-dimensional space occupied by many spike trains can be 
sampled only sparsely by most neurophysiological experiments. 
Calculating the information carried by a population of many neu-
rons thus has remained a challenge (Brown et al., 2004; Quiroga 
and Panzeri, 2009). At the same time, the need for such estimates 
has become increasingly urgent, since the technology of record-
ing simultaneously from many neurons has become much more 
affordable and wide-spread, and data from such recordings are 
becoming common.

We describe here a method that estimates the amount of infor-
mation carried by a population of spiking neurons, and demon-
strate its use, fi rst with simulated data and then with data recorded 
from the lateral geniculate nucleus (LGN) of an anesthetized 
macaque monkey.
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and the urinary catheter monitored the overall fl uid balance. Such 
preparations are usually stable in our laboratory for more than 
96 h. The animal’s heart rate and blood pressure monitored the 
depth of anesthesia, and signs of distress, such as salivation or 
increased heart rate, were watched for. If such signs appeared, 
additional anesthetics were administered immediately.

VISUAL STIMULATION
The eyes were refracted, and correcting lenses focused the eyes 
for the usual viewing distance of 57 cm. Stimuli were presented 
monocularly on a video monitor (luminance: 10–50 cd/m2) driven 
by a VSG 2/5 stimulator (CRS, Cambridge, UK). The monitor 
was calibrated according to Brainard (1989) and Wandell (1995). 
Gamma corrections were made with the VSG software and pho-
tometer (OptiCal). Visual stimuli consisted of homogeneous fi eld 
modulated in luminance according to a pseudo-random natu-
ralistic sequence (van Hateren, 1997). Eight second segments of 
the luminance sequences were presented repeatedly 128 times 
(‘repeats’), alternating with 8 s non-repeating (‘uniques’) segments 
of the sequence (Reinagel and Reid, 2000). In addition, we used 
steady (unmodulated) light screens and dark screens, during which 
spontaneous activity was recorded.

ELECTROPHYSIOLOGICAL RECORDING
A bundle of 16 stainless steel microwires (25 µ) was inserted into a 
22 gauge guard tube, which was inserted into the brain to a depth 
of 5 mm above the LGN. The microwire electrodes were then 
advanced slowly (in 1 µ steps) into the LGN, until visual responses 
to a fl ashing full fi eld screen were detected. The brain over the LGN 
was then covered with silicone gel, to stabilize the electrode bun-
dle. Based on the electrode depth, dominant eye sequence and cell 
properties (Kaplan, 2007), we are confi dent that all the electrodes 
were within the parvocellular layers of the LGN. The receptive fi elds 
of the recorded cells covered a relatively small area (∼4° in diam-
eter), which suggests that the electrodes bundle remained relatively 
compact inside the LGN.

The output of each electrode was amplifi ed, band-pass fi ltered 
(0.75–10 kHz), sampled at 40 kHz and stored in a Plexon MAP 
computer for further analysis.

DATA ANALYSIS
Spike sorting
Sorting procedures. The spike trains were fi rst thresholded (SNR 
≥5) and sorted using a template-matching algorithm under visual 
inspection (Offl ine Sorter, Plexon Inc., Dallas, TX, USA). In most 
cases, spikes from several neurons recorded by a given electrode 
could be well-separated by this simple procedure. In more diffi cult 
cases, additional procedures (peak- or valley- seeking, or multi-

 variate t-distributions) (Shoham et al., 2003) were employed. 
Once the spikes were sorted, a fi ring times list was generated for 
each neuron and used for further data analysis.

Quality assurance. To ensure that all the spikes in a given train 
were fi red by the same neuron, we calculated for each train the 
interspike interval (ISI) histogram. If we found intervals that were 
shorter than the refractory period of 2 ms, the spike sorting was 
repeated to eliminate the misclassifi ed spikes. We ascertained that 
all the analyzed data came from responsive cells by calculating the 
coeffi cients of variation of the peristimulus time histogram bin 
counts for the responses to the repeated and unique stimuli, and 
taking the ratio of these two coeffi cients. Only cells for which that 
ratio exceeded 1.5 were included in our analysis.

Generation of surrogate data
To test our method we generated synthetic spike trains from a 
Poisson renewal process, in which the irregularities of neuronal 
spike times are modeled by a stochastic process whose mathematical 
properties are well defi ned. Recent interest and success in mod-
eling a neuron spike-train as an inhomogeneous Poisson process 
(Pillow et al., 2005, 2008; Pillow and Simoncelli, 2006) led us to 
that choice.

Firing rates and input. Our modeling necessarily addressed two 
major features of the laboratory data. The nine real neurons show 
a range of mean fi ring rates, from 3.04 impulses per second (ips) 
to 28.72 ips, which span an order of magnitude. To mimic this, we 
gave our 12 model cells 12 inputs which consecutively incremented 
by a factor of 10(1/11), to give fi ring rates spanning an order of mag-
nitude. The second major feature was that our laboratory neurons 
evidently received inputs processed in several ways following the 
original retinal stimulus. To make a simple caricature of this, we 
drove each of our Poisson model neurons with a separate input that 
was a weighted mean admixture of two van Hateren-type stimuli. 
The fi rst was that which we used in the laboratory and the second 
was the time-reversal of that stimulus. Calling these A and B, the 
stimuli were of the form S = (1 − x)·A + x · B, where the admixture 
variable x took on 12 equally spaced values starting with 0 and end-
ing with 1. As shown in Table 1, the pairs (admixture, mean rate) 
were chosen in a manner that allowed the whole grouping of model 
cells to be divided into smoothly changing subsets in different ways, 
and evenly distributed the range of properties across all cells.

Estimation of the information delivered by a subset of neurons
If we have data from numerous parallel spike trains, the familiar 
Direct method (Strong et al., 1998) for computing signal infor-
mation delivered requires an impractical time span of data. As a 

Table 1 | Parameters for stimulating the surrogate neurons. Each surrogate neuron was driven by a mixture of two van Hateren inputs, chosen to cover 
uniformly the range of fi ring rates and mixture ratios.

Cell #  1 2 3 4 5 6 7 8 9 10 11 12

Firing rate 4.98 6.18 7.58 9.38 11.42 14.13 17.47 21.64 26.79 32.74 40.60 50.09
Admixture 0 0.27 0.55 0.82 0.09 0.36 0.64 0.91 0.18 0.45 0.73 1
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practical alternative we advance a straightforward multi-cell gen-
eralization of a method of information computation from basis-
function coeffi cients.

Shannon has observed (Shannon and Weaver, 1949, Chapter 4; 
see also Shannon, 1949) that the probability structure of a stochastic 
signal over time may be well approximated in many different ways 
by various equivalent multivariate distribution density functions 
of high but fi nite dimension. He further observed that when some 
specifi c scheme is used to characterize both the distribution of 
 signal-plus-noise and the distribution of noise alone, the infor-
mation quantity one obtains for the signal alone, by taking the 
difference of the information quantities (commonly called ‘entro-
pies’) evaluated from the two distributions, has a striking invari-
ance property: the value of the signal information is universal, and 
does not depend on which of numerous possible coordinate systems 
one has chosen in which to express the multivariate probability 
density (see extensive bibliography, and discussion, in Rieke et al., 
1997, chapter 3). We will follow Shannon (1949), whose choice of 
orthonormal functions was Fourier normalized sines and cosines, 
over a fi xed, but long, time span T. This choice has the added virtue 
of lending insight into the frequency structure of the information 
transfer under study.

Here we outline our approach for obtaining the signal-
 information rate, or ‘mutual information rate’, transmitted by the 
simultaneously recorded spikes of a collection of neurons. The 
mathematical particulars are further elaborated in the Appendix. 
Following Shannon (1949), if one has a data record that spans a 
time T, it is natural to use the classical method of Fourier analysis 
to resolve that signal into frequency components, each of which 
speaks of the information carried by frequencies within a frequency 
bandwidth of 1/T. If this is repeated for many samples of output, 
one obtains a distribution of amplitudes within that frequency 
band. In principle, that probability distribution can be exploited 
to calculate how many bits would have to be generated per second 
(the information rate) to describe the information that is being 
transmitted within that frequency band.

However, part of that information rate represents not useful 
information but the intrusion of noise. To quantify our overesti-
mate we may repeat the experiment many times without variation 
of input stimulus, and in principle may employ the same hypo-
thetical means as before to extract the ‘information’, which now 
more properly may be called ‘noise entropy’. When this number is 
subtracted from the previous, we obtain the mutual information 
rate, in bits per second, carried by the spikes recorded from that 
collection of neurons.

In order to reduce the above idea to practice, we have exploited 
the following fact (which apparently is not well known nor eas-
ily found in the literature): if our response forgets its past his-
tory over a correlation time span that is brief compared to the 
experiment time span, T, then the central limit theorem applies, 
and our distribution of signal measurements within that nar-
row bandwidth will follow a Gaussian distribution. If we are 
making simultaneous recordings from a collection of neurons, 
their joint probability distribution within that bandwidth will be 
multivariate Gaussian. A Gaussian with known center of gravity 
is fully characterized by its variance, and similarly a multivariate 
Gaussian by its covariance matrix. Such a covariance matrix, 
which can be estimated directly from the data, carries with it 
a certain entropy. By calculating the covariance matrices for 
responses to both unique and repeated stimuli, one can deter-
mine the total signal information fl owing through each frequency 
channel for a population of neurons.

To verify that our Gaussian assumption is valid, we have applied 
to our Fourier-coeffi cient sample sets two standard statistical tests 
that correctly identify a sample as Gaussian with 95% accuracy. 
For our 12 surrogate cells and 9 laboratory LGN cells, the degree 
of verifi cation across the frequency range for 2560 distribution 
samples (160 Hz × 8 bins/Hz × 2, with each sine and cosine term 
sampled 128 times) is shown in Table 2. Because of its importance, 
we return to this issue in the Discussion, where further evidence is 
provided for the Gaussian nature of the underlying distributions.

RESULTS
ANALYSIS OF SIMULATED SPIKE TRAINS
Entropy vs temporal frequency
In anticipation of analyzing simultaneous laboratory records of 
actual neurons, we have created 12 Poisson model neurons with 
fi ring rates that overlap those of our laboratory neurons and with 
inputs as discussed above in Section ‘Materials and Methods’, pre-
sented at the same rate (160 Hz) used in the laboratory experi-
ments. Figure 1 shows, for a single simulated cell, the entropy rate 
per frequency, for responses to unique and repeat stimuli. The 
entropy from the responses to the unique stimulus (signal plus 
noise) exceeds that of the responses to the repeated stimulus (noise 
alone) at low frequencies, and the two curves converge near the 
monitor’s frame-rate of 160 Hz, beyond which signal-plus-noise is 
entirely noise. Hence we will terminate the sum in (Eq. A26) at that 
frequency. The difference between the two curves at any temporal 
frequency is the mutual information rate at that frequency.

Table 2 | The Fourier coeffi cients for the surrogate and LGN data follow a Gaussian distribution. We sampled the Fourier coeffi cients 128 times for each 
of the 2560 sine and cosine terms that we tested for each cell. Each distribution was tested with two standard tests for normality: the Shapiro–Wilk’s test and 
the Lilliefors test. The percentage of distributions that passed each test at the p < 0.05 signifi cance level was calculated for each cell, and the table gives the 
mean and standard deviation for the test results.

 Repeats (% passed) Uniques (% passed)

TEST SHAPIRO–WILK LILLIEFORS SHAPIRO–WILK LILLIEFORS
Surrogate data (12 cells) 95.3 ± 0.31 95.2 ± 0.34 95.3 ± 0.41 95.1 ± 0.3
LGN cells (9 cells)  94.9 ± 1.62 94.6 ± 0.35 93.9 ± 1.31 94.6 ± 0.45
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Single cell information
For the 12 model cells, the cumulative sum of information over fre-
quency (Eq. A26) is given in Figure 2 (left frame). We note that all 
the curves indeed fi nish their ascent as they approach 160 Hz. More 
detailed examination shows a feature that is not obvious: the output 
information rate of a cell refl ects its input information rate, and the 
input information rate of a mixed, weighted mean input is less than 
that of a pure, unmixed input. This accounts for the observation that 
the second-fastest cell (cell 11, with a near even mixture) delivers 
information at only about half the rate of the fastest (cell 12).

Group information
We turn now to the information rate of a group of cells, fi ring in 
parallel in response to related stimuli. We proceed similarly to what 
is above, but use the multi-cell equation (Eq. A25) and its cumulative 
sum over frequencies. As a fi rst exercise we start with the slowest-fi r-
ing surrogate cell and then group it with the next-slowest, next the 
slowest 3 and so on up to the fastest; the set of cumulative curves we 
obtain from these groupings are shown in the left frame of Figure 3. 
Again we see that the accumulation of information appears to be 
complete earlier than the frame-rate frequency of 160 Hz.

REDUNDANCY AND SYNERGY AMONG NEURONS IN A POPULATION
Redundancy
The mutual information communicated by a group of cells typically 
falls below the sum of the mutual information amounts of its con-
stituent members. This leads us to defi ne a measure of information 
redundancy. The redundancy of a cell with respect to a group of 
cells can be intuitively described as the proportion of its information 
already conveyed by other members of the group. For example, if a 
cell is added to a group of cells and 100% of its information is novel, 
then it has 0 redundancy. If, on the other hand, the cell brings no new 
information to the group, then it contains only redundant informa-
tion, and it therefore has redundancy 1. With this in mind, we defi ne 
the redundancy of a cell C, after being added to a group G, as:

r I c I g c I g I cc g, / .= ( )− +( )− ( )( )( ) ( )

According to this formula, if all the information of the additional 
cell appears as added information in the new group, then that cell’s 
redundancy is zero.

The procedure of information redundancy evaluation is gen-
eral, and can be applied to the addition of any cell to any group 
of cells. Thus for the cell groups of Figure 3, we can evaluate the 
redundancy of each newly added cell not only upon its addition 
to the group but also thereafter. This is shown for the 70 resulting 
redundancies, in Figure 4 (Left).

Synergy
When the total information conveyed by several neurons exceeds 
the sum of the individual ones, the neurons are synergistic (Gawne 
and Richmond, 1993; Schneidman et al., 2003; Montani et al., 
2007). When this happens, our formula yields a negative redun-
dancy value.

ANALYSIS OF MONKEY LGN SPIKE TRAINS
We now apply the same techniques to simultaneous laboratory 
recordings of 9 parvocellular cells from the LGN of a macaque 
monkey, responding to a common full-fi eld naturalistic stimulus 
(van Hateren, 1997; Reinagel and Reid, 2000).

Figure 2 (right frame) shows the single cell cumulative informa-
tion of these neurons as frequency increases. In two obvious ways 
their behavior differs from that of the Poisson model neurons. 
First, at low frequency there is a qualitative difference indicative 
of initially very small increment, which differs from the Poisson 
model’s initial linear rise. Second, the real geniculate neurons show 
a substantial heterogeneity in the shape of their rise curves. For 
example, the second most informative cell (cell 8), has obtained 
half its information from frequencies below 40 Hz, while the most 
informative cell (cell 9) has obtained only 11% of its information 
from below that frequency.

The right frame of Figure 3 shows for LGN cells the accumulat-
ing multineuron group information, while the left frame shows it 
for the surrogate data.

En
tro

py
 (b

its
/s

)

Frequency (Hz)

FIGURE 1 | Entropy per frequency conveyed by a single surrogate neuron. The signal-plus-noise entropy (derived from the unique stimuli) is shown in blue, and 
the noise entropy (from the repeated stimulus) is shown in red. The data shown are typical of data from other cells.
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FIGURE 2 | Cumulative information rate vs frequency for 12 surrogate Poisson model neurons and 9 LGN cells. The fi ring rates of the various neurons in the 
two groups were similar.

FIGURE 3 | Group information vs frequency for our Poisson model surrogate neurons and 9 LGN cells. The group size is indicated to the right of the cumulative 
curve for each group. The neurons were ranked according to their fi ring rate. The fi rst group contained only the slowest fi ring neuron, and each new group was 
formed by adding the next ranking cell.

FIGURE 4 | Accumulating redundancy as more cells are added to a population. The cells are added in order of their mean fi ring rates, starting with the slowest 
fi ring cells, with each cell taking its turn as a starting point for a new population.
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Redundancy in surrogate and real LGN neurons
Figure 4 (right frame) compares the redundancy over the 9 LGN 
cells with what was shown for the fi rst 9 Poisson model neurons 
in Figure 4 (left frame). The pair of sharp features at cells 4 and 7 
might be attributed to diffi culties in spike separation. Note that the 
redundancy of real neurons appears to be quite different from that 
of their Poisson model counterparts: as cluster size increases, real 
cells manifest a stronger tendency than our simulated neurons to 
remain non-redundant. This implies that the different LGN neu-
rons are reporting with differences in emphasis on the various 
temporal features of their common stimulus.

DISCUSSION
THE VALIDITY OF THE GAUSSIAN ASSUMPTION
Our method exploits the theoretical prediction that the distribu-
tion of each stochastic Fourier coeffi cient of our data should be 
Gaussian. Our evidence supports this prediction. A standard visual 
check is to normalize a distribution by a Z-score transformation and 
plot its quantiles against those of a standard Gaussian. If the dis-
tribution is likewise Gaussian, the points will fall near a unit-slope 

straight line through the origin. Figure 5 shows two typical cases, 
each with 128 points: surrogate data in the left frame and LGN cell 
data on the right. Both show good qualitative confi rmation of the 
Gaussian assumption.

We have proceeded to apply to our numerous Fourier coef-
fi cient distributions two standard statistical tests for Gaussian 
distribution: the Shapiro–Wilk test and the Lilliefors test. Both 
are designed to confi rm that a sample was drawn from a true 
Gaussian distribution in 95% of cases. Table 2 shows that in almost 
all cases for both unique and repeat responses of our 12 surrogate 
and 9 LGN cells our distributions passed both tests at the 95% 
signifi cance level.

SMALL SAMPLE BIAS
In the extraction of mutual information from spike data, traditional 
methods suffer from a bias due to the small size of the sample. We 
checked the Fourier method for such bias by dividing our sets of 
128 runs into subsets of 64, 32 and 16 runs. The results for one sur-
rogate cell (number 12) and one LGN cell (number 8) are shown in 
Figure 6. These results are typical, and show no clear small- sample 

FIGURE 5 | Q–Q plots for the Fourier coeffi cients of one surrogate cell (#6) and one LGN cell (#4). The data are typical of data from other cells. The fact that the 
data points hug the y = x line demonstrates the Gaussian nature of the distributions of the Fourier coeffi cients.

FIGURE 6 | The effect of the number of trials on information calculation. Data are from surrogate cell #12 and LGN cell #8, which were typical of other cells. Solid 
symbols show the information calculated from individual segments of the record. The solid line connects the medians of the samples. Note the rapid convergence of 
the information estimates as the number of trials increases.

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Frontiers in Computational Neuroscience www.frontiersin.org April 2010 | Volume 4 | Article 10 | 133

Yu et al. Estimating information in neuronal populations

bias. We also notice that, for these data, a sample of 64 runs gives a 
mutual information estimate reliable to better than ±10%. A sum-
mary of small-sample bias and estimated reliability for several recent 
techniques for calculating spike-train mutual information is given 
by Ince et al. (2009) (their Figure 1).

In addition to the number of data segments, the number 
of spikes used in estimating the mutual information is also 
an important factor, and we discus it further at the end of 
the Appendix.

SUMMARY AND CONCLUSIONS
We have presented a new method for calculating the amount 
of information transmitted by a neuronal population, and have 
applied it to populations of simulated neurons and of monkey LGN 
neurons. Since the method can be used also to calculate the infor-
mation transmitted by individual cells, it provides an estimate of the 
redundancy of information among the members of the population. 
In addition, the method reveals the temporal frequency bands at 
which the communicated information resides.

The new method fi lls a gap in the toolbox of the modern neu-
rophysiologist, who now has the ability to record simultaneously 
from many neurons. The methodology presented here might per-
mit insights regarding the mutual interactions of neuronal clusters, 
an area that has been explored less than the behavior of single 
neurons or whole organisms.

APPENDIX
Suppose we have a stochastic numerical data-stream that we will 
call u(t), and which becomes uncorrelated for two values of t that 
are separated by a time interval greater than a maximum correlation 
time-interval t*. That is to say, if t

2
 − t

1
 > t*, then u(t

2
) and u(t

1
) are 

independent random variables in the probability sense. Suppose 
now that in the laboratory, by running the probabilistically identical 
experiment repeatedly, we gather N realizations (samples) of u(t), 
the nth of which we will call u(n) (t). Suppose further that we collect 
each data sample over a time-span T that is large compared to the 
correlation time interval t*.

We can represent each sample u(n) (t) to whatever accuracy we 
desire, as a discrete sequence of numbers in the following way. Over 
the time interval t = 0 to t = T, we choose a set of functions ϕ

m
(t) 

that are orthonormal in the sense that they have the property:

dt t t q r
T

q r qr

0

1 0∫ = = = =ϕ ϕ δ( ) ( ) ( , ).if else  (A1)

Then u(n) (t) may be represented as a weighted sum of these 
basis functions:

u t u tn
q
n

q
q

( ) ( )( ) ( )=∑ ϕ  (A2)

where the weighting coeffi cients um
n( ) may be evaluated from the 

data by,

u dt t u tm
n

m

T
n( ) ( )( ) ( ).= ∫ ϕ

0

 (A3)

This claim can be verifi ed if we substitute (Eq. A2) into (Eq. A3) 
and then use (Eq. A1) to evaluate the integral. Here our choice of 
the ϕ

m
 (t) will be the conventional normalized sinusoids:

ϕm t
T m t T m

T m t T m
( )

/ sin (( )/ )( / )

/ cos ( / )
=

+


2 2 1 2

2

π

π

for odd

for even




 (A4)

It is a straightforward exercise to show that these functions have 
the property required by (Eq. A1).

Now let us see what follows from T >> t*. Divide the full time-
span T into K sub-intervals by defi ning the division times:

t k K Tk = ( )/  (A5)

and defi ne the integrals over shorter sub-intervals:

A dt t u tm k
n

m
n

t

t t

k

k

,
( ) ( )( ) ( )

*

=
−

−

∫ ϕ
1

 (A6)

B dt t u tm k
n

m
n

t t

t

k

k

,
( ) ( )( ) ( )

*

=
−
∫ ϕ  (A7)

from which (Eq. A3) tells us that the Fourier coeffi cient um
n( ) is given 

by,

u A Bm
n

m k
n

k
m k
n

k

( )
,

( )
,

( ) .= +∑ ∑  (A8)

But we note that the measure of the support of the integral 
(Eq. A7) is smaller than that of (Eq. A6) by the ratio t*/((T/K) − t*) , 
and if we can pick T long enough, we can make that ratio as close to 
zero as we choose. So the second sum in (Eq. A8) is negligible in the 
limit. But now note that, because they are all separated from each 
other by a correlation time, the individual terms in the fi rst sum are 
realizations of independent random variables. If the distribution of 
an individual term in the sum is constrained in any one of a number 
of non-pathological ways, and if there are a suffi cient number of 
members in the sum, then the central limit theorem states that the 
distribution of the sum approaches a Gaussian.

In the more general case, where we have several simultaneous 
correlated numerical data-streams, the argument runs exactly the 
same way. If, for many repeated samples, at a particular frequency 
we compute the Fourier coeffi cient for each, to estimate a multi-
variate probability density, then from a long enough time span, by 
the multivariate central limit theorem that density will approach 
a multivariate Gaussian. Simply because the notation is easier, we 
elaborate the univariate case fi rst.

Specializing, for cell response we use the spike train itself, 
expressed as a sequence of δ-functions, so for the r th realization 
u(r) (t) of the stochastic spike-train variable u(t), we have:

u t t tr
r n

n

Nr
( )

( )( ) ( )= −
=
∑δ

1

 (A9)

where t
(r)n

 is the time of the nth spike of the r th realization, and N
r
 

is the total number of spikes that the cell under discussion fi res in 
that realization.

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Frontiers in Computational Neuroscience www.frontiersin.org April 2010 | Volume 4 | Article 10 | 134

Yu et al. Estimating information in neuronal populations

Substituting this and also (Eq. A4) into (Eq. A3) we see that 
the integral may be performed at once. In the cosine case of 
(Eq. A4) it is,

u T m t Tm
r

n

N

r n

r
( )

( )/ cos ( / )=
=
∑2

1

π  (A10)

Before proceeding further we look back at Eq. A8 and note that, 
because a cosine is bounded between +1 and −1, every term in the 
sums of (Eq. A8) is bounded in absolute value by 2/T  times 
the number of spikes in that sub-interval. As real biology will not 
deliver a cluster of spikes overwhelmingly more numerous than 
the local mean rate would estimate, the distribution of each term 
in the stochastic sum cannot be heavy-tailed, and we may trust the 
central limit theorem.

Thus we may estimate that the probability density function for 
the stochastic Fourier coeffi cient variable u

m
 is of the form,

p u V u u Vm m m m m m( ) ( ) ( ( ) / )./= − −−2 21 2 2π exp  (A11)

where,

u u
R

um m p m
r

r

R

m
= ≅
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1

( ),( )  (A12)
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−
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1

1
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The right-hand-most expressions in (Eq. A12), (Eq. A13) tes-
tify that um and V

m
 can be estimated directly from the available 

laboratory data.
What is the information content carried by the Gaussian 

(Eq. A11)? The relevant integral may be performed analytically:

I p du p u p u e Vm m m m m m m( ) ( ( )) ( ) (( ) ).= − =∫ ln ln
1

2
2π  (A14)

For a signal with fi nite forgetting-time the stochastic Fourier 
coeffi cients (Eq. A10) at different frequencies are statistically 
independent of one another, so that the signal’s full multivari-
ate probability distribution in terms of Fourier coeffi cients is 
given by,

p u u p um
m

m( , , ) ( ).1 2 … =∏  (A15)

It is easily shown that if a multivariate distribution is the prod-
uct of underlying univariate building blocks, then its information 
content is the sum of the information of its components, whence

I p I p e Vm
m

M

m

M

m( ) ( ) ln(( ) ).= =
=

−

=

−

∑ ∑
0

1

0

11

2
2π  (A16)

Observing (Eq. A13) we note that this can be evaluated from 
available laboratory data.

Generalization of the information rate calculation to the case of 
multiple neurons is conceptually straightforward but notationally 
messy due to additional subscripts. The rth realization’s spike train 
from the qth neuron (out of a total of Q neurons) may be defi ned 
as a function of time u tq

r
( )
( )( ) just as in (Eq. A9) above, and from our 

orthonormal set of sines and cosines we may fi nd the Fourier coef-
fi cient u q m

r
( )
( ) . This number is a realization drawn from an ensemble 

whose multivariate probability density function we may call:

p u u um m m Q m( , ,.., ).( ) ( ) ( )1 2  (A17)

This density defi nes a vector center of gravity um  whose Q com-
ponents are of the form:

u u
R

uq m q m p q m
r

r

R

m( ) ( ) ( )
( ) ,= 〈 〉 ≅

=
∑1

1

 (A18)

and similarly it defi nes a covariance matrix V
m
 whose (q,s)th matrix 

element is given by,

V u u u u

R
u u u

q s m q m q m s m s m p

q m
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q m
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R

u−
=
∑

1  

(A19)

This covariance matrix has a matrix inverse A
m
:

A Vm m= −1.  (A20)

Clearly (Eq. A18) and (Eq. A19) are the multivariate generaliza-
tions of (Eq. A12) and (Eq. A13) above. The central limit theorem’s 
multivariate Gaussian generalization of (Eq. A11) is,

p u u

V u u A

m m Q m

Q
m q m q m

( ,.., )

(( ) ) exp ( )

( ) ( )

( / )
( ) ( ) (

1

1 22
1

2

=

− −−π det qq s m s m s m
q s

u u, ) ( ) ( )
,

( ) .−




∑

 (A21)

This expression becomes less intimidating in new coordinates 
Z

(q)
 with new origin located at the center of gravity and orthogo-

nally turned to diagonalize the covariance matrix (Eq. A19). We 
need not actually undertake this task. Call the eigenvalues of the 
covariance matrix

λ λ( ) ( ),.., .1 m Q m  (A22)

Under the contemplated diagonalizing transformation, the dou-
ble sum in the exponent collapses to a single sum of squared terms, 
and in the new coordinates p

m
 becomes,

ˆ ( ,.., ) ( ) exp ( / ),( )
/

( )p Z Z Zm Q q m q q m
q

Q

1
1 2 2

1

2 2= −−

=
∏ πλ λ  (A23)

a form that is familiar from (Eq. A15) above. Its corresponding 
information is the sum of those of the individual terms of the 
product and is

I p em
q

Q

q m( ) ln(( ) ).( )=
=
∑1

2
2

1

π λ  (A24)

Shannon (1949, chapter 4), in a formally rather analogous con-
text, has noted that much care is needed in the evaluation of expres-
sions similar to (Eq. A24) from laboratory data. The problem arises 
here if the eigenvalues approach zero (and their logarithms tend 
to −∞) before the sum is completed. However, the information in 
signal-plus-noise in the mth coeffi cient, expressed by (Eq. A24) is 
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not of comparable interest to the information from signal alone. 
With some caution, this signal-alone information contribution may 
be obtained by subtracting from (Eq. A24) a similar expression for 
noise alone, taken from additional laboratory data in which the 
same stimulus was presented repeatedly. If we use ‘µ’ to annotate 
the eigenvalues of the covariance matrix which emerges from these 
runs, then the information difference of interest, following from 
(Eq. A24) is

I e em q m q m
q

Q

( ) ln(( ) ) ln(( ) )( ) ( )signal alone

l

= −{ }

=

=
∑1

2
2 2

1

2

1

π πλ µ

nn ( )λ
µ

q m

q mq

Q

( )

.





=
∑

1

 (A25)

Equation A25 expresses the multi-cell information contributed 
by the mth frequency component. To obtain the total multi-cell 
information, it is to be summed over increasing m until further 
contributions become inappreciable.

An entirely analogous procedure applies to obtain the informa-
tion of signal alone for an individual cell. Call the variance of the 
mth frequency component of the unique runs V

mu
, and that of the 

repeat runs V
mr

. Each will yield a total information rate expressed 
by (Eq. A16) above, and their difference, the information rate from 
signal alone, consequently will be:

I
V

Vm

M
mu

mr

cell signal alone, ln .( ) =




=

−

∑1

2 0

1

 (A26)

In the data analysis in the main text, the single-cell sums 
(Eq. A16), for both uniques and repeats, approached a common, 
linearly advancing value which they achieved near 160 Hz, which 

is the stimulus frame-rate. Consequently, the summation over fre-
quency of signal only information was cut off at that frequency, 
both for single cells (see Eq. A26) and for combinations of cells.

In both the simulations and the experiments, each run was of 
T = 8 s duration. In consequence the orthonormalized sines and 
cosines of (Eq. A4) advanced by steps of 1/8 Hz.

EFFECT OF THE NUMBER OF RESPONSE SPIKES
With reference to small-sample bias, a further word is appropri-
ate here regarding our methodology. If the number of runs is 
modest, the total number of spikes in response to the repeated 
stimulus may show a signifi cant statistical fl uctuation away from 
the total number of spikes in response to the unique runs. In 
this case, the asymptotic high-frequency entropy values, as seen 
in our Figure 1, will not quite coincide, and consequently the 
accumulated mutual information will show an artifactual small 
linear drift with increasing frequency. This introduces a bit of 
uncertainty in the cut-off frequency and in the total mutual 
information. This asymptotic drift may be turned into a more 
objective way to evaluate the total mutual information. In cases 
where the problem arises, we divide our repeat runs into two 
subsets: the half with the most spikes and the half with the least. 
Accumulating both mutual information estimates at high fre-
quency, we linearly extrapolate both asymptotic linear drifts back 
to zero frequency, where they intersect at the proper value of 
mutual information.
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to determine the statistical signifi cance of event-related responses 
in intracranial recordings. We adapted this quantitative approach 
for auditory ECoG studies conducted at our epilepsy center. ECoG 
is useful for investigating the functional organization of auditory 
cortex and is used clinically for pre-surgical functional mapping 
and, more recently, for brain–computer interfaces (Howard et al., 
2000; Lachaux et al., 2007; Brugge et al., 2009; Hong et al., 2009; 
Sinai et al., 2009). We will examine how complementary methods 
can be combined to evaluate statistically signifi cant changes in 
multiple aspects of auditory event-related ECoG activity: evoked 
responses, spectral responses, event-related (causal) connectivity, 
and spatial distribution (normalization). Each method is illustrated 
with examples from recent auditory ECoG studies. We begin with 
a brief overview of intracranial recording methods and cortical 
auditory event-related responses. We discuss the advantages of 
using multiple complementary methods (e.g., single-channel and 
multichannel) to analyze the same ECoG data sets. Methodological 
issues, including multiple comparisons, as well as future directions 
for development of new statistical approaches are also discussed.

INTRODUCTION
Multichannel intracranial recordings are used increasingly to inves-
tigate the functional organization of human cortex. Intracranial EEG 
recordings, known as electrocorticography (ECoG), use electrodes 
implanted for clinical purposes, including seizure localization and 
surgical planning for treatment of intractable epilepsy. This clinical 
circumstance provides a rare opportunity to record focal neuronal 
population activity directly from cortex. ECoG recordings offer 
excellent temporal resolution (1 ms) and the proximity of recording 
electrodes to underlying cortical sources enhances spatial resolution, 
signal-to-noise ratio, and sensitivity to a broad range of EEG frequen-
cies. Recent ECoG studies have investigated cortical sensory (audi-
tory, visual), motor, language, and cognitive systems (Crone et al., 
2006, 2009; Miller et al., 2007; Brugge et al., 2009; Jacobs and Kahana, 
2009; Sinai et al., 2009). ECoG recordings are usually obtained from 
large numbers of electrodes, yielding high dimensional data sets.

In this methods paper, we propose a novel quantitative frame-
work that integrates multiple existing methods for analyzing high 
dimensional ECoG data sets. This quantitative approach is used 
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INTRACRANIAL RECORDING METHODS
RECORDING ELECTRODES
Intracranial recordings are obtained with subdural or stereotactic 
depth electrodes. Subdural electrodes are positioned on the lateral 
surface of cortex; depth electrodes are inserted through cortex to 
record from deeper structures, such as hippocampus. Recordings 
can be obtained intraoperatively by moving electrodes to different 
locations on the exposed cortex, or extraoperatively by leaving 
implanted electrodes indwelling for up to 10 days of monitor-
ing. Although microelectrodes have been used for single-neuron 
recording studies (Howard et al., 1996; Schwartz et al., 2000; 
Ojemann et al., 2002; Gelbard-Sagiv et al., 2008), most clinical 
centers use macroelectrodes to record from neuronal popula-
tions. At our center, intracranial auditory recordings are usually 
obtained extraoperatively with subdural and depth macroelec-
trodes (Crone et al., 2001a; Boatman and Miglioretti, 2005; Sinai 
et al., 2009).

ELECTRODE PLACEMENT
For extraoperative recordings, subdural and depth electrodes are 
implanted by craniotomy under general anesthesia. Typically, 
electrodes are implanted over one hemisphere where the seizure 
focus is suspected based on clinical data. Subdural electrodes con-
sist largely of platinum-iridium disks, 2–3 mm in diameter, spaced 
5–10 mm apart center-to-center and embedded in 1.5-mm-thick 
arrays of medical grade silastic. Common subdural electrode array 
confi gurations are 4 × 5, 6 × 8 or 8 × 8 grids and 1 × 8 or 2 × 8 
strips (Figure 1). Most patients have multiple grids and/or strips 
implanted to ensure adequate spatial sampling for seizure locali-
zation, with the total number of recording electrodes per patient 
at our center typically between 48 and 184 (maximum to date). 
Depth electrodes are one-dimensional arrays typically of 1 × 4 or 
1 × 8 contacts, 2-mm in diameter, inserted through gyri or sulci. 
While subdural electrodes record primarily from gyral structures 
because they are located over the cortical surface, depth electrodes 
can record from both gyral and sulcal structures. Intracranial 
recordings can also be made from electrodes implanted in the 
epidural space. Although signal amplitude is reduced by the dura 
mater and epidural electrodes cannot cover as many brain areas 
as can subdural electrodes, they potentially can be implanted less 
invasively and can offer an important alternative to subdural elec-
trodes in patients with severe subdural adhesions from prior sur-
gery. These electrodes have been used for presurgical evaluations 
for intractable epilepsy, and their use has also been considered for 
brain–machine interface applications (Barnett et al., 1990; Blount 
et al., 2008; Slutzky et al., 2008). In this paper, we focus on intrac-
ranial recordings using subdural electrodes.

Intracranial electrode confi guration and placement are deter-
mined individually, based on each patient’s clinical circumstances. 
Many of our patients have subdural electrode coverage of the supe-
rior temporal gyrus corresponding to auditory cortex (Boatman 
et al., 2000; Miglioretti and Boatman, 2003; Boatman, 2004, 2006; 
Boatman and Miglioretti, 2005). During implantation, electrode 
grids and strips are sutured to the overlying dura to prevent move-
ment during closure of the craniotomy. Post-implantation CT scans 
are obtained the following day to confi rm electrode locations. After 
implantation, patients are monitored in the neurological critical 

care unit and then admitted to the epilepsy monitoring unit for 
ECoG recordings and monitoring. Auditory ECoG studies are usu-
ally initiated 3–5 days after electrode implantation, when surgery-
related edema and discomfort are reduced. All patient research 
participants provide informed written consent in compliance with 
our Institutional Review Board. Patients are tested individually 
at bedside in private rooms with measured ambient noise levels 
≤45 dB SPL. Recordings are made from the same subdural elec-
trodes used clinically for seizure localization; they introduce no 
additional risk to the patient and do not interfere with the ongoing 
clinical video recordings of patients’ seizures for localization of 
the epileptic zone. Once suffi cient clinical information has been 
obtained, patients return to surgery for removal of the electrodes 
and possible resection for treatment of seizures.

RECORDING PARAMETERS
ECoG recodings are obtained using standard clinical parameters. 
The ECoG signal is amplifi ed (Schwarzer amplifi er) at a channel 
gain of 1408 and recorded digitally from all channels (Stellate 
Systems Inc.) at a minimum sampling rate of 1000 Hz with a 
bandwidth of 0.1–350 Hz (6 dB/octave). We routinely use a refer-
ential montage in which all subdural electrodes are referenced to 
a single intracranial electrode. A benefi t of referential recordings 
is that they can be remontaged readily for analysis, in contrast to 
bipolar recordings (see Signal Pre-processing). Ideally, the electrode 

FIGURE 1 | (A) Shows three different electrode confi gurations used for 
intracranial recordings: (1) a 4 × 5 subdural electrode array (Ad-Tech, 
Racine, WI, USA); (2) a 1 × 8 electrode strip; and (3) an 8-contact depth 
electrode. (B) A coronal 3D MRI reconstruction showing depth 
electrodes (white) in right temporal lobe; (C) a 3D MRI reconstruction with 
8 × 8 subdural electrode array and additional 2 × 8 strip implanted over the 
lateral left hemisphere.
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selected for the reference has minimal electrical artifact and elec-
trographic abnormalities and is distal to the recording region of 
interest (e.g., superior temporal gyrus). Although it is not possible 
to have an entirely inactive reference, choosing a reference distal to 
recording sites of interest can reduce its potential contributions and 
the need for spatial reformatting. Extracranial reference electrodes 
are not used to avoid contamination by muscle activity that has 
prominent spectral energy in high frequencies (e.g., gamma band). 
Markers for stimulus onset times are recorded simultaneously to 
ECoG marker channels.

SIGNAL PRE-PROCESSING
The continuous ECoG signal is pre-processed for event-related 
analysis. Pre-processing is performed to identify and exclude from 
analysis channels and trials with artifact and to remontage the 
recording data. The continuous ECoG recording is fi rst inspected 
visually to identify and reject channels with excessive artifact or epi-
leptiform activity. The continuous ECoG signal is then segmented 
into individual trials containing pre-stimulus baseline and post-
stimulus intervals; these are then visually inspected to reject trials 
with artifact or epileptiform activity. Review by an epileptologist or 
clinical neurophysiologist is helpful to ensure correct identifi cation 
of channels and trials with artifact. At our center, an epileptologist 
also routinely inspects the intracranial EEG prior to recording to 
rule out the presence of excessive spiking or epileptiform activity 
that can reduce the quality of the recordings. Once channels and 
trials with artifact have been excluded, the remaining channels can 
be remontaged for event-related analysis.

For our ECoG studies, we remontage to a common average 
reference (Sinai et al., 2005, 2009). For each sample of the ECoG 
signal in a given trial, an average of the voltages in all channels, 
excluding those with artifact or frequent epileptic discharges, is 
subtracted from the voltage in each individual channel. This spa-
tial reformatting reduces variations in signal amplitude across the 
recording array that result from differences in distance between 
active electrodes and the reference electrode. Although this pro-
cedure is sometimes used in scalp EEG studies to approximate 
a neutral reference, this cannot be assumed, particularly in the 
case of intracranial recordings. The choice of reference electrode 
should be considered carefully so that noise and other promi-
nent electrical activity are not inadvertently introduced into the 
signal. More complex reformatting, such as a Laplacian or local 
average reference, are not usually performed in ECoG studies. 
This is because they are diffi cult to implement with intracranial 
arrays, requiring exclusion of edge electrodes or use of a spline 
to approximate sites off the array. Moreover, these procedures 
were originally developed for scalp EEGs to approximate local 
sources, effectively functioning as high-pass spatial fi lters and, 
therefore, may not be necessary or appropriate for ECoG record-
ings. Although volume conduction from distant sources (i.e., far 
fi eld potentials) can occur, signals recorded with intracranial elec-
trodes are dominated by local sources within a few millimeters 
of the contacts such that signal features in adjacent electrodes 
are often very different (Crone et al., 2001a; Sinai et al., 2005, 
2009). Nevertheless, these procedures, as well as simpler alter-
natives (bipolar derivations), are important alternatives to con-
sider, particularly when volume conduction from distant sources 

is suspected. Additional signal pre-processing for multichannel 
connectivity analyses is described separately below (see Signal 
Pre-processing for ERC Analysis).

CORTICAL AUDITORY EVENT-RELATED RESPONSES
Cortical auditory event-related responses are electrophysiology-
based measures of neural activity generated, in response to sound, by 
neural sources in primary and non-primary auditory cortex located 
in the superior temporal gyrus of both cerebral hemispheres. We 
will focus on three types of cortical auditory event-related activity 
in ECoG signals: evoked responses; spectral (induced) responses; 
and multichannel event-related connectivity.

EVOKED AUDITORY RESPONSES
Evoked responses, also known as evoked potentials or ERPs, are syn-
chronized, low-voltage, typically low-frequency (<50 Hz) electrical 
signals with latencies and amplitudes phase-locked to a stimulus. 
Because of their low amplitude, trial averaging in the time domain 
is used to extract evoked responses and identify individual com-
ponent peaks (positive, negative). One of the earliest and largest 
cortical evoked responses is the vertex-negative N1 that peaks in 
adults around 75–120 ms after stimulus onset and is an automatic, 
transient response to sound onset or change, with generators in 
primary and non-primary auditory cortex (Scherg and von Cramon, 
1986; Naatanen and Picton, 1987; Godey et al., 2001). The N1 is 
embedded between two positive peaks – the P1 and the P2–  forming 
a three-component evoked complex known as the P1-N1-P2. 
Later cortical auditory evoked responses include the N2, occurring 
approximately 200 ms post-stimulus onset (Halgren et al., 1998; 
Hong et al., 2009); the mismatch negativity that refl ects pre-attentive 
detection of stimulus differences (Tiitinen et al., 1994; Naatanen, 
2001; Naatanen et al., 2007); and the P3 (or P300) response that has 
been investigated extensively in studies of auditory attention and 
other higher level cognitive and language functions (Knight et al., 
1989; Polich and Kok, 1995). A variety of auditory stimuli can be 
used to elicit cortical event-related responses, ranging from simple 
sinusoidal tones to complex speech (Sinai et al., 2009). Similarly, a 
number of different paradigms can be used to elicit cortical audi-
tory event-related responses including passive listening tasks and 
active discrimination tasks (Crone et al., 2001b; Sinai et al., 2009). 
The choice of stimulus and paradigm is determined largely by the 
research hypothesis to be tested. Dependent variables in auditory 
ERP studies include peak latency (ms) and amplitude (dB).

SPECTRAL RESPONSES
It is well established that auditory stimuli also induce event-related 
changes in ECoG spectral power that are not phase-locked to the 
stimulus (Crone et al., 2001a; Edwards et al., 2005; Lachaux et al., 
2007; Sinai et al., 2009). A variety of induced spectral responses, 
once considered ‘noise’ in the analysis of evoked responses, are now 
associated with perceptual and cognitive processing. Because spectral 
responses are not phase-locked to a stimulus, they are not evident 
in the averaged evoked waveform. To identify event-related spectral 
power changes, time–frequency analyses are used for averaging in 
the frequency domain rather than in the time domain. A number 
of different time–frequency methods are used to measure event-
related changes in the ECoG spectrum, including short-time Fourier 

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Frontiers in Computational Neuroscience www.frontiersin.org March 2010 | Volume 4 | Article 4 | 140

Boatman-Reich et al. Quantifying intracranial event-related responses

 transform, wavelet transform, and matching pursuit (MP) (Mallat 
and Zhang, 1993). Scalp recording studies have associated changes in a 
variety of EEG frequency bands with task-related cortical processing, 
including increases and decreases in theta (4–7 Hz), alpha (8–13 Hz), 
and beta (14–20 Hz) oscillations under different functional task con-
ditions (Klimesch et al., 1993; Neuper and Pfurtscheller, 2001; Jensen 
and Tesche, 2002; Struber and Herrmann, 2002). Previous studies 
have also identifi ed higher frequencies, including gamma (≥30 Hz), 
as potential indices of task-related cortical processing (Crone et al., 
1998; Tallon-Baudry and Bertrand, 1999; Edwards et al., 2005; Sinai 
et al., 2005; Lachaux et al., 2007). Event-related gamma activity has 
been associated with auditory, visual, and motor functions (Pantev 
et al., 1995; Tallon-Baudry and Bertrand, 1999; Pfurtscheller et al., 
2003; Sinai et al., 2009). The same stimuli and experimental para-
digms used to elicit cortical auditory evoked responses are used to 
induce changes in spectral power. Modulation of spectral intensity 
is measured in units of natural log power change.

EVENT-RELATED CONNECTIVITY
Recent advances in signal processing have engendered investigations 
of event-related functional interactions in the cortical networks 
associated with sensory, motor, cognitive, and language functions. 
Two main types of functional network interactions are recognized: 
functional connectivity and effective connectivity. Functional con-
nectivity is defi ned as the temporal relations (coherences) between 
distant cortical regions, without reference to their directionality 
(causality). Effective connectivity refers to the causal interactions 
of cortical networks (Friston et al., 1994; Astolfi  et al., 2004; Sporns 
et al., 2007). A number of multichannel analysis methods have been 
developed to probe the dynamic interactions of auditory and other 
cortical functional networks, including Granger causality (Oya 
et al., 2007; Gow et al., 2009), dynamic causal modeling (Friston 
et al., 2005; David et al., 2006; Garrido et al., 2007), independent 
component analysis (Onton et al., 2006), direct Directed Transfer 
Function (dDTF) (Korzeniewska et al., 2003), Short-time Directed 
Transfer Function (SDTF) (Ginter et al., 2001, 2005), and more 
recently Short-time direct Directed Transfer Function (SdDTF) 
(Korzeniewska et al., 2008). We will focus on the SdDTF method 
which was developed at our center for evaluating multichannel 
causal interactions over brief periods (milliseconds) and is well 
suited for studying cortical sound processing. SdDTF originates 
from directed transfer function (DTF) (Kaminski and Blinowska, 
1991; Franaszczuk et al., 1994), which is based on the concept of 
Granger causality. SdDTF uses multiple trials/repetitions (multiple 
realizations of the same stochastic process) to measure the dynam-
ics of event-related functional interactions between cortical sites, 
using short time windows (Ding et al., 2000).

ANALYSIS OF AUDITORY EVOKED RESPONSES
TIME-DOMAIN AVERAGING
Auditory evoked responses are derived by averaging in the time 
domain because their latencies and amplitudes are time- and phase-
locked to the stimulus. In contrast, background electrophysiological 
activity is not phase-locked and, therefore, is reduced by phase 
cancellation. The main goal of most clinical studies is to identify 
the largest evoked response for measurement (amplitude, latency). 
The largest response is often identifi ed visually, without statistical 

testing. Existing analysis methods, such as independent component 
analysis, were developed to address the poor spatial resolution of 
scalp recordings through advanced source localization and sig-
nal de-noising (Makeig et al., 1997; Delorme and Makeig, 2004). 
Because the spatial resolution of intracranial recordings is consid-
erably better than that of scalp recordings, these methods may not 
be necessary or applicable.

Recent ECoG studies have begun using statistical testing to 
compare event-related responses to the baseline signal (Edwards 
et al., 2005; Towle et al., 2008; Sinai et al., 2009). This is useful for 
verifying waveform detection and for reducing potential biases 
associated with reliance on visual identifi cation. This approach 
is also helpful for determining the spatial distribution of cortical 
evoked responses associated with different experimental conditions 
(Lachaux et al., 2007; Towle et al., 2008; Sinai et al., 2009). Although 
there is no standard method for measuring baseline ECoG, the two 
most common approaches are computing the mean amplitude, 
based on a random sample of a fi xed number of time points, and re-
sampling of the time-series (Edwards et al., 2005; Sinai et al., 2009). 
Differences in response latency and amplitude can also be measured 
as a function of experimental conditions (stimulus, task) using 
linear regression with generalized estimating equations to account 
for correlation within subjects, as previously described (Liang and 
Zeger, 1986; Boatman and Miglioretti, 2005). Comparing the tim-
ing and size of evoked responses across multiple channels provides 
useful information on the spatial–temporal profi les of auditory 
cortical responses. However, performing multiple comparisons also 
increases the likelihood for false rejections. To address this issue, 
correction methods such as the Bonferroni method and false dis-
covery rate (FDR) are increasingly used in ECoG studies. We discuss 
the problem of multiple comparisons and correction methods in 
more detail below (see Multiple Comparisons).

SPECTRAL ANALYSIS
To quantify event-related changes in spectral composition, the 
ECoG signal is segmented into temporal epochs and transformed 
to the frequency domain for averaging across experimental tri-
als. There are a number of different algorithms for converting 
the signal into the frequency domain, including discrete Fourier 
transforms, wavelets, and complex demodulation. Each method 
offers trade-offs between time and frequency resolution on the one 
hand and computational transparency and effi ciency on the other. 
We use a time–frequency MP algorithm (Mallat and Zhang, 1993; 
Franaszczuk et al., 1998; Durka et al., 2001; Ray et al., 2003). MP is 
an iterative algorithm for adaptive time–frequency estimates of sig-
nal power. The MP method is well suited for analysis of non-station-
ary changes in the ECoG signal, and combines advantages of other 
time–frequency decomposition approaches –  including short-time 
Fourier transform and wavelet transform – with enhanced time–
frequency resolution, as demonstrated previously (Ray et al., 2003; 
Sinai et al., 2005, 2009). The MP method is implemented in C, 
based on the original software (Mallat and Zhang, 1993), and runs 
under Linux on a cluster of computer nodes (software program 
available upon request).

Spectral analyses of event-related electrophysiological responses 
often distinguish between phase-locked and non-phase-locked 
signal components. Phase-locked components are obtained by 
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where E
M

f(n,k) represents energy of signal f in discrete time n and 
discrete frequency k after M steps of iteration, and E

V
g

m
(n,k) rep-

resents the Wigner–Ville distribution of atom g
m
. E

v
g

m
(n,k) is rep-

resented as an ellipsoid in two-dimensional time–frequency plane 
for Gabor atoms, as a horizontal line for sines, and as a vertical line 
for Dirac deltas. The presence of electrical artifact (line noise) in 
the recordings is represented in the decomposition by sine or Gabor 
atoms, with a central frequency around 60 Hz in the United States 
(50 Hz in Europe) and its harmonics, and is typically excluded from 
summation in energy computation.

Time–frequency decomposition is performed for each trial sepa-
rately. The lengths of the pre-stimulus and post-stimulus epochs 
are determined largely by the parameters (e.g., inter-stimulus inter-
vals) of the experimental recording paradigm. For each frequency, 
the baseline (pre-stimulus) power is computed by averaging over 
all baseline time points within a trial and over all trials. To test 
the null hypothesis that event-related spectral power changes do 
not differ from baseline, estimates of pre-stimulus (baseline) and 
post-stimulus spectral power in each post-stimulus time point are 
compared. We use a logarithmic transformation and the Student’s 
t-test to assess statistical signifi cance of the differences (Zygierewicz 
et al., 2005). The t statistic is computed as:

t =
E n k B k

sn k
E

,

,[ ]− [ ]
,

 
(3)

where E n k( , ) is the average of log[E
M

(n,k)] for post-stimulus 
time-points n and frequency k over N trials, B k( ) is the average of 
log[E

M
(j,k)] over baseline points j and N trials, and s

E
 is a weighted 

estimator of the standard deviation. The statistics t
n,k

 follow Student’s 
t distribution with N(1 + K) − 2 degrees of freedom, where N is the 
number of trials and K is the number of baseline time points.

Figure 2 shows results of single-channel MP analysis of spectral 
responses to two different stimuli (speech, tones) recorded from 
the same lateral temporal lobe site in one patient. Of interest is the 
observation that both simple tones and complex speech stimuli 
induced high frequency (gamma) spectral responses at sites in 
non-primary auditory association cortex. This fi nding challenges 
the traditional view that non-primary auditory areas are involved 
only in processing complex sounds.

To correct for multiple within-subject comparisons, the 
Bonferroni correction or FDR is applied, as discussed below (see 
Multiple Comparisons) and as previously described (Zygierewicz 
et al., 2005; Sinai et al., 2009). The resulting time–frequency energy 
distribution refl ects the magnitude and statistical signifi cance of 
energy changes over time. Time–frequency points (pixels) repre-
senting statistically signifi cant changes from baseline can also be 
plotted across the frequency range by experimental conditions 
(stimulus, task), as shown in Figure 2.

Quantifying differences in spectral responses across experimental 
conditions (stimulus, task) poses additional challenges. Simple com-
parisons of spectral responses in the same time–frequency pixel in 
different experimental conditions can be readily performed by t-test 
(Figure 3). However, these parametric tests do not capture visible dif-
ferences in the relative size, morphology (shape) and timing of two (or 
more) spectral responses, as seen in Figure 3. Quantifying these differ-
ences in spectral responses will require new statistical approaches.

 averaging across trials in the time domain, yielding traditional 
evoked potentials. When signals are averaged in the frequency 
domain, the resulting time–frequency averages include both phase-
locked and non-phase-locked components. A variety of approaches 
can be used to isolate the phase-locked components in order to 
emphasize the non-phase-locked components of electrophysiologi-
cal responses. The effi cacy of these approaches depends largely on 
the validity of the phase-locked components, which are themselves 
somewhat of a methodological construct. A simple, but arguably 
simplistic, way to try to isolate non-phased-locked components is 
to subtract the time-domain-averaged signal (i.e., evoked poten-
tial) from each trial prior to averaging in the frequency domain 
(Crone et al., 2001b). A similar approach is that of computing the 
inter-trial variance (Kalcher and Pfurtscheller, 1995). Because the 
amplitudes of phase-locked components are typically much smaller 
than the ongoing raw signal, their contributions to the spectral 
analysis results are likely to be small. However, large inter-trial 
variation in the amplitude and latency of the evoked potential can 
introduce spurious energies when subtracted from the raw signal 
(Truccolo et al., 2002). More advanced methods, including single-
trial time–frequency analyses, may reduce the need for this proce-
dure in the future. For now, the best approach may be to perform 
spectral analyses of signals with and without isolated phase-locked 
components, and in combination with time–frequency decomposi-
tion of the time-averaged evoked response itself (Trautner et al., 
2006). While this approach can help to elucidate the contributions 
of phase-locked and non-phase-locked components, it is important 
to recognize that inherent methodological limitations remain.

MATCHING PURSUIT
The MP method decomposes the ECoG signal into a linear combi-
nation of time–frequency functions termed ‘atoms’, drawn from a 
large dictionary of functions well localized in the time–frequency 
plane. We implement the MP method using a dictionary of sine 
functions that have well-defi ned frequencies; Dirac delta functions 
that are localized in time; and sine-modulated Gaussians – Gabor 
functions. Gabor functions are characterized by the highest com-
bined time–frequency resolution based on the uncertainty principle 
in time–frequency analysis that states that σ

f
σ

t
 ≥ 1/2 where σ

f
 and σ

t
 

represent spread of the function in frequency and time, respectively. It 
can be shown that equality is achieved only for Gabor functions (i.e., 
modulated Gaussian functions) (Mallat and Zhang, 1993). The atom 
representing the maximum energy of the signal (i.e., the largest inner 
product with the signal) is selected fi rst; atoms in the dictionary rep-
resenting the maximum energy of the residual are then determined 
iteratively. After M-th iteration the signal f(n) is expressed as:

f n = R f g g n + R f nm
m m

m=

M
M( ) ( ) ( ),,

0

1−

∑
 

(1)

where Rmf is the residual after the m-th iteration, g
m
 is the atom 

selected in m-th iteration, n is the digitized signal sample number, and 
〈Rmf,g

m
〉 denotes the inner product of residual Rmf and atom g

m
. The 

time–frequency energy distribution is then computed by summing 
the Wigner–Ville distribution of the Gabor atoms expressed as:

E f n k = R f g E g n kM
m

m V m
m=

M

( , ) ( , ),,
2

0

1−

∑
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METHODOLOGICAL CONSIDERATIONS
The length of pre-stimulus (baseline) and post-stimulus epochs is 
determined in part by the experimental protocol and, in particular, 
by the inter-stimulus interval. For our auditory ECoG studies, we 
use relatively short inter-stimulus intervals (∼1–2 s) which allow 
us to record larger numbers of trials. However, using shorter time 
windows can make it more diffi cult to detect power changes in 
lower frequencies (alpha, beta).

The MP method is useful for studying non-phase-locked, event-
related changes in ECoG signals. This approach is well suited for cap-
turing the brief (milliseconds), rapidly changing neural responses 
characteristic of cortical sound processing. We have used this 
approach in our recent studies to characterize spectral responses 
to different auditory stimuli (tones, speech) in auditory association 
cortex (Ray et al., 2003; Sinai et al., 2009). Studies from our center 

and others have shown that spectral and time-domain analyses are 
complementary, each providing important clinical information and 
new insights into the functional organization of the human cortical 
auditory system (Crone et al., 2001a; Edwards et al., 2005; Lachaux 
et al., 2007; Towle et al., 2008; Sinai et al., 2009).

EVENT-RELATED CAUSAL AND EFFECTIVE CONNECTIVITY
Previous intracranial auditory recording studies have identifi ed 
statistically signifi cant event-related changes in ECoG spectral 
power using single-channel time–frequency analyses (Crone et al., 
2001a; Lachaux et al., 2007; Sinai et al., 2009). Non-phased-locked 
changes in spectral power, once considered ‘noise’, are now thought 
to be neural indices of regional and distributed cortical processing, 
providing a useful tool for probing the functional organization 
of cortical networks (Engel and Singer, 2001; Singer, 1993). As a 

FIGURE 2 | Results of matching pursuit analysis showing statistically 
signifi cant spectral power changes (0–200 Hz) occurring 0–250 ms following 
onset of speech (A) and tone (B) stimuli and recorded from the same 

electrode site located on the convexity of the posterior superior temporal 
gyrus in one patient. Scale bar to right of each panel shows color scale of 
spectral power changes (dB). Largest spectral power changes are shown in red.
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result, there is now considerable interest in investigating effective 
neural connectivity based on the dynamic patterns of event-related 
propagation of the non-phase locked activity. Event-related causal-
ity (ERC) is a new method for measuring event-related changes 
in causal interactions between multi-electrode recording sites, to 
estimate the effective connectivity of cortical networks engaged 
by functional tasks (Korzeniewska et al., 2008). The ERC method 
measures statistically signifi cant event-related changes in the direc-
tion, strength, and spectral content of direct electrophysiological 
interactions between brain sites and their timing. In the following 
sections, we describe the multichannel ERC method and its applica-
tion to ECoG data, including auditory event-related recordings.

EVENT-RELATED CAUSALITY
ERC is based on the concept of Granger causality, which was origi-
nally developed for economic modeling and predictions (Granger, 
1969). Granger causality postulates that an observed time series 
x

k
(t) causes another time series x

l
(t) if knowledge of x

k
(t)’s past 

signifi cantly improves prediction of x
l
(t). This approach was imple-

mented in multiple time series by fi tting a multivariate autore-
gressive (MVAR) model, and has been used recently to study the 
dynamics of causal interactions between neural populations for sig-
nals assumed to be either stationary (Brovelli et al., 2005; Krichmar 
et al., 2005; Seth, 2005; Cadotte et al., 2008, 2009; Anderson et al., 

2009; Keil et al., 2009), or non-stationary (Freiwald et al., 1999; 
Hesse et al., 2003). By using frequency decomposition of Granger’s 
time domain (Geweke, 1982) it is possible to examine spectral prop-
erties of Granger causality (sometimes referred as Granger–Geweke 
causality), which is useful for neurophysiological signals, where 
frequency domain is often of interest. The Granger causality tech-
nique is a ‘model-free’ measure of causal interactions in that it is 
not based on a priori assumptions about anatomical or functional 
connections. However, it is based on a statistical linear model and 
cannot describe non-linear causal interactions. The concept of 
Granger causality led to development of multiple related meth-
ods, including structural analysis (Bernasconi and Konig, 1999); 
partial directed coherence (Sameshima and Baccala, 1999; Baccala 
and Sameshima, 2001a,b; Schelter et al., 2006); and DTF (Kaminski 
and Blinowska, 1991; Franaszczuk et al., 1994; Kaminski et al., 2001; 
Astolfi  et al., 2005; Kaminski and Liang, 2005). A number of these 
methods have been compared previously (Kus et al., 2004; Eichler, 
2005; Winterhalder et al., 2005; Schlogl and Supp, 2006; Astolfi  
et al., 2007b). In particular, a study by Kaminski et al. (2001) showed 
equivalence of DTF and bivariate Granger causality. Other methods 
that are not based on the Granger causality concept have also been 
used to determine functional connectivity, including calculations of 
evoked potential covariances (Gevins et al., 1995); adaptive phase 
estimation (Schack et al., 1999); effective information (Tononi and 

FIGURE 3 | Statistical comparisons of event-related spectral power 
responses (dB) elicited with two different auditory stimuli (tones, speech) 
from the same ECoG channel (electrode) on the lateral superior temporal 
gyrus. Spectral responses that differed signifi cantly from their respective 
baselines are shown for (A) tones and (B) speech. Comparisons of two spectral 
responses (A versus B) showed signifi cant differences when the response to 

tones was subtracted from the response to speech, as shown in (C,D). Results 
of two statistical comparisons are shown for: a t-test assuming unequal 
variances (C) and a paired t-test for Z-scores (D). False discovery rate correction 
for multiple comparisons was applied for both tests. The similarity of test results 
indicates similar variances, likely refl ecting the common data sources 
(channel,subject).
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Sporns, 2003); the imaginary part of coherency (Nolte et al., 2004); 
and directed information transfer (Hinrichs et al., 2008). In this 
paper we will discuss only the SdDTF method, which is a modifi ca-
tion of the DTF method and therefore also a linear Granger-like 
causality measure.

The MVAR model assumes that the values of multiple time series 
from K recording sites/channels – vector 

r
x x xK= { ,..., }1  – at time 

t, depend on p previous values of the time series, and the random 
components vector 

r
e . When the MVAR model is fi tted to ECoG 

signals from K channels, they are treated as one multivariate sto-
chastic process, expressed as:

r r r
x t = A x t j + e tj

j=

p

( ) ( ) ( ),− −∑
1  

(4)

where A
j
 is a K × K MVAR coeffi cients matrix and p is the model 

order. To determine the value of model order p, the Akaike 
Information Criterion is applied (Akaike, 1974). The MVAR model 
coeffi cients were computed using a Yule–Walker algorithm imple-
mented in C (Franaszczuk et al., 1985). Because ECoG activity may 
be understood in terms of rhythms and oscillations, it is useful to 
describe the spectral properties of their signals. For this purpose 
the MVAR equation may be transformed to the frequency domain 
(Marple, 1987) as:

X f = H f E f( ) ( ) ( ),  (5)

where

H f = A ej
j=

p
i jf t( ) ,

0

2

1
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−





π ∆

 

(6)

H(f) is the transfer function of the multichannel system, f is fre-
quency, and ∆t is the sampling interval. The element h

kl
 of the 

matrix H(f) describes the transfer function between the k-th out-
put and the l-th input of the system. If the element h

kl
 of H is 

equal to 0, the hypothesis that x
k
(t) causes x

l
(t) can be rejected. 

The matrix is not symmetric if any of the channel pairs (k,l) have 
unequal fl ows in both directions. As such, the directional proper-
ties of a multichannel system may be interpreted as Granger causal 
relationships, signal fl ows, or activity transfers. If H is symmetric, 
directionality cannot be determined. The direct transfer function 
was developed as a normalized version of H matrix (Kaminski 
and Blinowska, 1991; Franaszczuk et al., 1994; Kaminski et al., 
2001; Astolfi  et al., 2005; Kaminski and Liang, 2005). The DTF 
method has also been used to study activity fl ow in amnesic and 
Alzheimer’s patients (Babiloni et al., 2009); Parkinson’s patients 
(Androulidakis et al., 2008; Lalo et al., 2008); and spinal cord 
injury patients (Astolfi  et al., 2006), and in studies of seizure onset 
and neural circuitry (Franaszczuk et al., 1994; Franaszczuk and 
Bergey, 1998; Ge et al., 2007); wake-sleep transitions (De Gennaro 
et al., 2004, 2005); working memory (Edin et al., 2007); memory 
encoding and retrieval (Babiloni et al., 2006); and animal behavior 
(Korzeniewska et al., 1997). Recently, DTF and related methods 
have also been used to investigate causal infl uences in functional 
MRI (fMRI) data (Deshpande et al., 2006, 2008; Hinrichs et al., 
2006; Sato et al., 2008; Wilke et al., 2009), and to develop brain 
computer interfaces (Shoker et al., 2005).

To capture the dynamics of ERC, various modifi cations of 
MVAR model fi tting can be applied (Astolfi  et al., 2007a, b; Wilke 
et al., 2007). The SDTF (Ding et al., 2000), a modifi cation of the 
DTF method, uses short, overlapping time windows that are shifted 
along the signals when there are multiple task repetitions (consid-
ered as a realization of the same stochastic process), or trials, to 
track brief changes in the fl ow of activity between brain regions 
(Ginter et al., 2001, 2005; Kaminski et al., 2005; Kus et al., 2006, 
2008; Philiastides and Sajda, 2006; Korzeniewska et al., 2008).

Granger causality and DTF methods identify both direct and 
indirect relationships between signals. For example, for three signals 
related as follows: x1 → x2 → x3, these methods will show not only 
fl ows x1 → x2 and x2 → x3 but also x1 → x3 (indirect fl ow). To 
detect only direct relationships, a partial coherence function can 
be utilized. By multiplying this function with DTF, the dDTF is 
obtained which describes only direct fl ows (Korzeniewska et al., 
2003). However, the partial coherence function can also yield spuri-
ous relationships, as when two non correlated signals are added to 
form a third signal. This will result in spurious partial coherence 
between to non correlated signals: the so called ‘marrying parents 
of a joint child effect’ (Schelter et al., 2006). However, in this case 
DTF will show no fl ow and dDTF will avoid the spurious effect. 
The recently developed SdDTF method involves a synthesis of both 
the SDTF and the dDTF collectively (Korzeniewska et al., 2008), 
in the form:

ζ
χ

χ
k,l

k,l k,l

k,l
k,lf

k,l

=
h f f

h f f

( ) ( )

( ) ( )
,

2 2∑∑
 

(7)

where χ
kl
 are elements of partial coherence matrix. The SdDTF func-

tion determines whether a signal component at a given frequency in 
channel k is shifted in time with respect to a signal component of the 
same frequency in channel l, and whether the shifted components 
are coherent and are not explained by components of other chan-
nels. SdDTF takes values from 0 to 1. Zero indicates a lack of direct 
causal relationships. The non-zero values of SdDTF are interpreted 
as a fl ow of activity from one channel to another, that is, ζ

kl
(f) > 0 

indicates fl ow of activity from channel l to channel k(l → k). The 
temporal evolution of causality estimates can then be obtained by 
calculating them in a short window that is shifted along the signal 
of interest, as previously described (Korzeniewska et al., 2008).

The interpretation of event-related causal interactions is con-
strained by the available measurements. As in all scientifi c infer-
ence, missing information can lead to false interpretation. In 
multichannel analyses, it is important to include measurements 
from all brain regions that are responsible for the analyzed task. 
When neural networks associated with functional processing are 
only partially represented, spurious causalities may result (Eichler, 
2005; Krichmar et al., 2005). Removing, adding or replacing crucial 
recording sites from the analysis is most likely to produce artifi -
cial causalities (Eichler, 2005). Conversely, inclusion, deletion, or 
replacement of recording sites that are not crucial for the analyzed 
system may not substantially change the patterns of causal inter-
actions (Korzeniewska et al., 2008). This issue can be addressed 
by using approaches like partial directed coherence, dDTF, and 
SdDTF – all of which emphasize direct fl ows or interactions – and 
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function, especially when the analysis windows are overlapping. 
However some of the noise inherent in the original signal will be 
resistant to this smoothing method. Hence, we employ a formal 
bivariate smoothing model that takes into account both the fre-
quency f, and the temporal window t, which is defi ned as:

Y = g f t +f t f t, ( , ) ,,ε  (8)

where g(f,t) is an unspecifi ed function representing the actual 
SdDTF function and ε

ft
 are independent N(0,σε

2) random vari-
ables capturing the white noise around the signal. There are many 
nonparametric approaches to bivariate smoothing, but here we use 
a penalized thin-plate spline model for g(.,.). The model was imple-
mented in R using the SemiPar software package1. The method and 
its implementation in R has been described previously in detail 
(Ruppert et al., 2003).

The SdDTF is a non-stationary function, both in baseline and 
post-stimulus periods, accounting for the non-stationarity of the 
baseline signal and represents a recent improvement over previ-
ous approaches (Korzeniewska et al., 2008). The mean SdDTF 
value of each pre-stimulus baseline window is compared with the 
mean SdDTF value of each post-stimulus window using a t-test 
designed for the null hypothesis of zero differences between the 
SdDTF means. We conclude that there is signifi cant event-related 
change in causal interactions within a given post-stimulus time 
window if the SdDTF value for this window is signifi cantly different 
from all SdDTF values in the baseline period. If the SdDTF value 
for the post-stimulus time T is signifi cantly higher than all values 
of SdDTF for every time t of the baseline period, we say that there 
is a signifi cant increase in causal interaction. Our goal was to test 
for every frequency f, and for every baseline/stimulus pair of time 
windows (t,T), whether g(f,t) = g(f,T). More precisely, the implicit 
null hypothesis was expressed as:

H g f t g f T g f t

g f T g f t g f T

f T

n

0 1 2, , : , ( , ) ,

( , ) , ( , )

( ) = ( )
= ( ) =

or

or orK  (9)

with the corresponding alternative:

H g f t g f T g f t

g f T g f t g f T

A f T

n

, , : , ( , ) ,

( , ) , ( ,

1 2( ) ≠ ( )
≠ ( ) ≠

and

and andK )).
 

(10)

These hypotheses were tested by constructing a joint 95% con-
fi dence interval for the differences g(f, t) − g(f,T) for t = t

1
,…,t

n
. Let 

ˆ( , )g f t , ˆ ( , )σg f t  be the penalized spline estimator of g(f,t) and its 
associated estimated standard error in each baseline time window. 
Similarly, let ˆ( , )g f T , ˆ ( , )σg f T  be the penalized spline estimator of 
g(f,T) and its associated estimated standard error in each post-
 stimulus time window. Since the penalized spline functions are fi tted 
locally, the residuals are assumed to be independent at points well 
separated in time and randomly distributed. We can also assume 
that for every baseline/stimulus pair of time windows (t,T):

ˆ( , ) ( , ) ˆ( , ) ( , )

ˆ ( , ) ˆ ( , )
~ ( , )

g f t g f T g f t g f T

f t f T
N

g

− − +
+σ σ2 2

0 1

 

(11)

by increasing the number of channels. Nevertheless, it is important 
to have relatively comprehensive coverage of regions known to 
be functionally important, such as the superior temporal gyrus, 
for studying auditory processing. This is also illustrated in the 
application of SdDTF to auditory ECoG data described below 
(see Estimating ERC in auditory event-related ECoG): the patient 
had multiple electrodes covering the superior temporal gyrus and 
recording sites selected for inclusion were identifi ed based on previ-
ous analyses of auditory event-related power spectra.

In drawing conclusions from these analyses, several limitations 
warrant consideration. As in any scientifi c investigation, we are 
limited to the set of recorded signals and these could be infl uenced 
by other processes not detected in the analysis. For example in 
the network x1 → x2 → x3, a fourth undetected process could be 
involved such that x1 → x4 → x3. This limitation underscores the 
importance of carefully choosing recording sites for analysis and 
ensuring adequate representation of all regions associated with the 
function under investigation. The second limitation of methods 
based on Granger causality, including dDTF, is the inability to cor-
rectly identify cyclical interactions (for an excellent discussion of 
these issues, see Eichler, 2006).

Causal interactions can be both linear and non-linear in brain 
systems. Previous studies have suggested that non-linear mecha-
nisms may play an important role in the functional connectivity of 
large-scale neural networks (Friston, 1997; Schanze and Eckhorn, 
1997; Bekisz and Wrobel, 1999; Breakspear and Terry, 2002a,b; 
Senkowski et al., 2007). ERC is a linear method and does not provide 
information about the nature of the causality (linear or non-linear). 
Nevertheless, linear methods may be sensitive to both linear and 
non-linear causal interactions (Freiwald et al., 1999; Chavez et al., 
2003; Gourevitch et al., 2006). Indeed, MVAR models can be used 
to describe non-linear systems (Franaszczuk and Bergey, 1999). The 
detection of dependencies by linear methods does not require that 
those dependencies are linear (Freiwald et al., 1999). Thus, the ERC 
method cannot determine if the observed activity fl ow changes are 
due to linear or non-linear dynamics. However, it has been shown 
that higher-degree non-linearity models do not provide a clear 
advantage over linear ones (Barbero et al., 2009). A recent study 
using a non-linear Granger causality approach (Gourevitch et al., 
2006) showed that functions similar to SdDTF (directed coherence, 
partial directed coherence) appear to correctly identify linear link-
ages even if the autoregressive components are non-linear. On the 
other hand, non-linear Granger causality can yield interesting results 
for complex systems, but remains dependent on the parameters of 
the method (order and scale chosen). Linear methods can correctly 
identify frequency-specifi c causal interactions if the analysis includes 
the relevant frequencies. In the functioning brain, it is likely that 
there are always causal interactions between neural populations in 
multiple brain regions. Therefore, to identify task-specifi c patterns 
of interaction, it is necessary to examine changes in those base-
line interactions that correlate with a task.To evaluate the statisti-
cal signifi cance of event-related changes in SdDTF (i.e., ERC), we 
implement a statistical test to compare pre-stimulus (baseline) with 
post-stimulus SdDTF values. Specifi cally, a semi-parametric regres-
sion model is applied to SdDTF values calculated from pre- and 
post-stimulus periods. The windowing strategy described earlier can 
be viewed as a fi rst step in smoothing the time-dependent SdDTF 1http://www.uow.edu.au/∼mwand/SemiPar.html
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approximates a standard normal distribution. We confi rmed these 
assumptions with the Kolmogorov–Smirnov normality test. A 
joint confi dence interval with at least 95% coverage probability 
for g(f,t) − g(f,T) is defi ned as:

ˆ( , ) ˆ( , ) ˆ ( , ) ˆ ( , ),.g f t g f T m f t f Tg− ± +95
2 2σ σ

 
(12)

where m
.95

 is the 97.5% quantile of the distribution:

MAX max
1 1 1

, ,t ,T = Nn n
t t t , T T T , f f f

t T f
n n m

( )
≤ ≤ ≤ ≤ ≤ ≤

,  (13)

where N
t,T,f

 are independent N(0,1) random variables. This test 
rejected H

0,f,T
 if 0 was not contained in any of the correspond-

ing confi dence intervals. To account for multiple comparisons, 
either a Bonferroni correction or the less conservative FDR can 
be implemented. The choice of correction method will depend 
on whether there is greater concern about incorrectly assign-
ing statistical signifi cance to a particular pattern, as in an initial 
exploratory analysis, or about failing to detect statistically relevant 
patterns (for detailed discussion see Korzeniewska et al., 2008). By 
defi nition, the ERC method provides an estimate of the directions 
and magnitudes of statistically signifi cant event-related changes 
in direct activity propagation between brain sites, as a function 
of frequency. In other words, ERC corresponds to SdDTF, but is 
masked according to the statistical signifi cance of event-related 
changes in SdDTF.

ERC METHODOLOGICAL CONSIDERATIONS
The number of data samples and length of the time window are 
two important considerations in applying the ERC method. A suf-
fi cient number of data samples are needed for the MVAR model 
to fi t appropriately the recording data. Similarly, the length of 
the data analysis window should be suffi ciently short to allow 
the data to be treated as stationary, but not so small that it pre-
cludes measuring jitter in the recorded signal across trials. It is 
recommended that the number of parameters be <10% of the 
total number of data samples. The number of data samples should 
also be several times greater than the number of channels (K). 
As in previous studies, we estimate the suffi cient number of data 
samples by the inequality:

K p +

N n
<

1
0.1

( )
s t

,
 

(14)

where N
s
 is the length of the moving window (e.g., the number of 

samples per recording epoch) and n
t
 is the total number of trials. 

Selection of recording channels can be guided by results of the 
single-channel MP analyses (described in Spectral Analysis). The 
rationale for this is that event-related causal interaction between 
ECoG signals is more likely to occur at sites where an event-related 
increase in signal energy is evident.

SIGNAL PRE-PROCESSING FOR ERC ANALYSIS
The raw ECoG time series is fi rst pre-processed as for single-
 channel spectral analyses (see Signal Pre-processing). Remontaging 
to a common average reference (see Signal Pre-processing) is use-
ful for removing unrelated global activity prior to ERC analysis 

(Yao et al., 2005, 2007; Ludwig et al., 2009). For ERC analysis, 
pre-processing is important to remove artifact, including high-
frequency noise, to select specifi c frequency bands for analysis, 
and to remove phase-locked activity from the signal. To accom-
plish the fi rst two objectives, the ECoG signal is digitally band 
pass-fi ltered and down-sampled. Signals can be fi ltered to include 
a single frequency range or multiple frequency ranges. However, it 
is important to ensure that the fi lter does not change the signals’ 
phase properties and that the fi lter’s impulse response is short.

For ERC analysis, the third purpose of signal pre-processing is to 
remove the phase-locked activity. As discussed earlier (see Spectral 
Analysis), the resulting non-phase-locked activity, previously con-
sidered ‘noise’ in ERP studies, contains task-relevant information 
(Kalcher and Pfurtscheller, 1995; Ding et al., 2000) that cannot 
be inferred solely from the ERP (Crone et al., 2001a; Senkowski 
and Herrmann, 2002; Senkowski et al., 2007). Moreover, causality 
analyses with and without subtraction of the ensemble average have 
revealed spurious causality responses when subtraction was not per-
formed (Oya et al., 2007). To remove phase-locked components that 
may obscure non-phase-locked activity and to meet MVAR model 
requirements, the mean signal values in each window are computed 
and subtracted from the signal. This results in a zero mean signal in 
each window, which is required for fi tting the MVAR model (Eq. 4) 
To normalize signal amplitudes across channels, the signal in each 
window is then divided by its standard deviation. This normalization 
allows comparison of fl ow changes between different stages of task 
processing and different channel pairs independent of the relative 
amplitudes of the signals (Ding et al., 2000).

ESTIMATING ERC IN AUDITORY EVENT-RELATED ECoG
Figure 4 illustrates results of a recent ERC analysis of auditory 
event-related responses from an adult patient who had a focal 
right parietal dysplasia, with complex partial seizures, and who 
had a right subdural electrode grid implanted for pre-surgical 
monitoring. The top panel depicts a transmission matrix of sta-
tistically signifi cant event-related changes in the fl ow of activity 
between electrode sites during the fi rst 200 ms after presentation 
of a speech syllable (/da/; 300 ms). A number of relevant trans-
missions can be seen. The location of the most prominent fl ows 
occurs in the fi rst 150 ms at recording sites on the lateral posterior 
superior temporal gyrus, corresponding to auditory areas known 
to be critical for processing complex sounds, including speech 
(Miglioretti and Boatman, 2003; Boatman et al., 2000; Boatman, 
2006; Sinai et al., 2009). The relationships between sites of sound 
processing are illustrated in the bottom panel of Figure 4. The 
arrows represent integrals of changes in causal interactions dur-
ing the time course of sound processing. The color and width of 
the arrows represent the magnitude of integrals, over the ana-
lyzed period, of statistically signifi cant ERC values. The cluster 
of arrows focused on the posterior superior temporal gyrus and 
inferior parietal cortex are consistent with the proposed local 
processing networks for complex sounds in auditory association 
cortex (Crone et al., 2001a; Boatman, 2004, 2006; Boatman and 
Miglioretti, 2005; Edwards et al., 2005; Lachaux et al., 2007). The 
directionality and magnitude of the changes in causal interac-
tions within this local processing network can be represented 
schematically, as shown in Figure 5. These results illustrate the 
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SPATIAL NORMALIZATION
Electrode placement for intracranial monitoring is determined by 
each patient’s clinical circumstances, resulting in restricted spa-
tial sampling in individual patients and variability across patients. 
The ability to compare electrode locations across patients has 
become a challenge as ECoG studies have expanded from single 

utility of multichannel ERC analyses, which provide information 
about effective connectivity between cortical sites that cannot be 
obtained from single-channel analyses. We view these two meth-
odological approaches as largely complementary; each provides 
important information about the functional organization of the 
cortical auditory system.

FIGURE 4 | Results of multichannel event-related causality (ERC) 
analysis of ECoG signals recorded from a patient listening to speech 
sounds (syllables). Top panel shows ERC matrix. Direction of ERC fl ow is 
from the electrode labeled above each column to electrode labeled at left of 
each row. Time is on the horizontal axis (1–250 ms); frequency (0–25 Hz) is on 
the vertical axis. Color scale of ERC values (0 to max) is shown to right of 
array. Black indicates time–frequency points with no signifi cant difference 
between SdDTF values after stimulus and SdDTFs for baseline. Colored 

time–frequency points indicate increases in post-stimulus SdDTF relative to 
baseline SdDTF (red > orange > yellow). Bottom panel depicts integrals of 
ERC for frequency range 0–25 Hz calculated for the same ECoG data set. 
Arrows indicate directionality of ERC. Width and color of arrows represent 
values of ERC integrals. Color scale is at the right. For clarity, only integrals for 
event-related fl ow increases are shown. White projecting lines show how 
matrix cells in top panel correspond to electrode recording channels in 
bottom panel.
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case reports to include larger numbers of subjects. Volumetric 
three-dimensional (3D) MRI scans are obtained routinely before 
electrode implantation surgery and 3D CT scans are often used 
for post- implantation imaging. To localize electrodes in individual 
patients, the pre-implantation MRI and post-implantation CT 
scans must be co-registered. To compare electrode locations across 
patients (groups), individual 3D electrode positions are then trans-
formed to a common reference space. The Talairach and Montreal 
Neurological Institute (MNI) 3D coordinate systems are standard 
reference systems for reporting brain locations in functional neu-
roimaging studies. Here we describe a semi-automated method to 
determine the 3D locations of intracranial electrodes (Ritzl et al., 
2007). This method uses two freely available software programs 
– SPM and MRIcro – to co-register individual CT and MRI images 
and then transform electrode locations to a standard 3D reference 
space (Talairach, MNI) for group comparisons.

DATA PRE-PROCESSING
The pre-implantation volumetric MRI (1–1.8 mm coronal slices) 
and post-implantation CT (1 mm axial slices) scans are acquired 
in digital imaging and communication (DICOM) format. The MRI 
and corresponding CT data are then converted to Analyze format 
using MRIcro2.

CO-REGISTRATION AND NORMALIZATION
The CT data are automatically co-registered onto MRI data from 
the same patient using SPM83 and a six-parameter rigid body trans-
formation (Ritzl et al., 2007). The pre-implantation MRI is then 
normalized onto the standard MNI brain representation included 
in SPM8, using default normalization parameters. The 3D CT scan 
is then normalized using parameters derived from normalization 
of the 3D MRI.

NORMALIZED ELECTRODE COORDINATES
The MRI, CT, and 3D co-registered data can be displayed in spatially 
linked windows in MRIcro (Figure 6). This facilitates visualiza-
tion and selection of individual electrodes. MRIcro automatically 
displays MNI coordinates of selected data points (electrodes). 
Talairach coordinates can be derived from MNI coordinates using 
the MATLAB mni2tal function4.

Advantages of this semi-automatic normalization approach 
include: (1) it uses freely available software programs; (2) it is 
useful for combining different imaging data sets, including fMRI; 
(3) co-registration is automatic, thereby avoiding human error; 
and (4) it can also be used to localize depth electrodes implanted in 
deeper brain structures including the hippocampus. This method 
was developed for extraoperative ECoG studies in which electrodes 
are implanted. Other approaches have been developed for localiza-
tion of electrode positions during intraoperative recording studies, 
including co-registration of electrode locations derived from infra-
red probes with pre-surgical MRI scans (Edwards et al., 2005).

The normalized electrode data may undergo further statistical 
modeling. For example, we have used template mixture modeling, 
a Bayesian hierarchical framework derived from normalized elec-
trode coordinates, to quantify within- and between-patient vari-
ability in the distribution of cortical auditory responses (Miglioretti 
and Boatman, 2003; Boatman and Miglioretti, 2005).

ECoG METHODOLOGICAL AND STATISTICAL 
CONSIDERATIONS
LIMITATIONS OF ECoG STUDIES
A potential limitation of the intracranial (ECoG) method is 
that electrodes are usually implanted only over one hemisphere 
(seizure side), precluding recording from both hemispheres in 

FIGURE 5 | Schematic representation of ERC integrals for frequency 
range 0–25 Hz as shown in bottom panel of Figure 4. Labels around the 
outside represent electrode channels shown in Figure 4. Arrows indicate 
directionality of ERC. Arrow width and color represent the values of ERC 
integrals shown in Figure 4.

FIGURE 6 | Co-registered 3D MRI and CT images from one patient 
displayed in MRIcro. Three linked views are shown with same subdural 
electrode selected at crosshair: coronal (top left), saggital (top right), and axial 
(bottom left). Normalized MNI coordinates for selected subdural electrode are 
displayed in bottom right window.

2http://www.sph.sc.edu/comd/rorden/mricro.html
3http://www.fi l.ion.ucl.ac.uk/spm/software/spm8/ 4http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
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hypothesis (Holm, 1979). Alternatively, FDR is the expected pro-
portion of falsely rejected null hypotheses for a specifi ed threshold. 
The original work by Benjamini and Hochberg (1995) and recent 
work (Storey, 2002) has shown how to develop thresholding rules 
that bound FDR, not unlike the rules by which the Bonferroni cor-
rection bounds the family-wise error rate. While the FDR procedure 
tends to be less conservative than the Bonferroni, both methods 
have been used to determine the statistical signifi cance of event-
related responses in multichannel ECoG data (Durka et al., 2004; 
Edwards et al., 2005; Sinai et al., 2009). Because these two correction 
methods have different purposes, they are therefore not mutually 
exclusive.

In our time–frequency studies, the Bonferroni and FDR 
have yielded similar results. One potentially useful strategy is 
to combine both methods in a two-stage process: fi rst imple-
ment the FDR method to identify data trends and then apply 
the Bonferroni method to verify the results. A promising new 
approach for handling multiple comparisons in ECoG data 
involves applying non-parametric permutation testing to esti-
mate statistical signifi cance (Maris and Oostenveld, 2007; Jacobs 
and Kahana, 2009) – a procedure that is gaining wide accept-
ance in neuroimaging studies (Nichols and Holmes, 2002). When 
applying these non-parametric tests, it is important to use a 
suffi ciently large number of permutations to achieve conver-
gence to asymptotic values. As long as test results continue to 
change when the number of permutations is increased, they are 
considered not yet reliable.

CONCLUSIONS
We propose a comprehensive analytic framework that combines 
multiple, complementary methods for evaluating the statistical 
signifi cance of event-related responses in ECoG data sets. We 
demonstrated the utility of this approach for intracranial auditory 
mapping studies. The individual methods described have been 
used in ECoG studies of sensory, motor, language, and cognitive 
functions (Ray et al., 2003; Sinai et al., 2005; Canolty et al., 2007; 
Miller et al., 2007; Oya et al., 2007; Jacobs and Kahana, 2009) 
as well as studies of cortical abnormalities, including seizures 
(Franaszczuk et al., 1994, 1998). The combination of multiple 
complementary single-channel and multichannel methods in 
a comprehensive unifi ed framework is novel and potentially 
more powerful than the traditional single-method approach. 
This methodological framework may also be useful for analyz-
ing intracortical recordings of local fi eld potentials in animal 
studies. Future directions include development of new statistical 
approaches for quantifying differences in the temporal-spectral 
shape of event-related responses across subjects and experimental 
conditions (stimulus, task) and for integration of multimodal 
brain mapping data, including fMRI and whole-head magne-
toencephalography (MEG).
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the same patient. Some patients have strips implanted on the 
contralateral side for improved lateralization, but this is less 
common. Likewise, implanted electrodes rarely cover an entire 
hemisphere, further restricting spatial sampling within patients. 
There is also considerable individual variability in electrode 
placement across patients, and the spatial resolution of electrode 
arrays is high enough that important anatomical distinctions can 
exist between similarly placed arrays. This may pose additional 
challenges for statistical group comparisons. Another potential 
limitation is that patients who undergo invasive recordings usu-
ally have longstanding neurological disorders that may result in 
atypical functional organization. To increase the generalizabil-
ity of results, we routinely screen patients beforehand to detect 
functional abnormalities, including hearing loss and auditory 
dysfunction (Boatman and Miglioretti, 2005; Sinai et al., 2009). 
Another potential concern is that the reliability of ECoG record-
ings has yet to be determined. This is particularly problematic 
since recordings are often done over multiple sessions (days), 
and changes in clinical status due to seizures or medications are 
likely to occur. Studies are underway at our center to examine 
test-retest reliability of different event-related response measures. 
Finally, recent studies have suggested that EEG recordings of 
gamma activity may be contaminated by ocular and muscle arti-
fact. Specifi cally, it has been shown that high frequency responses 
in scalp EEG are infl uenced by micro-saccades (Yuval-Greenberg 
et al., 2008) and that recordings from the temporal pole region 
may infl uenced by myogenic artifact due to the proximity of 
extraocular muscles (Jerbi et al., 2009). These potential limita-
tions need to be taken into consideration in the interpretation 
of ECoG fi ndings.

MULTIPLE COMPARISONS
The multiple comparisons problem arises in ECoG studies because 
the event-related response of interest is measured at a large number 
of electrodes and time points requiring multiple statistical com-
parisons. Large numbers of statistical comparisons come with the 
potential to falsely reject the null hypothesis due to chance asso-
ciations. The family-wise error rate is the probability of falsely 
concluding there is an effect (e.g., difference). The multiple com-
parisons problem can be resolved by controlling the family-wise 
error rate at a specifi ed alpha level (e.g., 0.05). However, it is not 
possible to control the family-wise error rate by means of standard 
statistical methods that operate at the level of single samples (e.g., 
t-test).

Two correction methods are widely used in ECoG studies: the 
Bonferroni correction and the FDR (Benjamini and Hochberg, 
1995). The Bonferroni correction restricts the so-called family-
wise error rate (i.e., the probability of at least one false rejection 
under the null hypothesis) by dividing the type I error rate by the 
total number of comparisons performed. This procedure is very 
conservative because it ignores correlations in the hypothesis test 
outcomes and bounds the family-wise error rate, a criterion that 
is generally too strict to be practical for modern high-throughput 
studies such as ECoG. To address this issue, several modifi cations to 
the Bonferroni method have been developed, including the Holm-
Bonferonni method that controls family-wise error rate at the α 
level, thereby allowing more opportunity for rejection of the null 
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maintenance of relevant visual information within short-term 
memory. Thus, theta oscillations in V4 could provide a possi-
ble mechanism for supporting and coordinating cross-neuronal 
interactions within neuronal ensembles during visual memory. 
However, physiological evidence for directed oscillatory interac-
tions in the theta-frequency range during short-term memory 
has not been obtained yet.

A description of the interaction patterns of oscillatory processes 
is provided by different measures that quantify various aspects of 
functional coupling. For example, some measures such as the phase-
locking value (Lachaux et al., 1999, 2000) provide insights into the 
instantaneous phase-relationship between two oscillatory processes 
and are derived from Wavelet- or Hilbert transform-based methods. 
In contrast, coupling measures derived from multivariate autore-
gressive (MVAR) models are becoming increasingly important as 
they capture not only instantaneous interactions between neural 
signals, but can give insights into the causal relationship between 
oscillations as well as the direction of their interaction. Thus, MVAR 
models are powerful in capturing the complex nature of oscillatory 
interactions and their role in neural processing.

INTRODUCTION
Cortical oscillatory activity measured from local field potential 
(LFP) recordings or electroencephalogram (EEG) is a widespread 
neuronal phenomenon and is considered to underlie the commu-
nication of local and distant neural populations throughout the 
brain (Fries, 2005). Different parameters of oscillations in distinct 
frequency bands often show correlations with various aspects of 
sensory information processing (Buzsaki and Draguhn, 2004). A 
prominent example is the modulation of gamma synchrony in 
visual cognition, for example in tasks involving the manipulation 
of visual attention (Fries et al., 2001), binocular rivalry (Gail et al., 
2004) or object recognition (Supp et al., 2007).

In contrast to visual processing, several studies revealed a spe-
cific role of theta oscillations (3–12 Hz) in mnemonic process-
ing, for example in spatial memory in rodents (Okeefe, 1993; 
Buzsaki, 2005), working memory in humans (Klimesch, 1999; 
Raghavachari et al., 2001, 2006) and visual short-term memory 
in non-human primates (Rainer et al., 2004; Lee et al., 2005). 
In the latter study, neuronal oscillations in the theta band in 
extrastriate area V4 have been shown to mediate the coding and 
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Processing and storage of sensory information is based on the interaction between different 
neural populations rather than the isolated activity of single neurons. In order to characterize 
the dynamic interaction and transient cooperation of sub-circuits within a neural network, 
multivariate autoregressive (MVAR) models have proven to be an important analysis tool. In 
this study, we apply directed functional coupling based on MVAR models and describe the 
temporal and spatial changes of functional coupling between simultaneously recorded local 
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strength and directional relations of coupling based on generalized partial directed coherence 
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on MVAR models are able to provide important insights into the spatial and temporal formation 
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Multivariate autoregressive models are a generalization of uni-
variate autoregressive (AR) models, which were among the first 
methods that were applied to EEG data to reveal the spectral prop-
erties of brain signals already in the late 1960s (Zetterberg, 1969). 
MVAR models are able to take the interactions of multiple simul-
taneously recorded brain signals into account. A large set of cou-
pling measures in the frequency domain such as coherency (Nunez 
et al., 1997, 1999), Directed Transfer Function (DTF; Kaminski and 
Blinowska, 1991) or Partial Directed Coherence (PDC; Baccala and 
Sameshima, 2001) as well as variants of these and similar measures 
can be derived using the MVAR model parameters (Schlögl and 
Supp, 2006; Porcaro et al., 2009) and the implementation of cou-
pling analyses is readily achieved by various toolboxes (Cui et al., 
2008; Schlögl and Brunner, 2008).

Importantly, DTF and PDC, unlike coherency, assess the direc-
tionality of couplings between signals, i.e., they measure the direc-
tion of information flow between different channels. Both measures 
are based on the concept of Granger causality (Granger, 1969), 
which can be informally stated as follows: if the observation of a 
time series x(t) significantly improves the prediction of a time series 
y(t), x(t) “Granger-causes” y(t). PDC differs from DTF by hav-
ing the ability to reveal exclusively direct couplings, which means 
that it does not assess indirect couplings via intermediate sites. For 
example, if the model incorporates three observed channels, with 
a connection structure A  B  C, PDC is not expected to show 
a connection from A to C. It is important to note that Granger 
causality is not identical to physical causality, but is a statistical 
measure reflecting the improvement of predictability of one signal 
based on the information of another.

Previously, AR models have been applied to EEG data and LFP 
data for various brain areas and frequency bands of interest and have 
revealed important insights into the functional relations between 
neuronal assemblies involved in sensorimotor behavior, sensory 
integration and visual attention (Bressler et al., 1999, 2007; Liang 
et al., 2000, 2001, 2003; Brovelli et al., 2004; Chen et al., 2006; Supp 
et al., 2007; Anderson et al., 2009; Kayser and Logothetis, 2009).

In the present study, we applied MVAR modeling to simultane-
ous LFP recordings from multiple electrodes in V4 while monkeys 
performed a visual identification task. MVAR models have been used 
previously to examine causal influences in area V4 in order to eluci-
date physiological mechanisms underlying neuronal oscillations in the 
alpha frequency range (i.e., 10–15 Hz) (Bollimunta et al., 2008).

In our study, our goal was to exploit the advantages of MVAR mod-
els in order to investigate the directed functional relationship between 
multiple sources underlying theta oscillations during visual memory 
in V4. In order to gain insights into the direct interaction between 
multiple oscillatory components (i.e., bypassing coupling due to indi-
rect influences) our MVAR models incorporated LFP activity of more 
than two simultaneously recorded channels. In addition, we evaluated 
the temporal and spatial dynamics of these direct interactions and 
provide a first description of causal and directed oscillatory coupling 
in the theta-frequency range during visual memory.

MATERIALS AND METHODS
In the following, we describe the procedure that was used for our 
analysis. Afterwards, the experimental procedures for the data 
acquisition are described.

PREPROCESSING
Local field potential data was preprocessed using standard tech-
niques, as described for example in Ding et al. (2000). First, we 
resampled the data to a frequency  f

s
 of 200 Hz. This sampling rate 

is low enough to be able to use a sufficiently low MVAR model 
order while being high enough for an adequate representation 
of the frequency bands of interest. Then, we used a 50 Hz notch 
filter to suppress the electrical supply line noise. Afterwards, the 
data was normalized by subtracting the mean waveform across 
trials (grand-averaged mean waveform) from each single trial and 
subsequently dividing the result by the standard deviation across 
trials. This is necessary to remove first order instationarities from 
the data and to set the ensemble mean of the resulting data set to 
zero. We did not apply the same normalization procedure using 
the temporal mean and standard deviation for each separate trial, 
which is also frequently proposed, because this can lead to an 
underestimation of the low frequency components in which we 
were particularly interested.

MULTIVARIATE AUTOREGRESSIVE MODELING
To assess coupling between different LFP channels, we separately 
generated linear MVAR models of the data for each recording ses-
sion and each time interval of interest. The MVAR model can be 
expressed as:

( ) ( ) ( ).t t p tp
p

P

A
1

The model tries to predict the data at sample t from a linear 
combination of the P previous samples of all M channels. Here, 
y(t) is the vector of M simultaneously observed LFP recordings, 
P is the model order stating the number of preceding samples 
that are used to predict the data at sample t, and the innova-
tion process x(t) (sometimes addressed as the “residual error” or 
“prediction error”, see Schlögl, 2000; Supp et al., 2007 for com-
ments) is assumed to be a multivariate white noise process and 
is equal to the difference between the model prediction and the 
actual data. In order to estimate the model parameter matrices 
A

p
 that weight the previous samples of the time series to pre-

dict the current one such that the mean quadratic error is mini-
mized, we use the Burg-type method of Vieira–Morf (Marple, 
1987) which, according to Schlögl (2006), is expected to provide 
the most accurate estimates of the model parameters. We used 
250 ms windows for the time-frequency analysis, with an overlap 
of 200 ms for subsequent time intervals (Ding et al., 2000 called 
this procedure an Adaptive MVAR or AMVAR approach), and 
1 s windows for the assessment of statistical significance of cou-
pling and change in coupling between the two investigated task 
conditions (cf. Experimental Task). Note that the model assumes 
the data to be stationary, which is usually not the case for longer 
time segments of electrophysiological data, but for the short time 
intervals that are investigated in this study, the data is assumed 
to be quasi-stationary. We used the freely available open source 
Matlab implementation of the  Toolbox for biomedical 
signal processing (Schlögl and Brunner, 2008) for our analysis, 
which can be found at .
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model order does not determine the spectral resolution, which is 
in fact infinite, but instead it determines the number of observed 
frequency components for each pair of channels, which is P/2, and 
relates to the “frequency resolution” in this sense; Schlögl and Supp, 
2006) and overparametrization and approximately corresponds to 
the model orders used in similar approaches. For example, Brovelli 
et al. (2004) used a model order of 10 (corresponding to a 50 ms 
window) for analyzing beta oscillations, Supp et al. (2007) revealed 
couplings in the gamma frequency range using a model order of 
15 (30 ms), and Kayser and Logothetis (2009) and Anderson et al. 
(2009) studied oscillations including the theta range using model 
orders of 6 (60 ms) and 17 (85 ms), respectively. Additionally, this 
model order fulfills all the requirements stated in Schlögl and Supp 
(2006) to obtain a sufficient model of the data. Furthermore, one 
should note that slight changes in the model order do not lead to 
arbitrarily large changes in the prediction error, but it is still an 
important parameter for the correct estimation of the couplings 
(Schlögl, 2000).

GENERALIZED PARTIAL DIRECTED COHERENCE
As mentioned earlier, we used generalized partial directed coher-
ence (GPDC; Baccala et al., 2007) for our analysis, which is a slightly 
adapted version of PDC with better variance stabilization proper-
ties. Analysis of the validity of this coupling measure using simu-
lated and real data for which the ground truth is known as well as 
a comparison to DTF and other measures can be found elsewhere 
(Baccala and Sameshima, 2001; Kus et al., 2004; Pereda et al., 2005; 
Gourevitch et al., 2006; Porcaro et al., 2009). Moreover, Porcaro 
et al. (2009) indicated that PDC is the most suitable method for 
this kind of analysis based on their results on MEG data.

Generalized partial directed coherence is derived by first trans-
forming the MVAR model from the time domain into the fre-
quency domain to obtain the frequency representation of the model 
parameters:

A A( ) ,( / )f p
ip f f

p

P
sI e 2

1

where I refers to the M-dimensional identity matrix and f
s
 is the 

sampling frequency. Note that in this equation, i2 = 1.
Then, GPDC

ij
 (which reflects the coupling from channel j to 

channel i) is calculated to be:

GPDCij
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where i
2 refers to the variance of the innovation process x

i
(t). 

GPDC
ij
 is normalized in the interval [0, 1], with increasing values 

for stronger interactions at particular frequencies, and sums up to 
one for each frequency component over all destination channels 
including the channel itself. The idea is to calculate the degree of 
influence of channel j to channel i with respect to the total influ-
ence of j on all channels. Note that this normalization procedure of  
(G)PDC was recently criticized (Schelter, 2009) because of some 
difficulties in comparing interaction strengths for  different 

There exists a number of criteria for estimating the optimal 
model order for each data set such as the Akaike Information 
Criterion (AIC; Akaike, 1974) or Schwarz’s Bayesian Information 
Criterion (BIC; Schwarz, 1978) which try to estimate the optimal 
model order for the MVAR model.

Both criteria take the goodness of fit to the empirical data into 
account, but also penalize for increasing numbers of free parameters 
to avoid overfitting to the data. Note that smaller values indicate 
better model orders. Unfortunately, the optimal model order is usu-
ally not consistent for different criteria and different data sets. We 
tried to estimate the optimal model order (in the range between 1 
and 50, which reflects the length of the 250 ms windows we used for 
the time-frequency analysis) by using these measures, but the results 
did not show consistent local minima and qualitatively decreased 
with increasing model order instead (see Figure 1). We compared 
models of order 20 and 40 for the 250 ms windows and found the 
resulting average power spectra and couplings to be qualitatively 
consistent. Therefore, we used a model order P of 20 for every 
data set, which corresponds to a time window of 100 ms given the 
sampling frequency of 200 Hz. This model order reflects a tradeoff 
between spectral resolution (specifically, we make clear that the 

FIGURE 1 | Evaluation of model orders using Akaike Information 
Criterion (left, AIC) and Schwarz’s Bayesian Information Criterion 
(right, BIC), normalized between maxima and minima of each session 
for the 1-s data from the delay condition. Gray lines indicate single 
sessions, black lines correspond to the average over all sessions. Criteria  
did not show consistent local minima, but qualitatively decreased with 
increasing model order up to P = 50. Smaller values indicate better model 
orders.  For the data from both animals and all sessions, the model order  
P = 20  was chosen as a tradeoff between frequency resolution and 
overparametrization.
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external reference. The analog signal was then filtered and ampli-
fied (BAK electronics, Germantown, MD, USA) to extract the LFP 
responses. After an additional waiting period of at least 1 h we 
started the recordings. The LFP was obtained by band-pass filtering 
the signal between 0.1 and 300 Hz and digitizing with a sampling 
rate of 4464 Hz. One unit of the analog-to-digital converter cor-
responds to 5 µV.

We recorded LFP activity from 44 channels in 10 sessions from 
monkey 1 and 86 channels in 20 sessions from monkey 2. This 
resulted in 202 channel pairs for monkey 1 and 398 channel pairs 
for monkey 2. For each monkey, the minimum number of channels 
per session was 3, the maximum number of channels was 6. The 
spatial distribution of all recorded channels for monkey 1 and 2 can 
be found in Figure 2. For each recording site, its location is defined 
by two dimensions (anterior to posterior, and medial to lateral) 
based on the recording grid placed within the recording chamber. 
In order to measure coupling as a function of distance between 
recording sites, we calculated the Euclidian distance between two 
sites based on their respective locations along the two dimensions. 
The minimal distance between sites was 0.5 mm (i.e., sites directly 
neighboring each other within the grid), the maximal distance we 
obtained was 4 mm.

STATISTICAL ANALYSIS
In order to be able to calculate confidence intervals that can be used 
to evaluate the significance of differences in coupling between differ-
ent time intervals, we used a bootstrapping procedure that samples 
with replacement from the original trial set in order to generate 
bootstrap samples of the same size as the original data, but with dif-
ferent subsets of trials in them (Efron and Tibshirani, 1993). For each 
regarded data set of 1 s (last second of baseline and delay period), a 
set of 1000 bootstrap samples was generated. These bootstrap sam-
ples were then independently used to calculate the MVAR models 
as stated above and to estimate the couplings between the simul-
taneously recorded LFP channels with their respective confidence 
intervals. Change in coupling was considered significant if both the 
0.01st and 99.9th percentile of the bootstrap distribution was above 
(increase) or below (decrease) the average baseline level.

 frequencies. As the values A
ij
(f) and A

ji
(f) are not necessarily iden-

tical, directionality of coupling is obtained. As GPDC
jj
 has to be 

interpreted as the remaining amount of coupling that can not be 
assigned to the influence on other channels, we excluded self-cou-
pling of channel j to itself for the subsequent analysis.

EXPERIMENTAL TASK
Two adult male rhesus monkeys (Macacca mulatta) participated in 
the experiments. All studies were approved by local authorities and 
were in full compliance with applicable guidelines (EUVD 86/609/
EEC) for the care and use of laboratory animals. The behavioral task 
of the monkeys was a delayed matching to sample task. The mon-
key was seated in front of a screen at a distance of approximately 
110 cm. An initial tone indicated the potential start of a trial. The 
monkey initiated a trial-start by grasping a lever and fixating on 
a small fixation spot on the center of the screen (baseline period). 
After 1500 ms, a first stimulus appeared on the screen for 250 ms, 
the so-called sample stimulus. As sample stimuli we used different 
natural images. The stimuli that were used in all of the experi-
ments were chosen from the Corel-Photo-CD “Corel Professional 
Photos” comprising a collection of natural images showing birds, 
flowers, monkeys and butterflies in their natural surroundings. 
The images used in this study were randomly selected. All images 
were manipulated by Fourier techniques that have been described 
in detail elsewhere (Liebe et al., 2009). The sample stimulus was 
followed by a delay period of 1500 ms during which the monkey 
held fixation. After the delay, a second stimulus, the so-called test 
stimulus, was presented. The monkeys were rewarded for a lever 
release whenever the test stimulus matched the sample stimulus. 
Whenever the test stimulus did not match the sample, the monkeys’ 
task was to withhold the lever release until, after a brief delay of 
200 ms, a second test stimulus appeared, that always matched the 
sample. This procedure ensured that the monkey had to initiate 
a behavioral response on every trial. The monkeys were rewarded 
with juice for every correct trial. Within one session, the different 
trial types were randomly interleaved. Stimuli were 7   7  in size, 
at 24-bit color depth, and presented at the center of gaze on a 21  
monitor (ViewSonic P810) with linear luminance response as well 
as linear response at separate color channels (gamma corrected).

ELECTROPHYSIOLOGY
Local field potentials were recorded from recording chambers 
placed on the surface of the skull based on stereotaxic coordinates 
allowing vertical access to the dorsal region of extrastriate area V4. 
The Hoarsley–Clark coordinates for the center of the recording 
chambers for monkey 1 were AP: 6.5, ML: 29.7. For monkey 2 
the chamber coordinates were AP: 5.2, ML: 29.9. The implanta-
tion as well as surgical procedures used are described in detail in 
Lee et al. (2005). Neural signals were measured using two custom 
made micro drives mounted on a plastic grid (Crist Instruments, 
Hagerstown, MD, USA). In each recording session 4–6 tungsten 
microelectrodes (UEWLGDSMNN1E, FHC Inc., Bowdoinham, 
ME, USA) were manually lowered down into the cortex in pairs 
with a minimal separation between electrodes of 0.5 mm. The 
impedance of the microelectrodes was approximately 1 M . The 
signal from each electrode was preamplified (factor 20, Thomas 
Recording, Giessen, Germany) using the recording chamber as the 

FIGURE 2 | Recording locations along the medial–lateral and anterior 
posterior direction for monkey 1 and 2. 1 unit corresponds to 1/2 mm. Note 
that symbols are slightly jittered at their recording locations for 
better visualization.
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the onset of the test stimulus) to the power spectrum obtained from 
the 1000 ms time interval preceding the onset of the sample stimu-
lus (“baseline”). Figure 3 shows the median amplitude spectra of 
LFP activity across all recorded channels (Figure 3A) derived using 
a Morlet wavelet based approach (Tallon-Baudry and Bertrand, 
1999; Graimann and Pfurtscheller, 2006). In both monkeys, the 
power spectra showed a local peak in the theta-frequency range 
during the delay period (black) which is absent during the pre-
stimulus baseline period (gray). Figure 3B shows the distribution of 
power at the peak frequency within the theta range for the baseline 
vs. delay period and illustrates a significant change in theta power 
during the delay compared to the baseline.

GENERAL COUPLING ANALYSIS
Based on the occurrence of enhanced theta power during the delay 
period, we analyzed coupling strength between the different record-
ing sites using GPDC obtained from MVAR modeling. We were 
interested in whether the enhanced theta power we observed  during 
the delay period of the task coincides with directed coupling in the 
theta band. Thus, we first examined GPDC coupling as a function of 

Significance of coupling strength compared to the hypothesis 
that there was no coupling at all was assessed using a shuffling 
procedure. For each recording channel, trials were independently 
permuted repeatedly to obtain 1000 shuffled samples. MVAR model 
estimation was then also applied to these data sets.

For assessing the statistical significance of the effects of coupling 
as a function of distance between recording sites, we used a shuf-
fling procedure that randomly shuffles the coupling values over 
distances to obtain 104 shuffled samples. Statistical significance of 
the real rank correlation was then calculated with respect to this 
distribution.

RESULTS
POWER SPECTRA
First, we examined the frequency content of induced oscillations 
during different periods of the visual memory task. Previously it 
had been found that there is enhanced power in the theta band dur-
ing the delay period of the task in V4 (Rainer et al., 2004; Lee et al., 
2005). We first sought to confirm these findings and compared the 
power spectrum for the delay period (i.e., across last 1000 ms before 

FIGURE 3 | Enhanced power in the theta band during the delay period of 
the task. (A) Amplitude spectrum of LFP activity (median across all recorded 
channels in V4, N = 44/86 for monkeys 1/2, respectively) during the pre-stimulus 
baseline period (gray) and the delay period (black) of the delayed matching to 
sample task for frequencies from 1 to 40 Hz. We find enhanced power in the 

theta band (4–10 Hz) during the delay period for both monkeys. (B) Boxplots 
showing the distribution of power at the peak frequency within the theta range 
for the baseline vs. delay period. Both monkeys show a significant increase in 
theta power from baseline to delay (Wilcoxon signed rank test Z = 6.95/4.47, 
p  0.01 for monkey 1/2, respectively).
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Subsequently, we assessed changes in coupling between the 
baseline and the delay period for several frequency bands that 
have been traditionally implicated in the interaction of oscilla-
tory components during sensation and cognition and also follow 
conventional definitions of theta and beta bands [theta (3–12 Hz), 
beta (20–35 Hz), gamma (40–80 Hz); Buzsaki, 2006]. Figure 4B 
shows the median absolute difference in coupling between baseline 
and delay period (left). The graph shows that the degree of change 
significantly decreases with increasing frequencies with the largest 
coupling change occurring in the theta band. Likewise, the propor-
tion of pairs that show significant changes in coupling is highest 
in the theta range compared to the other frequency bands (right). 
In the theta band, 116 of 202 pairs showed significant changes in 
coupling (57%, p  0.001) in monkey 1, in monkey 2 235 pairs 
showed significant changes in coupling (59%, p  0.001). In both 
monkeys we found significant increases as well as decreases in 

 frequency during delay (see Figure 4A). Similar to the power spectra, 
we observed local peaks in GPDC coupling within the theta range 
(3–12 Hz) for both monkeys, albeit at slightly different frequencies. For 
monkey 1 the average peak frequency for highest coupling within the 
theta range was 4.33  3.6 Hz (mean across sessions, 1 SD) and was 
located well within the range of the maximum power peak frequency 
at 5.86  0.81 Hz (see Figure 3). For the second monkey the average 
peak frequency for highest coupling was larger (8.35  3.8 Hz), and 
also higher than the average peak of power (5.51  1.77 Hz), but not 
significantly higher (p  0.05). Similarly, inspection of Figure 3 shows 
that although the peak in power for monkey 2 is around 5 Hz, we find 
elevated power during the delay up to 10 Hz. Thus, the peak frequen-
cies at theta power and theta coupling were overall similar. Note that 
these and subsequent results are based on the models that were fitted 
to 1 s time intervals in baseline and delay conditions (equivalent time 
intervals as for power spectra).

FIGURE 4 | Generalized partial directed coherence coupling in theta band 
during the delay period of the task. (A) Median degree of coupling (GPDC) as 
a function of frequency during the delay period (black) across all pairs in V4 for 
monkeys 1 and 2 for non-shuffled (black) and shuffled pairs. For both monkeys 
we find a peak in coupling in the theta-frequency range (3–12 Hz), although peak 
coupling occurred at slightly different frequencies (around 5 Hz for monkey 1, 
around 9 Hz for monkey 2). Dashed lines correspond to 34th percentiles of 
values around the median. Note that for the shuffled data, overall coupling was 
found to be around 0.02 for the whole frequency range. (B) Median absolute 

difference in degree of coupling (GPDC) (left) and proportion of pairs showing a 
significant change (p  0.001) in coupling between pre-stimulus baseline and 
delay period for different frequency bands (right). Error bars correspond to 34th 
percentiles around the median. In both monkeys, the median change in coupling 
between baseline and delay is highest in the theta band (non-parametric ANOVA 
Kruskal–Wallis test, 2 = 11.4/4.23, p  0.01). Likewise, the proportion of pairs 
showing significant changes in coupling is also highest in the theta band 
compared to the other frequency bands ( 2 test for comparison of proportions, 

2  8.2, p  0.001 for all comparisons).
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all pairs with the respective opposite direction and computed the 
median coupling across these pairs. The reasoning behind the pro-
cedure is as follows: if all channels show significant changes in 
theta coupling in both directions (i.e., from channel X to  channel 

theta  coupling during the delay when compared to the baseline. 
Specifically, in monkey 1 74 pairs showed significant increases, and 
42 pairs showed significant decreases in coupling. In contrast, in 
monkey 2 89 pairs showed increases and 146 pairs decreases. Thus, 
monkey 1 shows significantly more increases than monkey 2 and 
vice versa ( 2 = 18.5, p  0.01). One factor that might contribute 
to this difference is the different distribution of electrode spacing 
between the animals, with monkey 1 showing significantly larger 
distances between electrodes than monkey 2 (mean [median] dis-
tance 4.6 [4]/3.5 [3] for monkey 1/2, respectively; ranksum-test, 
Z = 5.23, p  0.01). This is supported by several facts. First, for 
the smallest distance between electrodes, i.e., the distance that is 
identical and therefore comparable between the animals (unit 1, or 
0.5 mm), the proportion of increases vs. decreases is similar between 
the monkeys, i.e., statistically identical (50%/27% increases, Z = 3.6, 
p  0.05). Second, for the smallest distance we find an identical 
proportion of increases and decreases (i.e., 50/50) in monkey 1. 
Third, the proportion of significant decreases is slightly enhanced 
for smaller distances (50% at distance 1 vs. 20% at distance 4 for 
monkey 1, and 72% vs. 53% for distances 1 and 3 for monkey 2) and 
likewise the proportion of increases reduced at smaller distances. As 
the distances between electrodes are significantly lower in monkey 
2 compared to monkey 1, the percentage of decreases should be 
higher in monkey 2, and vice versa. Ultimately, due to the limita-
tions in spatial sampling, the differences in spatial configuration 
can only give an indication of why we find differences in the pro-
portion of significantly increased vs. decreased coupling between 
the monkeys. In summary, our findings demonstrate that signifi-
cant directed interactions between LFP within V4 during visual 
memory predominantly occur in the theta-frequency range and 
the frequencies at which highest coupling occurs are comparable 
to the frequency range of power increases during the delay period. 
Based on these results we further investigated the time course and 
directionality of theta coupling during the delay period.

TIME COURSE AND DIRECTIONALITY OF COUPLING
To illustrate the time course of theta coupling during the task, we 
used moving windows comprising time intervals of 250 ms (with an 
overlap of 200 ms) and fitted MVAR models to these individual win-
dows. Figure 5 shows representative time courses of theta coupling 
in single recording pairs as well as the time course of coupling in the 
opposite direction (left/right graphs, respectively). These examples 
represent channel pairs with a significant (p  0.001) increase or 
decrease in GPDC during the delay period compared to the base-
line period and were chosen based on the previous analyses using 
coupling measures obtained from 1 s windows (see also Materials 
and Methods).

In all examples, theta increases and decreases occur shortly after 
the offset of the sample stimulus and are sustained throughout the 
entire 1500 ms long delay period. Interestingly, in all selected pairs 
we find differences in coupling strength and even opposing effects 
between pair directions, for example a significant increase in theta 
coupling in one, and a significant decrease in theta coupling in the 
opposite direction (see graph B example for monkey 1). To investi-
gate this asymmetry across all channel pairs in more detail, we first 
computed the median coupling across all pairs showing significant 
increases or decreases in the theta band. We subsequently selected 

FIGURE 5 | Single example LFP channel pairs showing significant 
changes in coupling during the delay period compared to baseline.  
(A) One example for each monkey in which there is significant increase in 
coupling in the direction from channel 1 to 2 (left). (B) Two examples in which 
there is significant decrease in theta in one direction (left). The opposite 
directions show less strong or even opposing trends, indicating that coupling 
is not symmetric between sites. Dashed lines represent the on- and offset of 
the sample stimulus, as well as the onset of the first test stimulus during the 
trials, from left to right, respectively. This convention is also used in the 
subsequent figures.
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the delay. This result is further illustrated in Figure 7 that shows 
the ratio of median coupling between pairs of channels and their 
opposite directions separately for each monkey (Figures 7A,B). 
Furthermore, Figure 7C shows coupling strength in the delay for 
sites with significant changes from baseline to delay in the theta 
band vs. the couplings in the opposite direction. Similarly to the 
observed asymmetries in coupling values, significant proportions 
of pairs (64/48% monkey 1/2, Z  15.4, p  0.001) show significant 
increases in one direction only and significant proportions of pairs 
(57/58% monkey 1/2, Z  18.6, p  0.001) of the pairs show signifi-
cant decreases in only one direction. Overall, in three out of four 
cases, the majority of pairs showed significant changes of coupling 
in one channel pair direction, but not the other.

Taken together, these findings illustrate that theta coupling dur-
ing the delay is not symmetric between channel pairs and provide 
evidence for a complex interaction involving both directionally 
dependent increases and decreases in coupling during visual 
memory. In the following we examine a different aspect of these 
coupling phenomena, namely their dependence on the spatial lay-
out of the different oscillatory components. Our recording setup 
allowed us to simultaneously measure the activity of up to 6 LFP 
electrodes that were spatially distributed across a cortical surface 
area of approximately 6 mm  6 mm. Therefore, within one ses-
sion, electrode locations varied in spatial position and distance 
to each other.

RELATION OF COUPLING STRENGTH AND DISTANCE BETWEEN 
RECORDING SITES
Figure 8 illustrates the dependence of absolute directed coupling 
and changes of coupling on the distance between electrodes, with 
higher direct coupling occurring at lower distances (both monkeys: 

s
 = 0.52/ 0.32, p  0.0001). Similar effects were found for the 

changes in coupling (i.e., decrease M1: rank correlation coefficient 

s
 = 0.24, p  0.05, M2: 

s
 = 0.31, p  0.01 and increase M1: 

s
 = 0.12, p = 0.1, M2: 

s
 = 0.2, p  0.05) during delay with respect 

to the baseline). Note that the decrease of change in coupling with 
higher distance in monkey 1 does not reach a significance level of 
p  0.05 for increases in coupling, but is at trend level.

Our results indicate that both the strength of coupling and the 
change in coupling from the baseline to the delay condition are 
stronger for smaller distances between site pairs. This dependence 
could be found despite the differences in electrode spacing between 
the animals (see also General Coupling Analysis). Thus, not only 
absolute coupling but also the dynamic changes in coupling are a 
local phenomenon within the neural network. Our findings are 
consistent with earlier reports for example from V1 recordings of 
in the macaque showing that pairwise spectral coherence in LFP 
activity between electrodes decreases as a function of receptive field 
distance (which is related to spatial distance; Frien and Eckhorn, 
2000) and from recordings of several sites of the human cortex 
(Raghavachari et al., 2006) and extend these previous results using 
directed coupling measures.

DISCUSSION
Oscillatory activity in neural networks as measured by EEG or 
LFP recordings is a widespread phenomenon of neural behav-
ior and is thought to arise from the synchronous activity of 

Y and from channel Y to channel X), each channel pair will be 
represented in both groups. Consequently the median coupling 
across the channel pairs would be the same.

However, this is not the case. Figure 6 displays the resulting 
median coupling strength over all site pairs showing significant 
couplings within the theta range (left) and their respective opposite 
direction (right): for both monkeys we find asymmetrical, i.e., more 
unidirectional increases and decreases in theta coupling during 

FIGURE 6 | Grand-Median directed coupling across all pairs showing 
significant increase (A) or decrease (B) during delay compared to 
baseline (p  0.001, left column) as well as the median coupling for the 
opposite direction of channel pairs (right column). Note that if there is 
significant increase (decrease) in both directions (i.e., from x to y and vice 
versa), both channel pair directions will contribute to the median for both 
directions of interaction. Otherwise, if all pairs would show significant 
increase (decrease) in both directions, left and right plots would be identical.
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The quantification of neural synchrony has traditionally been 
carried out using measures that assess the pairwise and instantane-
ous correlation in either amplitude or phase between two neural 
signals, for example using cross-correlation analysis between spike 
trains of multiple neurons (Aertsen and Arndt, 1989), spike-field 
coherence between the spiking activity of neurons and LFP activity 
(Fries et al., 2001; Pesaran et al., 2002) or phase-locking analy-
sis of simultaneously recorded LFP or EEG data (Lachaux et al., 
1999, 2000). However, despite the fact that these measures assess 
the strength with which two neural processes are coupled, they fail 
to provide information on several aspects of synchronization that 
can be important to fully describe their interaction, for example 
the direction of coupling between neural elements.

Here, MVAR models have proven to be efficient tools for assessing 
the direction of coupling and can be more appropriate to capture the 
complexity of oscillatory dynamics as synchrony between neuronal 
ensembles changes across time or behavioral conditions. However, it 
is important to note that unipolar signals are vulnerable to volume 
conducted far-field effects and issues related to the usage of a com-
mon reference against which all differences in electrical potential are 
measured. Both factors might lead to adversely affected measures 
of coupling strengths, and elaborate methods for resolving these 
issues completely (besides using bipolar signals) need still be found 

 neuronal populations at various spatial and temporal scales 
(Salinas and Sejnowski, 2001; Buzsaki and Draguhn, 2004; Fries, 
2005). In many studies it has been shown that oscillations in dif-
ferent frequency bands are important for neural computations. 
Synchronous activity can, for example, establish and support 
temporal relationships between different elements within a neu-
ral network depending on context, stimulus or behavioral state 
(Tallon-Baudry, 2009; Uhlhaas et al., 2009) or represent informa-
tion about sensory events that can not be inferred from spiking 
activity alone (Montemurro et al., 2008). Thus, oscillatory activity 
serves the precisely timed cooperation between neural ensembles 
and could also provide temporal windows that allow for the selec-
tive routing and gating of information in an efficient manner 
(Mizuseki et al., 2000; Fries et al., 2001; Salinas and Sejnowski, 
2001). Another important characteristic of neuronal oscillations 
is that oscillations at different frequencies are thought to subserve 
different behavioral and cognitive functions. Prominent examples 
are the involvement of gamma oscillations ( 40 Hz) in visual and 
attention-related processes (Fries et al., 2001; Keil et al., 2001), 
the role of beta oscillations (15–35 Hz) in sensorimotor tasks 
(Murthy and Fetz, 1992) and the importance of theta oscillations 
in memory-related processing (Okeefe, 1993; Rainer et al., 2004; 
Lee et al., 2005; Raghavachari et al., 2006).

FIGURE 7 | Ratio of median coupling between pairs showing significantly 
enhanced (A) and reduced (B) directed coupling during baseline and their 
opposite pairs (i.e., coupling in opposite direction). Plots a–b show the ratio of 
median coupling across the time course of the trial for different frequencies for 
monkey 1 and 2, respectively. A ratio larger (or smaller) than one indicates a 
stronger median coupling in one than the opposite direction, thus the ratio is an 
indicator of how “directed” or “symmetric” the coupling is between pairs of 

channels. Graphs (C) plot the degree of coupling of significant pairs and their 
opposite directions (y-axis pairs chosen based on sign difference between delay 
and baseline, x-axis shows opposite direction) in the theta band. If the degree of 
coupling is not symmetric between directions, data points deviate from the 
diagonal. Also note that if there was a significant increase (decrease, respectively) 
in both directions for a single pair, two data points are shown (one below, one 
above the diagonal if the respective increase/decrease is not fully symmetric).
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into the directed spatio-temporal dynamics of multiple cortical areas 
during cognitive processing that went beyond the description of 
synchrony between these areas.

In our study we used MVAR models to provide a description 
of the directed coupling of theta oscillations during short-term 
memory. This oscillatory phenomenon has been described in a 
number of studies in relation to short-term memory processes both 
in humans and animals. There are mainly two lines of research that 
focus on the role of these oscillations for memory-related proc-
esses. A large set of studies provides strong evidence on a connec-
tion between theta oscillations and (especially spatial) memory 
for the rat hippocampus, revealing that the timing of spikes both 
within hippocampus and within regions like prefrontal cortex is 
strongly connected to the hippocampal theta rhythm (Okeefe, 1993; 
Mizuseki et al., 2000; Buzsaki and Draguhn, 2004; Siapas et al., 
2005). A second line of research has concentrated on the importance 
of theta oscillations for memory performance in primates with the 
focus on EEG and LFP recordings in various cortical areas. Using 

(Schlögl and Supp, 2006; Bollimunta et al., 2009). Nevertheless, 
the application of coupling measures based on MVAR models has 
revealed important insights into neural interactions in many studies 
(Bressler et al., 1999; Brovelli et al., 2004; Supp et al., 2007; Kayser and 
Logothetis, 2009). For example, Brovelli et al. (2004) analyzed inter-
action patterns in monkey sensorimotor cortex and found unidirec-
tional couplings from somatosensory areas to motor areas within the 
beta frequency range that might be used to control motor output. In 
a different study Kayser and Logothetis (2009) investigated interac-
tions of monkey auditory and superior temporal cortices related to 
sensory integration and found that while interactions from auditory 
cortex to superior temporal regions prevail below 20 Hz, interactions 
in the other direction are more pronounced at frequencies above 
20 Hz. A third example are the findings of the study by Supp et al. 
(2007) in which the authors demonstrated that visual processing of 
familiar and unfamiliar objects engages different cortical networks 
at different degrees of directionality via interactions in the gamma 
frequency range. In all these studies, MVAR models revealed insights 

FIGURE 8 | Dependence of GPDC in theta band on distance between 
simultaneously recorded channels. (A) Absolute coupling as a function of 
Euclidian distance across all recorded pairs. Open symbols denote coupling 
values for single pairs, closed symbols represent the mean  1 SD across pairs 
within three bins. For both monkeys, absolute coupling decreases with increasing 
distance. (B) Dependence of increases and decreases in GPDC during delay 

relative to baseline in theta band on distance between simultaneously recorded 
channels. Absolute decrease (left) and increase (right) in coupling as a function of 
Euclidian distance across all recorded pairs showing decreases (left) or increases 
(right) in coupling. In both cases, changes in coupling during delay are higher for 
smaller distances. Note that we shifted the data points for M1 (blue) and M2 (red) 
slightly to the left and to the right, respectively for better visual discriminability.
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EEG in human subjects, multiple studies have shown that there are 
increases as well as decreases in theta power that can depend on 
the specific nature of the memory task demand (Klimesch, 1999; 
Raghavachari et al., 2001, 2006). For example, Raghavachari et al. 
(2001, 2006) showed an increase in theta power during the delay 
period of a memory task that co-varied with delay period length in 
multiple cortical regions, including frontal, temporal and occipital 
areas. Very recently, one study also incorporated MVAR modeling 
to reveal directional influences between different cortical regions 
(Anderson et al., 2009), providing evidence for memory-related 
theta-frequency interactions between prefrontal and medial tem-
poral sites in the human brain. In contrast to human studies, only 
few studies have investigated the relation between theta oscillations 
and visual memory in the non-human primate. Here, research has 
focused on the extrastriate visual area V4, in which theta oscillations 
occur during the memory phase of the task, are modulated by task 
difficulty (Rainer et al., 2004) and are involved in the coding of 
visual stimuli during visual memory (Lee et al., 2005). In summary, 
research on theta synchrony during short-term memory has thus 
far provided evidence for the hypothesis that memory processing 
is accompanied by increased theta power and synchrony.

However, as previously mentioned, measures of directed cou-
pling based on MVAR modeling have shown to be useful for inves-
tigating the complex interaction patterns in LFP during cognitive 
processing. Thus we applied these coupling measures to analyze 
neural interactions in the theta band during visual short-term 
memory within V4. Our analyses firstly confirmed earlier results, 
showing enhanced theta power during the delay period. Using the 
coupling measures based on MVAR models, we additionally found 
increases as well as decreases in coupling between recording sites 
in the delay period with respect to the baseline period that were 
most prominent in the theta band. This was evident in the coupling 
value estimates as well as in the proportion of site pairs show-
ing significant changes in coupling. More importantly, however, 
we showed that these changes in coupling tend to be asymmetric 
between sites, i.e., they depend on the considered direction between 
site pairs. This finding suggests that not the mere occurrence of 
oscillatory activity or coherence in the theta band correlates with 
memory processing. Instead, the selective and direction-dependent 
change in theta coupling, which ultimately represents a change in 
functional connectivity within the neural circuit, plays an impor-
tant role in this process. Our results on the asymmetrical nature of 
directed interaction during memory also favors the hypothesis that 
theta oscillations and therefore coupling arise locally within the V4 
network. In contrast, if coupling would be a phenomenon due to 
common input, one would expect bidirectional coupling with simi-
lar strength in both directions if the data from the neural elements 

producing the common input is not incorporated by the model. 
When interpreting the results from MVAR models, one should keep 
in mind that the model is based on data from only a small subset 
of the whole neural system (Stevenson et al., 2008). In addition, we 
were able to confirm earlier work on the relations of interaction 
strength and spatial distance that showed decreasing coherence of 
signals with increasing distance between sites and extended their 
results by measuring direct causal interactions instead of coherence 
(Frien and Eckhorn, 2000; Raghavachari et al., 2006).

Taken together, these effects would not have been revealed using 
more traditional methods that incorporate only phase synchroniza-
tion or coherence. Therefore, our work clearly shows the advantage 
of using directed coupling measures based on MVAR models for 
studying functional connectivity patterns within the brain and 
highlights the importance of direction-dependent modulations of 
local interactions between neural populations for studying sensory 
and cognitive processing.

Finally, we would like to point out that while the methods that 
we applied provide important insights into the functional connec-
tivity patterns within the brain, their power is still limited because 
they can only assess linear interactions. While some extensions to 
nonlinear MVAR models (together with all the issues of nonlinear 
optimization) have been proposed (Pereda et al., 2005; Sun, 2008; 
Jachan et al., 2009), there is still work to be done to further improve 
these methods. In addition, our findings provide only the elemen-
tary description of the pattern of interaction between different 
oscillatory processes during visual memory. Further investigation 
will be needed to assess the specific role of directed coupling in 
relation to various cognitive parameters, for example task difficulty, 
performance or memory load. In addition, MVAR analysis can also 
be used to assess the interactions of LFP and spiking activity if the 
spike trains are properly preprocessed for this purpose. Here, it 
seems to be interesting to see how oscillations at the level of the 
LFP exert an influence on neuronal firing directly measured from 
the spiking activity of single neurons.
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is the rostral ventral respiratory group (rVRG), which is caudal to 
the preBötC and is a population of bulbo-spinal premotor neu-
rons that transmit central inspiratory drive to spinal motoneurons, 
whose axons innervate the diaphragm. Thus, within this hierarchi-
cal organization the preBötC determines the timing of inspiration 
(rhythmicity), whereas each subsequent layer modulates the shape 
and amplitude of the efferent signals which directly control the 
mechanics of inspiration.

In this paper, we focus on the connectivity and coherent firing in 
a subpopulation of neurons that comprise a significant portion of 
the inspiratory motor output in the respiratory column (Feldman 
et al., 1984). This study utilizes multielectrode array recordings 
from an in situ rat preparation allowing us to monitor the neuronal 
activity of many neurons simultaneously as well as the phrenic 
motor output (Baekey et al., 2001). In addition, we performed a 
statistical analysis of these data using bootstrap techniques allow-
ing us to identify temporal correlations (spike synchrony) between 
spike trains from different neurons that cannot be accounted for by 
chance. Synchronous activity may be derived from common input 
and as such, synchrony reflects the underlying connectivity from 
one layer to the next. In effect, recent experimental, theoretical and 

INTRODUCTION
Respiration is controlled by neuronal circuits in the brainstem 
that have been studied extensively using various approaches and 
experimental techniques. The respiratory rhythm is generated in 
the ventrolateral brainstem and while the exact mechanism respon-
sible for its genesis is debated (Del Negro et al., 2002; Rybak et al., 
2008) the pathway by which the brainstem relays inspiratory signals 
to the diaphragm is well documented. As such, the brainstem, in 
particular the ventral respiratory column, represents an excellent 
model to study the neuronal control of motor responses that are 
self-regulated, adaptive and malleable.

Independent of the underlying interactions between intrinsic 
cellular properties and extrinsic network properties to generate 
inspiration, the formation of inspiratory motor activity is amenable 
to a hierarchical model with three layers. The first and second lay-
ers are in the rostral ventrolateral respiratory column. This group 
of neurons contains distinct neuronal populations. The first layer 
is in the pre-Bötzinger complex (preBötC) and is involved in the 
initiation of inspiration (pre-inspiratory, pre-I), whereas the second 
layer is less defined anatomically and contributes to the ramping 
output pattern (inspiratory-augmenting, I-Aug). The third layer 
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We have combined neurophysiologic recording, statistical analysis, and computational modeling 
to investigate the dynamics of the respiratory network in the brainstem. Using a multielectrode 
array, we recorded ensembles of respiratory neurons in perfused in situ rat preparations that 
produce spontaneous breathing patterns, focusing on inspiratory pre-motor neurons. We 
compared firing rates and neuronal synchronization among these neurons before and after 
a brief hypoxic stimulus. We observed a significant decrease in the number of spikes after 
stimulation, in part due to a transient slowing of the respiratory pattern. However, the median 
interspike interval did not change, suggesting that the firing threshold of the neurons was not 
affected but rather the synaptic input was. A bootstrap analysis of synchrony between spike 
trains revealed that both before and after brief hypoxia, up to 45% (but typically less than 5%) of 
coincident spikes across neuronal pairs was not explained by chance. Most likely, this synchrony 
resulted from common synaptic input to the pre-motor population, an example of stochastic 
synchronization. After brief hypoxia most pairs were less synchronized, although some were 
more, suggesting that the respiratory network was transiently “rewired” after the stimulus. 
To investigate this hypothesis, we created a simple computational model with feed-forward 
divergent connections along the inspiratory pathway. Assuming that (1) the number of divergent 
projections was not the same for all presynaptic cells, but rather spanned a wide range and 
(2) that the stimulus increased inhibition at the top of the network; this model reproduced the 
reduction in firing rate and bootstrap-corrected synchrony subsequent to hypoxic stimulation 
observed in our experimental data.

Keywords: neural control of respiration, working heart brainstem preparation, hypoxia, spike synchronization, bootstrap 
analysis, neural network simulation

Edited by:
Jakob H. Macke, University College 
London, UK

Reviewed by:
Jeffrey C. Smith, National Institute of 
Neurological Disorders and Stroke, 
USA
Robert J. Butera, Georgia Institute of 
Technology, USA

*Correspondence:
Roberto Fernández Galán, Department 
of Neurosciences, School of Medicine, 
Case Western Reserve University, 
10900 Euclid Avenue, Cleveland, OH 
44106-4975, USA. 
e-mail: rfgalan@case.edu

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/computational_neuroscience/10.3389/fncom.2010.00131/abstract
http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Frontiers in Computational Neuroscience www.frontiersin.org September 2010 | Volume 4 | Article 131 | 168

Galán et al. Synchrony in brainstem respiratory neurons

computational studies have demonstrated that neurons receiv-
ing stochastic partially common inputs fire synchronous spikes 
(Galán et al., 2006b; Galán et al., 2007a; Ermentrout et al., 2008), 
a phenomenon known as stochastic synchronization. The fraction 
of synchronous spikes increases monotonically with increasing 
correlation (overlap) of the synaptic inputs (Galán et al., 2006b; 
Galán et al., 2007a; Ermentrout et al., 2008). Thus, the amount 
of synchrony between two spike trains that cannot be accounted 
for by chance reflects the amount of common input to the neu-
ronal pair. In the final part of the study, we use this relationship 
to model the connections between presynaptic neurons with 
divergent projections onto postsynaptic neurons. In summary, 
we have recorded from pre-motor inspiratory neurons and from 
their  pair-wise synchronization, we reverse-engineer the connec-
tivity with an upstream layer of inspiratory-augmenting neurons 
(I-Aug), which in turn is driven by the neurons in the preBötC 
referred to above.

The respiratory rhythm is quite variable and can be modulated 
in amplitude and frequency by external stimuli, such as low oxygen 
(hypoxia). Whereas the frequency and amplitude of respiration 
increase during acute hypoxia (Powell et al., 1998), subsequently, 
the respiratory frequency decreases below baseline and gradually 
recovers over the next few minutes in what is known as post-hypoxic 
frequency decline, PHFD (Coles and Dick, 1996; Dick et al., 2004). 
We hypothesized this behavior is reflected in the neuronal activity 
of the ventral respiratory column. Thus, we expected changes not 
only in the firing rates of the neurons but also in their temporal 
cross-correlations, e.g., spike synchronization. In this paper, we 
report our analysis revealing significant changes in spike synchrony 
across pre-motor neurons after hypoxia.

MATERIALS AND METHODS
EXPERIMENTAL METHODS
All experiments were performed in accordance with the guidelines 
of the Institutional Animal Care and Use Committee (IACUC) of 
Case Western Reserve University.

General surgical methods
For these experiments we used the working heart brainstem prepa-
ration (WHBP) of the rat (Paton, 1996) (Figure 1). Male Sprague-
Dawley rats (n = 6) (P21–P28, 60–100 g) were pretreated with 
heparin sodium (1000 units – IP), anesthetized with isoflurane 
(2–3%), then bisected below the diaphragm. The rostral half of the 
animal was submerged in cold artificial cerebrospinal fluid (aCSF) 
to decerebrate at the precollicular level. We removed the fur, skin 
and viscera, dissected the phrenic motor nerve and descending 
aorta and exposed the dorsal medullary surface.

After surgery, the preparation was moved to the recording cham-
ber and mounted supine in a stereotaxic frame. The distal end 
of the descending aorta was cannulated with a #4 French, double-
lumen catheter (Braintree Scientific) and perfused (21–28 ml/ 
min – Marlow Watson 505S peristaltic pump) with an iso-osmotic 
aCSF saturated with 95% O

2
/5% CO

2
. Perfusion pressure was moni-

tored through the other lumen (CWE TA-100 transducer-ampli-
fier). The preparation was immobilized with vecuronium bromide 
(0.4 mg/200 ml perfusate). Perfusion pressure was maintained at 
60–80 mmHg and corrected with 4 µM vasopressin (20 µl added 

to perfusate, as needed). Additionally, NaCN (0.1%, 50-µl bolus) 
was used to stimulate carotid chemoreceptors transiently initiating 
respiratory patterning in the preparation.

Electrode placement and neuronal sampling strategy
The distal end of the left phrenic nerve was drawn into a bipolar 
suction electrode. The signal was amplified (Grass P511), filtered 
(0.1–3 KHz) and digitized using a CED Power 1401 and Dell PC 
running Spike2 software. Pressure was adjusted to maintain an 
appropriate perfusion of the brainstem and pons indicated by a 
ramp patterned phrenic nerve output bursting at 15–30 breaths per 
minute and post inspiratory activity in the vagus nerve recording.

The 16-channel microelectrode array was secured on a stere-
otaxic frame aligning the tungsten electrodes (10–12 M ) perpen-
dicular to the neural surface with eight electrodes on either side 
of the brainstem. Each set of eight was divided into two sagittally 
oriented linear rows of four electrodes separated by 250 µm while 
electrodes within each row are separated by 300 µm. Stereotaxic 
coordinates were used to position electrodes bilaterally among 
inspiratory pre-motor neurons in the rVRG. Each electrode was 
positioned in steps as small as a micron to isolate a single extracel-
lular potential (Figure 1). In cases where more than one neuron 
was recorded on a single electrode, the principle component analy-
sis (PCA) feature of the Spike2 software was used to discriminate 
individual spike trains (spike sorting). The independent depth 
adjustment of each electrode optimized the yield of parallel single 
neuron recordings.

Experimental protocol
With many single neurons monitored in the rVRG and a satisfac-
tory nerve recording (signal-to-noise ratio 3), a 10-min baseline 
recording was made to characterize the recorded neurons, assess 
baseline synchrony, and for comparison with the poststimulus 
activity. After the baseline recording, the preparation was exposed 
to hypoxic perfusate (8% O

2
/5% CO

2
) for 15–25 s evoking a hypoxic 

ventilatory response followed by PHFD (Dick et al., 2001). Signals 
were recorded in Spike2 software for subsequent off-line analysis.

DATA ANALYSIS
Table 1 summarizes the source of the experimental data sets con-
sidered in this study. We recorded from brainstem respiratory neu-
rons of six different rats. We recorded simultaneously from 8 to 23 
neurons in a preparation and exposed each preparation to brief 
hypoxia (see Experimental Protocol) up to three times. While our 
recordings included inspiratory, expiratory, and non-modulated 
activity patterns, our analysis focused on the inspiratory activity. 
The total number of pairs of inspiratory neurons was 562. Some 
neuronal pairs were duplicates because each stimulation was con-
sidered as a different experiment, as the hypoxic stimuli were tran-
sient and reversible. If only one hypoxic exposure was analyzed for 
each animal, i.e., if each pair was considered once in our analysis, 
then the total number of pairs would be 203. However, these results 
were qualitatively the same as those for the 562 pairs.

Epochs (80 s) of the recordings were analyzed for baseline and 
PHFD. The recorded data included extracellular potentials from the 
microelectrode array and phrenic nerve activity (PNA). Multi-fiber 
PNA was “integrated” (low-pass filtered) with a linear integrator 
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The following measures were computed from a 10-min base-
line period in order to ensure that there was only one neuron per 
channel and to characterize the cell-type: (1) Autocorrelation his-
tograms were created for each spike train to ensure that it repre-
sents the activity of a single neuron (not shown). A spike train 
with potentials from two or more neurons would include short 
intervals not constrained by refractoriness. (2) Cycle-triggered 
histograms (Figures 2C,D) were used to classify activity patterns 
with significant respiratory modulation according to the phase 
(inspiratory – I, or expiratory – E) in which they are more active 
and by trends in their burst patterns (augmenting, decrement-
ing or plateau). The cycle-triggered histograms were computed 
as the cross-correlation function of a spike train with respect to 
the phase of the phrenic nerve signal. The phase was calculated by 
linear interpolation of time between the beginning and the end 
of the respiratory cycle. Specifically, if t

k
 denotes the beginning 

of the k-th cycle, or equivalently, the end of the (k  1)-th cycle, 
the phase is defined as: (t) = (t  t

k
)/(t

k 1
  t

k
) for t

k
  t  t

k 1
. The 

beginning of the respiratory cycle, i.e., the trigger, was considered 
as the termination of inspiration.

Firing rates
The firing rate of a neuron is calculated as the inverse of the 
median interspike interval (ISI). This is a good approximation 
to the intraburst firing frequency. In other words, if two spike 
trains have different number of bursts but the firing frequency 
during the bursts is the same, then the firing rate will return very 
similar values.

using a 100-ms time constant to obtain a moving-time average 
of activity (Figures 2A,B) and using this integrated PNA, time 
stamps were added to indicate the onset of each inspiratory and 
expiratory phase. Action potentials of single neurons were con-
verted to times of occurrence, i.e., spike trains (Figures 2A,B). These 
processed epochs were exported to Matlab (version R2008a) for 
further analysis.

Extracellular
Potentials

Phrenic
Nerve
Activity

Retrograde
Perfusion

Electrode
Array

A B

Electrode
Array
(n=16)

E1

E2

I4

I3

N1

I1

I2

E3

1V

0.2ms

C

FIGURE 1 | Multielectrode array technology (A) was applied to an in situ 
perfused rat preparation (B) to obtain ensemble recordings (C). (A) The 
electrode array had 16 tungsten microelectrodes with impedance 10–12 M . 
Each individual electrode was positioned with a micromotor in steps as small 
as 1 µm over a range of 1 cm. (B) Decerebrate P21–P28 rats were 
retrogradely perfused through the descending aorta with artificial 

cerebrospinal fluid bubbled with 95% O2/5% CO2. These preparations 
generate spontaneous respiratory pattern, which was monitored from phrenic 
nerve activity. (C) Extracellular action potentials were digitized and recorded 
using CED Spike2 software and a Power1401 data acquisition system. (The 
amplitude calibration as labeled is for seven of the recordings; the exception 
is I4 for which it is 0.2 V).

Table 1 | Origin of the data and number of cells and pairs investigated.

Preparation Stimulation Total number Number Number 
number number of cells of I-cells of I-pairs

1 1 12 5 10
2 1 8 4 6
3 1 23 17 136
 2 23 17 136
 3 23 17 136
4 1 9 6 15
 2 9 6 15
5 1 12 7 21
 2 12 7 21
 3 12 7 21
6 1 11 6 15
 2 11 6 15
 3 10 6 15
 Totals 175 111 562
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et al., 2006a, 2007b), which are equivalent to the cross-correlation 
coefficient of two spike trains convolved with a Gaussian or a 
step function of width 2 . In fact, the algorithm described above 
is mathematically equivalent to the latter case but without cal-
culating the convolution explicitly. This way, we only need to 
store spike times in the computer’s memory and not the whole 
binary traces (1 = spike, 0 = no spike) representing the firing of 
each neuron, which would be required to calculate the convo-
lution explicitly. Because the binary traces are sparse, i.e., they 
contain many more 0’s than 1’s, by keeping the spike times only 
we save a significant fraction of memory space, which in turn 
speeds the computational implementation of our synchrony 
algorithm considerably. For example, the analysis presented in 
Figure 2 took just a few seconds to run fully in Matlab R2008a 
on a Dell PC with an Intel® Xeon® CPU (1.60 GHz with 2GB 
RAM). Furthermore, since this measure of synchrony is funda-
mentally a cross-correlation matrix, it allows us to run a cluster-
ing analysis to identify neuronal pairs that are more coherent 
among themselves than with respect to other neuronal groups 
(see Figure 4). This technique has demonstrated the existence 
of synchronized assemblies among inspiratory neurons of the 
central pattern generator of respiration (Baekey et al., 2009), 
which is upstream of the network investigated here.

Raw synchrony as a cross-correlation coefficient between 
spike trains
Our experiments are designed to quantify spike synchrony across 
neurons in the respiratory column, and their modulation across 
different states of the preparation. Spike synchronization between 
neuron X and Y is calculated in the following way. Let ti

x  be the 
time of the i-th spike in channel X and let t j

y  be the time of the 
j-th spike in neuron Y. For each spike time pair ( , ),t ti

x
j
y  the relative 

separation is compared to a tolerance,  = 2 ms. We then define 
R

xy
 as the number of pairs such that | | .t ti

x
j
y  Analogously we 

define R
xx

 as the number of pairs such that | |t ti
x

j
x  and R

yy
 as 

the number of pairs such that | | .t ti
y

j
y  A raw estimate of spike 

synchrony then reads:

ˆ .S
R

R R
xy

xy

xx yy

raw  (1)

If  is sufficiently small, i.e., much smaller than the typical 
ISI, and the two neurons fire at the same rate, expression (1) 
yields the fraction of spikes that occur at the same time in both 
neurons. This measure resembles the definitions of neuronal 
synchronization and spike time reliability reported in various 
publications (Hunter et al., 1998; Schreiber et al., 2004; Galán 
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FIGURE 2 | Simultaneous recordings of neurons (n = 8) in the rostral 
ventral respiratory group (raster plots) and integrated phrenic nerve 
activity ( PNA, see Data Analysis) before (A) and after (B) hypoxia. (A,B) The 
complete 80-s epochs analyzed; raster plots of eight simultaneously recorded 
neurons (those in Figure 1) and PNA. In (B), immediately after hypoxia (8% O2, 
5% CO2, and 87% N2 for 15 s), respiratory frequency is less than that before 

hypoxia (A) and amplitude of PNA displays. (C,D) Cycle-triggered averages 
(CTA) of spike activity during the epochs. Recordings were from the caudal VRC 
and include neurons with inspiratory- (I1, I2, I3, I4), expiratory- (E1, E2, E3), and a 
non-respiratory (N1)-modulated activity. Except for I1 and E1, major features of 
the activity profiles in the CTA did not change after hypoxia. (E,F) Action potential 
firing frequency decreased after hypoxia.
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COMPUTATIONAL SIMULATIONS AND NETWORK MODEL
General considerations about the model
The purpose of the computer simulations is to investigate a mini-
malist model of the brainstem inspiratory network that replicates 
the following features of the experimental data: (1) during baseline 
conditions, significant spike synchrony in pairs of inspiratory pre-
motor neurons reflects common synaptic inputs; (2) after hypoxia, 
the firing rate of inspiratory premotor neurons decreases signifi-
cantly due to decreased excitation or increased inhibition; and 
(3) after hypoxia, there are significant changes in synchrony that 
cannot be explained by chance nor by the reduction in the firing 
rates. Most of these changes are negative (synchrony decreases) 
but some are positive.

Our network simulations, although original, borrow several ele-
ments from previously published models. We employ simplified but 
realistic models of the single neuron dynamics, as is the case with 
other models of the respiratory network (Rybak et al., 2004, 2008) and 
divide the network into a pre-inspiratory population, an inspiratory 
population and an inspiratory premotor population (see Figure 6). 
We record from the inspiratory premotor population in our experi-
ments. These neurons project to motoneurons whose axons form the 
phrenic nerve, which are not included in our model.

The single-cell dynamics have been adapted from the neuro-
nal model recently proposed by Izhikevich, which is basically a 
quadratic integrate-and-fire model with realistic phase-resetting 
properties. This model consists of two variables, the membrane 
potential and a recovery variable, both with a resetting threshold 
(Izhikevich, 2004).

Recent experimental work has provided evidence for functional 
SK channels (a subtype of calcium dependent potassium channels) 
in pre-motor neurons (Tonkovic-Capin et al., 2003). These channels, 
similar to other potassium channels, endow neurons with type II 
excitability, which can be modeled as neurons with a resonator-like 
phase-resetting curve (Galán et al., 2006a). Therefore we use the 
Izhikevich model of resonator neuron for the pre-motor population 
and for simplicity, for the inspiratory population as well. For the pre-
inspiratory neurons in the preBötC we use a similar model but with 
a saw-tooth drive, I(t) that mimics the intrinsic bursting properties 
of these neurons along the lines of models previously published by 
other groups (Butera et al., 1999a,b; Del Negro et al., 2001).

In order to produce population wide activity that is synchro-
nized on the time scale of the inspiratory burst, all pre-inspiratory 
neurons were driven by a saw-tooth drive, I(t), and noise was added 
to produce a temporal dispersion of spiking activity. The resulting 
pattern of pre-inspiratory activity mimicked the pattern described 
in previous models where biophysical mechanisms producing a 
slow wave, saw-tooth-like membrane potential trajectory were 
incorporated along with heterogeneity of cellular and synaptic 
properties (Butera et al., 1999a,b; Del Negro et al., 2001). We note 
that this form of coherent activity may also be facilitated by the 
presence of gap junctions in the system (Rekling et al., 2000; Bou-
Flores and Berger, 2001; Solomon et al., 2001).

Network architecture
Stochastic synchronization is an efficient mechanism for generat-
ing coherent activity in neuronal networks (Galán et al., 2006b). 
This phenomenon emerges when uncoupled neurons receive 

Bootstrapping and bootstrap-corrected synchrony
Expression (1) quantifies the total amount of synchronization, 
including the fraction of synchronous spikes that would occur by 
chance in two uncoupled neurons receiving independent inputs. 
We therefore refer to it as raw synchrony. Since we are interested 
in the synchronous events that occur as a result of network inter-
actions, we need to subtract the amount of synchrony expected 
by chance, Sxy

0 , which is higher, the higher the firing rates of the 
neurons. To this end, we apply a standard bootstrap technique: we 
use surrogate data obtained by shuffling the spike times of each 
neuron independently.

By shuffling we mean that the ISI from the actual record-
ings are randomly permuted. For example: Let the times of 
four successive spikes be {t

1
, t

2
, t

3
, t

4
}. The ISI are {
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}, which has the 

same ISI distribution as the original spike train as well as the 
same mean firing rate. Note that shuffling preserves the times of 
the first and last spikes. As a result, all shuffles will have at least 
these two spikes fully synchronized. To correct for this artifactual 
“synchrony” the shuffled sequence was randomly shifted up to 
hundred milliseconds.

Because the firing pattern of each neuron is typically dif-
ferent during inspiration and expiration, we shuffle the spikes 
separately for the inspiratory and the expiratory phase. This way 
the ISI distribution of the surrogates during inspiration is iden-
tical with the ISI distribution of the experimental data during 
inspiration, and analogously, during expiration. Spike-shuffling, 
however, alters the timing of the spikes randomly and there-
fore, the auto- and cross-correlations of the actual data are not 
preserved in the surrogates. Since the spikes of each neuron are 
shuffled independently, the level of synchrony in the surrogate 
data represents the amount of synchrony that can be accounted 
for by chance. Obviously, this value depends on how the spikes 
were shuffled, i.e., on the random realization of the surrogate data 
set. Thus, in order to be more rigorous, we first generate N = 300 
surrogate data sets for each neuronal pair XY and then calculate 
the distribution of synchrony values. The 99th percentile of this 
distribution is our estimate of synchrony by chance, ˆ .Sxy

0  This 
implies that if the synchrony level for that pair in the actual data, 
Ŝxy

raw is greater than ˆ ,Sxy
0  then that synchrony level is significant 

with 99% confidence. Moreover, the difference ˆ ˆS Sxy xy
raw 0  repre-

sents the amount of synchrony that cannot be accounted for by 
chance and is therefore due to temporal correlations emerging 
from network interactions. Our bootstrap-corrected synchrony 
measure, S

xy
 thus reads:

S
S S S S

xy
xy xy xy xy

ˆ ˆ , ˆ ˆ

,

raw rawif

otherwise

0 0

0  (2)

Note that S
xy

 reports the level of non-trivial spike synchroniza-
tion. Indeed, for two different neurons, S

xy
 is the amount of syn-

chrony that cannot be accounted for by chance, and for the same 
neuron, S

xx
 is always zero, since a spike train is always perfectly 

synchronized with itself but this synchrony is trivial.
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from each inspiratory-augmenting neuron plotted versus its rank 
in the population follows a power-law distribution. The rank equals 
one for the neuron with the largest number of projections and 
equals the total number of neurons for the neuron with the smallest 
number of projections. The power-law distribution is not essential 
to reproduce the experimental data. In fact, a distribution that 
decays exponentially with the rank yields qualitatively the same 
results, and so will any distribution that decays sufficiently fast with 
the rank, as it guarantees that the inspiratory-augmenting neurons 
are not equally driving the premotor neurons. This implies that 
some are strong drivers (hubs) but most are weak. In particular, 
the power-law distribution as a function of the rank, P(r), that we 
consider has the form: P(r) = P

max
r A, with A = log(P

max
/P

min
)/log(N). 

Although a uniform distribution can account for different levels of 
synchrony between pre-motor pairs, it can neither reproduce the 
range of synchrony nor the synchrony changes after brief hypoxia 
that we observed in the experiments.

In addition to the network topology, the fast synaptic kinetics 
(   10 ms) contribute to the overall level of stochastic synchroniza-
tion in the pre-motor population, as recently shown in simulations 
and experiments in other parts of the brain (Galán et al., 2008).

Implementation details
The dynamics of the r-th neuron in each subpopulation is deter-
mined by the membrane potential, V and a recovery variable, U. The 
parameters of the model are chosen so that the membrane potential 
is in mV and time in ms. When the membrane potential exceeds 
30 mV, the membrane potential is reset to V = c and the recovery 
variable is reset to U = d (see Table 2).The superscripts indicate 
the neuronal type of each subpopulation: p for pre-inspiratory (30 
neurons), i for inspiratory-augmenting (90 neurons) and m for pre-
motor (100 neurons). The dynamics of the synaptic conductances 
for each neuron, r, are denoted by G. The superscripts indicate the 
neuronal type and the nature of the synaptic conductance: I for 
inhibitory, E for excitatory. The synaptic connections are denoted 
by J and are generated randomly with the probabilities described 
in the previous paragraph every time the simulation program runs. 
The superscripts of J refer to the layers being connected: pi for 
pre-inspiratory to inspiratory-augmenting neurons, and im for 
inspiratory-augmenting to premotor neurons. The sign “ ” as a 
superscript means that only the excitatory connections are consid-
ered and the inhibitory connections are ignored. Analogously, the 

common fluctuating inputs, for example, synaptic barrages from 
divergent presynaptic terminals. Because this connectivity pat-
tern is ubiquitous in the brain, stochastic synchronization can 
account for most temporal correlations observed in neural circuits. 
We therefore hypothesize that this is the phenomenon underly-
ing spike synchronization in the brainstem inspiratory network. 
Since feed-forward divergent projections are sufficient to cause 
downstream synchrony, we modeled a pure feed-forward network 
(i.e., no connections within each layer). A simplified diagram is 
shown in Figure 6 (left) to illustrate the fundamental features of 
the simulated network: pre-inspiratory neurons in the pre-Bötz-
inger complex (excitatory ( ) and inhibitory ( ) open circles); 
inspiratory-augmenting neurons in the area of the pre-Bötzinger 
complex (3 circles: red, yellow, and blue); and pre-motor neu-
rons in the rVRG (9 circles: red, orange, purple, green, and blue). 
The similarity of the colors between any two premotor neurons 
indicates the proportion of common inputs, i.e., the blending of 
the primary colors: red, blue and yellow. While not all inputs to 
pre-motor neurons necessarily originate from the inspiratory-
augmenting population in the pre-Bötzinger area, a significant 
portion do (Schwarzacher et al., 1995). For the purpose our model 
the exact anatomical location of the neurons is not essential. Note 
that in our model the concept of layer is topological, not anatomi-
cal: it refers to how neurons are connected, and not to where they 
are precisely located.

Recently published data demonstrate that a fraction of 
inspiratory pacemaker neurons in the pre-Bötzinger complex 
are inhibitory, as they express the glycine transporter 2 (GlyT2) 
gene (Morgado-Valle et al., 2010). We assume in our model that 
the majority of pre-inspiratory neurons are inhibitory. Although 
there is no direct evidence for this assumption, it is consistent with 
recent studies demonstrating that a major fraction of all inspiratory 
neurons in the rodent brainstem slice preparation are glycinergic 
(Winter et al., 2010).

In our model, both excitatory and inhibitory pre-Bötzinger 
complex neurons provide divergent connections to the inspira-
tory-augmenting population. Each of the pre-inspiratory “pace-
maker” neurons has the same connection probability with any 
inspiratory-augmenting neuron. Modifying the ratio between 
inhibition and excitation while keeping the other parameters of 
the network unchanged, we determined that there must be at least 
15% excitation (ratio inhibition/excitation = 85/15) in order for 
the premotor neurons to fire some spikes. However, the firing rate, 
the synchrony values and their changes after hypoxia were only 
comparable with the experimental results when the fraction of 
excitatory pre-inspiratory neurons was in the range between 25% 
and 45%. When that fraction was over 50%, the median bootstrap 
corrected synchrony between premotor neurons took large values 
(around 0.6 and higher) before and after hypoxia, indicating that 
most pairs were highly synchronized, contrary to what we observed 
experimentally. In the simulations producing the results shown in 
the figures, we took 70% of the pre-inspiratory neurons as inhibi-
tory and 30% as excitatory (ratio 70/30).

The inspiratory-augmenting population in turn provides 
divergent excitatory connections to pre-motor neurons, but not 
with equal probability. The connection probability ranges from 
P

min
 = 10% to P

max
 = 30%. Moreover, the number of projections 

Table 2 | Parameters used in the simulations and their values.

Parameter Value

ap, ai, am 0.20

bp, bi, bm 0.21

c 65

d 2

giE, giI 0.08

gmE, gmI 0.02
iE, iI, mE, mI 10

E
E
 0

E
I
 75

 0.5 
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the arctangent function is a sigmoid with a horizontal asymptote 
for large negative values of V

0
. That means that for two different 

starting conditions V0
1, and V0

2 such that V0
1 0 and V0

2 0, the 
difference in time to reach threshold is negligible. Indeed, chang-
ing the value of c, d or the resting potential of the neurons has no 
effect on the frequency or synchrony in our model.

Modeling the dynamics after hypoxic stimulation
We hypothesize that hypoxic stimulation facilitates the recruitment 
of pre-inspiratory neurons. In our model, this implies that the 
inspiratory-augmenting neurons are being more inhibited, provid-
ing less excitation to the premotor neurons (Figure 6, right). As 
a result, the premotor neurons will have shorter and fewer bursts 
of activity, as observed in our experiments. In the simulations, the 
recruitment of pre-inspiratory cells is equivalent to adding more 
inhibitory neurons (10%), as compared to the network before 
hypoxia.

RESULTS
EXPERIMENTAL DATA
We recorded multielectrode data from six animals in the rVRG that 
included pre-motor inspiratory neurons, as reported in Table 1. A 
representative example of the recorded data for a given experiment 
is displayed in Figures 1C and 2. The raster plots show the firing 
of eight neurons over 80 s before and after hypoxia (Figures 2A,B, 
respectively). Integrated PNA is shown below the raster plots. The 
cross-correlation function between the phase of the phrenic nerve 
signal and the activity of each neuron, also known as cycle-triggered 
histogram (see Materials and Methods), is plotted in Figures 2C,D. 
These histograms allowed classification of the neurons according to 
the phase of the cycle when they were maximally active: inspiratory 
pre-motor neurons (I1–I4) were active during the burst of PNA 
(inspiration), whereas expiratory neurons (E1–E3) discharge when 
PNA was quiescent (expiration). One neuron was not modulated 
by respiration (N1). Neuronal firing frequency, calculated as the 
reciprocal of the median ISI (see Materials and Methods), is dis-
played in Figures 2E,F.

In the remaining analysis, we focused on the premotor neurons 
with inspiratory activity before and after hypoxia. After hypoxia 
there is an apparent decrease in the number and duration of bursts 
in these neurons. We then investigated whether the changes in spik-
ing activity were consistent across neurons and whether, on a finer 
time scale, neurons are also tightly synchronized to each other.

For the 111 inspiratory pre-motor neurons, we observed a 
significant reduction of action potentials after hypoxia (p  0.05, 
Wilcoxon sign rank test, Figure 3A). However, the intraburst firing 
frequency did not significantly change (Figure 3B). These results 
suggested that the inputs rather than the firing threshold of the neu-
rons had changed, specifically an increase in inhibitory or decrease 
in excitatory inputs. We determined coincident (within a 2-ms time 
window) spikes during the 80-s epochs for each neuronal pair and 
found that the number of coincident events decreased significantly 
after hypoxia (p  0.05 and Wilcoxon sign rank test, Figure 3C). This 
decrease could have resulted from the overall decrease in firing rate. 
Therefore, we calculated the harmonic mean of the action potentials 
for each neuron in the pair before and after hypoxia and found that 
it also decreased significantly (Figure 3D). However, we could not 

sign “ ” as a superscript means that only the inhibitory connections 
are considered and the excitatory connections are ignored. The 
variable S tracks the firing of presynaptic neurons; S = 0, unless 
the presynaptic neuron fired at the previous time point, then S = 1. 
The dynamical equations were integrated in time with the Euler 
method (dt = 0.5 ms).

Dynamics of the pre-inspiratory population with an intrinsic 
saw-tooth drive, I(t) and background Gaussian noise, (t) with 
standard deviation, :
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In the absence of stimulation the neurons of the model rest 
around 60 mV. Neither the resting potential nor the resetting 
parameters c and d play a significant role in the dynamics of this 
quadratic integrate-and-fire model. In this type of model, the 
time T to reach the resetting threshold from any starting value of 
the membrane potential V

0
, is given by the arctangent function: 

T V V I( ) arctan / ,0 0  where I is the driving current. Note, that 
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was not significant and mapped to zero. Figure 4A, shows the raw 
synchrony matrix, the 99th percentile of the synchrony distribution 
(described as synchrony confidence limit) and the bootstrap-cor-
rected synchrony, before (top) and after (bottom) hypoxia for the 
experiment shown in Figure 2. Synchrony was significant among 
a subgroup of inspiratory pre-motor neurons but not among the 
rest, with the exception of two expiratory neurons that were weakly 
synchronized (E2–E3). In the bootstrap-corrected synchrony after 
hypoxia (Figure 4B), one pair of inspiratory neurons increased its 
synchrony (I3–I4) but two other pairs (I2–I3 and I2–I4) decreased 
their synchrony. The dendrograms derived from the bootstrap-
corrected synchrony matrices reflected these changes and revealed 
a tight cluster of inspiratory neurons (I2, I3, and I4) that changed 
synchrony slightly after hypoxia (Figure 4C).

We observed the same trend for the bootstrap-corrected syn-
chrony across the whole set of inspiratory pre-motor neurons 
(Figure 5A): 162 pairs (29%) decreased their synchrony after 
hypoxia; 86 pairs (15%) increased; and 314 pairs (56%) were not 
significantly synchronized either before or after hypoxia. Those who 
were synchronized before and/or after hypoxia had a significant 
trend to decrease their synchrony (p  0.05, Wilcoxon sign rank 
test), as revealed by the histogram of difference in synchrony, which 

conclude that the decrease in synchronous spikes resulted from the 
decrease in firing rate. Because neuronal synchrony was defined by 
the cross-correlation coefficient between two spike trains, which 
was the number of coincident spikes divided by the harmonic mean 
of the spikes fired by each neuron (see Materials and Methods), we 
compared the numerator of this expression with the denominator, 
before (Figure 3E) and after (Figure 3F) hypoxia. In both cases, 
the numerator grew faster than the denominator as the number 
of fired spikes increased. The quadratic fit had a slightly shallower 
slope after compared to before hypoxia, suggesting that hypoxia 
reduced the overall level of raw neuronal synchrony across pairs 
of inspiratory pre-motor neurons.

To exclude effects of firing rate on neuronal synchrony, we used a 
bootstrap technique as explained in Materials and Methods. Briefly, 
for each neuron we generated surrogate spike trains with the same 
number of spikes and the same ISI distribution as the real data 
and calculated the neuronal synchronization between each pair 
of surrogate spike trains. We repeated this process 300 times to 
obtain a distribution of synchrony values for the surrogate data 
sets. If the synchrony value of the real data was greater than the 
99th percentile of that distribution, then synchrony was significant 
with a 99% confidence. Otherwise, the synchrony of the real data 
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FIGURE 3 | Changes in activity of the recorded inspiratory premotor 
neurons (n=111) before and after hypoxia. (A) The total number of spikes 
discriminated divided by the duration of the analyzed epoch (T = 80 s) before 
(x-axis) versus after (y-axis) hypoxia. In this and (B–D), the diagonal solid line is 
the line of identity. The majority of points, especially for the neurons that have 
the highest average frequency before hypoxia, are below the line of identity. The 
horizontal and vertical dashed lines plot the means before and after hypoxia, 
respectively [also for (B–D)]. The intersection of the dashed lines (11.0 ± 0.9 
before versus 8.7 ±0.7 after hypoxia) is below the line of identity. (B) Firing 
frequency (Fx) of activity as the inverse of the mean ISI before versus after 
hypoxia. The intersection of the means is close to the line of identity (26.1 ± 2.3 
before versus 24.3 ± 2.3 after hypoxia). (C) The frequency of coincident action 
potentials (Nxy, pairs of spikes occurring within 2 ms) decreased after hypoxia. 
The intersection of the dashed lines (1.2 ± 0.1 before versus 0.9 ± 0.1 after 

hypoxia) is below the line of identity. The color of the points is defined by where 
the points landed on the curve in Figure 5 with values of synchrony corrected by 
the bootstrap method: red represents an increase in bootstrap-corrected 
synchrony; blue, a decrease; and black has no synchrony (these points are at the 
origin in Figure 5). This color coding is the same for all panels. (D) Harmonic 
mean of the number of fired spikes in each pair ( NxNy), before and after 
hypoxia. The intersection of the dashed lines (10.0 ± 0.2 before versus 7.4 ± 0.2 
after hypoxia) is below the line of identity. (E) The relationship between 
coincident spikes (Nxy) and spike occurrence ( NxNy) before hypoxia. The 
dashed line is the relationship showing that as spike frequency increases, there 
is a greater probability of coincident spikes. (F) The relationship between 
coincident spikes (Nxy) and spike occurrence ( NxNy) after hypoxia. As before 
hypoxia, there is a greater probability of coincident spikes with increasing firing 
frequency. Means shown with errors as SEM.
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stimulation, synchrony decreased across approximately two-thirds 
and increased across one-third of those pairs. These synchrony 
changes were independent of the decrease in the number of spikes 
after hypoxia.

We propose that these effects can be accounted for by 
enhanced inhibitory input, as sketched in Figure 6. The inspira-
tory pre- motor neurons receive excitatory divergent input from 

is clearly skewed to the left (Figure 5B). Obviously, since most pairs 
were not synchronized either before or after synchrony, consider-
ing all pairs in the analysis would not yield significant changes of 
synchrony at the population level.

Summarizing the experimental results, we observed signifi-
cant synchrony across approximately half of the pairs of inspira-
tory pre-motor neurons before hypoxia. After transient hypoxic 
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FIGURE 4 | Color-coded synchrony matrices (A, B) and dendrogram (C) 
display the synchrony among pairs of recorded neurons for the experiment in 
Figures 1 and 2. (A) Left-hand Column, the raw synchrony (not corrected for 
firing rate); Middle Column, upper confidence limit of synchrony in shuffled data, 
the bootstrap correction for the dependence of synchrony on the firing rate; and 
Right-hand Column, corrected synchrony (raw synchrony-synchrony of the 
shuffles). Top Row, synchrony in recordings before hypoxia; Bottom Row, after 

hypoxia. After bootstrap correction, the majority of pairs appear not to be 
synchronized, however, three of six pairs of premotor I neurons are synchronized. 
(B) The effect of brief hypoxia on synchrony (after-before hypoxia). One pair (red, 
I3 and I4) increases whereas the other three pairs decrease synchrony. (C) A 
dendrogram shows the clustering of neurons before (left) and after (right) 
hypoxia. In summary, these different graphics complement each other and 
consistently reveal significant changes in synchrony before and after hypoxia.
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FIGURE 5 | Group data showing increases and decreases in synchrony 
before and after hypoxia. (A) The magnitude of bootstrap-corrected synchrony 
before hypoxia (x-axis) plotted against that after hypoxia (y-axis) for all pairs of 
neurons recorded. The diagonal dashed gray line is the line of identity. Blue dots 
above this line indicate pairs where synchrony increased after hypoxia; the red 

dots below indicate that synchrony decreased. Black dots, located at the origin, 
represent pairs that were not significantly synchronized either before or after 
hypoxia. (B) Histogram representing the synchrony difference (after–before). 
Blue, red, and black match with (A) Clearly, more pairs decreased than 
increased synchrony.
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after hypoxia (Figure 8D). As in the experiments, the number of 
coincident spikes versus the harmonic mean of the number of 
spikes in the pair fit a quadratic function whose slope at any point 
was slightly lower after hypoxia, which indicates an overall trend 
across the population to decrease synchrony after hypoxia. A boot-
strap analysis of the simulated data was applied to disentangle the 
amount of synchrony and synchrony changes that can be explained 
by chance from the contribution due to the network architecture 
and its modification following hypoxia. The bootstrap-corrected 
synchrony is shown in Figure 9. As in the experimental data, neu-
ronal synchronization can increase or decrease after hypoxia, but 
the decrease (58% of 4950 pairs) was much more pronounced 
across all pairs than the increase (38%). Also 4% of pairs did not 
show significant synchrony before or after hypoxia. As a result, the 
histogram of the synchrony change was significantly skewed to the 
left (p  0.05, Wilcoxon sign rank test).

DISCUSSION
In our analysis of ensemble recordings of inspiratory premo-
tor neurons in the rVRG, we applied state-of-the-art statistical 
tools and obtained several novel results. First, subpopulations of 
pre-motor neurons had synchronized spike activity indicating a 
common drive from upstream inspiratory neurons. Second, this 
synchrony was malleable. Physiological stimuli modulated syn-
chrony: it decreased in most pairs but increased in others, sug-
gesting alterations of the functional network connectivity. The 
synchrony changes are independent of changes in the firing rate. 
Third, whereas the intraburst firing frequency of the premotor 

 inspiratory- augmenting neurons in the preBötC, which in turn 
receive mostly inhibitory divergent input from preBötC pre-inspir-
atory neurons. A recruitment of more inhibitory pre-I neurons fol-
lowing hypoxia could account for the overall increase of inhibition 
in the hierarchical network. At the same time, the divergent projec-
tions between layers create temporal correlations across postsynaptic 
cells receiving overlapping inputs, which translates to significant 
spike synchronization. In Figure 6, neurons with similar colors are 
temporally correlated: the more similar the colors, the higher the 
synchrony. Note that after hypoxia, the elimination of a presynaptic 
input increases synchrony among some premotor pairs (red and blue 
or green and blue) but decreases synchrony among others (orange 
and green). To test our hypothesis, we implemented a computational 
model of the network dynamics with these ingredients (see details 
in Materials and Methods) and analyzed the simulated network 
dynamics in the same fashion as the experimental data.

COMPUTATIONAL SIMULATIONS
Figure 7 displays the raster plots of neuronal activity for the whole 
network during an inspiratory burst. The analysis of the traces 
for the pre-motor inspiratory population is presented in Figures 8 
and 9. Figure 8A reveals a significant decrease in the number of 
fired spikes after hypoxia. However, the firing rate of the neurons 
(Figure 8B), calculated as the inverse of the mean ISI did not change 
significantly. This means that once the neurons started firing, they 
fired with the same frequency as before but they fired with inter-
ruptions (gaps) after hypoxia, as displayed in Figure 7. The number 
of coincident spikes over the simulated time interval also decreased 
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FIGURE 6 | Simplified diagram of the simulated network before (left) and 
after (right) hypoxia. The top layers [two Open Circles and three Filled Circles 
(Red, Yellow, and Blue)] contain two types of neurons in the preBötC; the 
excitatory and inhibitory Pre-I neurons as well as the excitatory I-Aug neurons. 
After hypoxia, there is a recruitment of inhibitory pre-I neurons in the preBötC 
which turns off some of the I-Aug activity in the preBötC [Yellow filled circle 
becomes inactive (gray with X)]. The third layer (nine Filled Circles) contains I-Aug 

neurons of the rVRG. The vast majority of these are bulbo-spinal premotor 
neurons and transmit central respiratory drive to spinal motor neurons. The 
blending of colors represents the degree of overlapping input and hence, the 
more similar the colors, the higher the synchrony. The elimination of a 
presynaptic input increases synchrony among some premotor pairs (red and 
blue or green and blue) but decreases synchrony among others (orange 
and green).
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synchronization observed in our experiments. Moreover, there is 
no direct evidence for a selective increase in feed-forward inhibi-
tion as opposed to depression of excitatory inputs from the pre-
inspiratory population after hypoxia. The assumptions used in our 
computational model should rather be considered as a proof of 
principle for plausible features of the respiratory column to be 
investigated in future.

How robust is our model? We have quantified how excitation and 
inhibition from the pre-inspiratory population affect the results of 
the computational model (data not shown). The firing rate, syn-
chrony values and their changes after hypoxia were comparable 
with the experimental results when excitation was between 25% and 
45%, keeping other neuron (threshold, etc.) and network parameters 
(synaptic strengths, connection probabilities, etc.) unchanged. This 
effective range may well vary as those parameters change. As a result, 
the validity of our model should not be limited when the actual ratio 
of excitation and inhibition is experimentally determined.

inspiratory neurons was similar before and after hypoxia, the total 
number of spikes fired decreased significantly. Thus, the firing 
threshold of the pre-motor neurons may have been unaffected 
poststimulus; rather the neurons received less net excitation after 
hypoxia. Fourth, a simple computational model of inspiratory 
neurons in the ventral respiratory column reproduced efficiently 
the experimental observations. The model consisted of a feed-
forward network with three layers: the pre-inspiratory cells, the 
inspiratory-augmenting neurons, and the pre-motor neurons. To 
qualitatively reproduce the experimental results, a key element of 
the model was that not all the inspiratory-augmenting neurons 
were equivalent: some projected onto many pre-motor neurons 
(hubs), while most projected onto just a few.

We should emphasize, however, that there is currently no direct 
evidence for the network architecture hypothesized in our stud-
ies. Consequently, besides common fluctuating inputs there may 
be other connectivity patterns contributing to the short timescale 
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FIGURE 7 | Illustrative example of output from the computational model for 
an entire inspiratory burst. Before hypoxia (A) and after hypoxia (B) there was a 
recruitment of inhibitory pre-inspiratory preBötC neurons which resulted in 
enhanced inhibition of preBötC inspiratory-augmenting neurons, some of which 

were turned off. This led to a reduction of common inputs to the rVRG premotor 
neurons which in turn reduced the firing and altered spike synchronization among 
these neurons. The sudden termination of the burst is consistent with the 
experimental data of inspiratory neurons shown in Figures 2C,D.
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 gravitational force between two bodies, and move towards each 
other. In addition, there is an ongoing friction force quantified by 
a parameter  that acts on every particle (neuron). The dissipative 
forces slow down the particles by opposing the attractive forces, 
which facilitates the agglomeration of particles representing neu-
rons that tend to fire synchronously. At the end of the recording, 
clusters in the N-dimensional space identify assemblies of synchro-
nized neurons. If  and  are properly chosen, our clustering analysis 
based on our synchrony measure (Figure 4) yields similar results 

Our analysis of multielectrode recordings has similarities and 
differences with respect to a previously published method, gravity 
analysis (Lindsey et al., 1997; Lindsey and Gerstein, 2006) which 
has been used to detect moments of synchrony in ensemble record-
ings. In gravity analysis, each neuron is represented as a particle 
in an N-dimensional space, N being the total number of neurons 
recorded. At the beginning of the recording, neurons are equi-
distant to each other. As time progresses, when two neurons fire 
within a time window , they attract each other, analogously to the 
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strongly support this idea. However, to validate this hypothesis 
further, the changes in neuronal synchronization across pre-motor 
neurons should co-vary with the shape and pattern of the phrenic 
nerve signal, i.e., the motor output of the network.

In our analysis, we have focused on the dynamics of inspiratory 
pre-motor neurons. There are two reasons why we focused specifi-
cally on these neurons and not on expiratory neurons. The first 
reason is a convenient anatomical feature: inspiratory pre-motor 
neurons are localized in a relatively well segregated area that facili-
tates the simultaneous recording from many of them. The second 
and most important reason, is that they are part of the effector 
output of the network that ultimately control the motoneuron 
activity and hence, the phrenic output and diaphragm. Whereas 
we have shown that spike synchronization within inspiratory pre-
motor populations is significant and malleable, we surmise that 
the neuronal dynamics of expiratory populations along the ventral 
respiratory column are crucial to explain the natural variability of 
the respiratory rhythm. This will be investigated in future work 
with the techniques and analyses reported here.
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as the gravity analysis (data not shown). However, our analysis is 
computationally more efficient. In addition, our analysis does not 
require the parameter  which has to be chosen heuristically in 
gravity analysis with an appropriate choice being crucial for the 
algorithm to work.

What is the physiological relevance of malleable synchronization 
in the respiratory column? Neuronal synchronization can transmit 
and process information at a low metabolic cost (Buzsaki, 2006). 
Action potentials are metabolically expensive, therefore, the imple-
mentation of firing rate codes for every purpose of brain function 
can be inefficient. In contrast, for a fixed and relatively low fir-
ing rate, neurons can synchronize their action potentials leading 
to a constructive summation of postsynaptic currents in down-
stream neurons or muscle fibers. The following two assumptions 
are implicit in this argument: (1) projections from neurons that 
are capable of synchronizing their spikes converge onto the same 
downstream target; (2) the postsynaptic currents are integrated 
sufficiently fast (within a few milliseconds), so that downstream 
targets can sum independent coincident spikes. Interestingly, both 
requirements are met across several areas of the brain including the 
olfactory bulb (Lagier et al., 2004; Galán et al., 2006b) hippocampus 
(Buzsaki, 2002; Vida et al., 2006), cerebellum (de Solages et al., 
2008; Middleton et al., 2008) and neocortex (Hasenstaub et al., 
2005). Thus synchrony across pre-motor and motor neurons in 
the respiratory control network may be an efficient way of regu-
lating diaphragm contraction. Our data and simulations showing 
significant spike synchrony among inspiratory pre-motor neurons 
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1999; Weiler et al., 2000). When light levels are high, the gap junc-
tions close, and there is little coupling. When light levels are low, 
the gap junctions open, and extensive coupling ensues. Since cou-
pling shunts current, the idea is that the extensive coupling causes a 
shunting of horizontal cell current, effectively taking the horizontal 
cells out of the system. Since horizontal cells play a key role in shap-
ing integration time – they provide feedback to photoreceptors that 
keeps integration time short (Baylor et al., 1971; Kleinschmidt and 
Dowling, 1975; Smith, 1995) – taking these cells out of the system 
makes integration time longer.

This hypothesis raises a new, and potentially generalizable idea – 
that a neural network can be shifted from one state to another by 
changing the gap-junction coupling of one of its cell classes. The 
coupling can act as a means to take a cell class out of a network, 
and by doing so, change the network’s behavior. (For more on 
generalization, including the time scale of the coupling changes, 
see Discussion.)

We tested the hypothesis using transgenic mice that cannot 
undergo this coupling (Hombach et al., 2004; Shelley et al., 2006). 
They lack the horizontal cell gap-junction gene, and, as a result, 
their horizontal cells get locked into the uncoupled state (Hombach 
et al., 2004; Shelley et al., 2006). If the hypothesis is correct, these 
animals should not be able to undergo the shift to long integra-
tion times. Our results show that the hypothesis held: the shift was 
blocked completely at the behavioral level, and almost completely 
at the physiological (i.e., ganglion cell) level.

In sum, we tracked a behavioral change down to the neural 
machinery that implements it. This revealed a new, simple, and 
potentially generalizable, mechanism for how networks can rapidly 
adjust themselves to changing environmental demands.

INTRODUCTION
The nervous system has an impressive ability to self-adjust – that is, 
as it moves from one environment to another, it can adjust itself to 
accommodate the new conditions. For example, as it moves into an 
environment with new stimuli, it can shift its attention (Desimone 
and Duncan, 1995; Maunsell and Treue, 2006; Reynolds and Heeger, 
2009); if the stimuli are low contrast, it can adjust its contrast sen-
sitivity (Shapley and Victor, 1978; Ohzawa et al., 1982; Bonin et al., 
2006); if the signal-to-noise ratio is low, it can change its spatial and 
temporal integration properties (Peskin et al., 1984; De Valois and 
De Valois, 1990). These shifts are well described at the behavioral 
level – and are clearly critical to our functioning – but how the 
nervous system is able to produce them is not clear. How is it that a 
network can change the way it processes information on the fl y?

In this paper, we describe a case where it was possible to obtain an 
answer. It is a simple case, but one of the best-known examples of a 
behavioral shift – the shift in visual integration time that occurs as an 
animal switches from daylight to nightlight conditions (reviewed in 
De Valois and De Valois, 1990). In daylight conditions, when photons 
are abundant, and the signal-to-noise ratio is high, the visual system 
is shifted toward short integration times. In nightlight conditions, 
when photons are limited, and the  signal-to-noise ratio is low, the 
system shifts toward long integration times. (See Appendix 1 for 
why the shift involves a network action, rather than a simple switch 
from cones to rods.)

Here we propose a hypothesis for how the shift takes place – it 
involves a change in gap-junction coupling among the horizon-
tal cells of the retina. The idea is as follows: Horizontal cells are 
well-known to be coupled by gap junctions, and the coupling is 
light-dependent (Dong and McReynolds, 1991; Xin and Bloomfi eld, 
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The circuit contains three cell classes – photoreceptors, bipo-
lar cells and horizontal cells – and operates, briefl y, as follows: 
the photoreceptors send signals forward to both the bipolar 
and horizontal cells. The bipolar cells continue to send signals 
forward, while the horizontal cells send signals back onto the 
photoreceptors. The horizontal cell feedback shapes the pho-
toreceptors’ integration time1 (Baylor et al., 1971; Kleinschmidt 
and Dowling, 1975).

Figure 2B shows how a change in the gap junction coupling 
of the horizontal cells can modulate the circuit’s behavior – that 
is, how it can change it from one state to another. The scenario 
is the following: In daylight conditions the gap junctions close. 
This strengthens the signals of the horizontal cells, so they send 
strong feedback to the photoreceptors. Strong feedback cuts 
the photoreceptors’ integration time short, producing the short 
integration times (high temporal frequency responses) observed 
experimentally (Figure 2B, left). In nightlight conditions, the gap 
junctions open. The opening produces a shunting of the hori-
zontal cell current, which reduces or eliminates the horizontal 
cell signal. Without the feedback from the horizontal cells, there 

RESULTS
Figure 1 gives the starting point for these experiments. It indicates 
that (a) the model system we are using, the mouse, shows the shift 
in visual integration time observed in other species (Kelly, 1961; 
van Nes et al., 1967; De Valois and De Valois, 1990; Umino et al., 
2008) (Figure 1A), and (b) the part of the nervous system respon-
sible for the shift, or at least a large part of it, is the retina, since 
the shift is readily detectable at the level of the retinal ganglion 
cells (Figure 1B). The shift at the behavioral level was measured 
using a standard optomotor task, where the stimuli were drifting 
sine wave gratings of different temporal frequencies. The shift at 
the ganglion cell level was measured using three different stimuli: 
drifting sine wave gratings of different temporal frequencies, a white 
noise stimulus, and a natural scene stimulus. As indicated in all the 
panels of the fi gure, there is a shift from short integration times 
to long, that is, from high temporal frequencies to low (p < 10−3, 
t-test comparing the centers of mass of the frequency response 
curves for the night (scotopic) condition with those for the day 
(photopic) condition).

Figure 2 shows the proposed model for how the shift is gen-
erated. It builds on the well-established front-end circuit that 
shapes visual integration time (Baylor et al., 1971; Kleinschmidt 
and Dowling, 1975; reviewed in Dowling, 1987) (Figure 2A). 

FIGURE 1 | The visual system undergoes a shift in integration time as it 
shifts from daylight to nightlight (photopic to scotopic) conditions. In 
daylight conditions, the system favors short integration times (high temporal 
frequencies); in nightlight conditions, it favors long integration times (low 
temporal frequencies). See Materials and Methods for light intensities for 
the two conditions. (A) The shift, measured at the behavioral level using 
drifting grating stimuli. (B) The shift, measured at the ganglion cell level, using 

three different kinds of stimuli: drifting gratings, white noise, and natural 
scenes. Behavioral performance was measured as contrast sensitivity, averaged 
across animals, and peak-normalized (n = 5, mean ± SEM). Ganglion cell 
performance in (B, left) was measured as fi rst harmonic response, averaged 
across cells, and peak normalized; ganglion cell performance in (B, middle and 
right) was measured as information, normalized for equal area (n = 20, 
mean ± SEM).

1The integration time of the photoreceptor refers to the length of time over which 
it responds to light (i.e., the width of the impulse response).
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is no  shortening of the photoreceptor integration time, and the 
system shifts to the observed long integration times (low temporal 
frequency responses) (Figure 2B, right).

The strength of the model is that it derives from well-established 
facts – specifi cally, that the integration time of photoreceptors (both 
rods and cones) changes (becomes extended) as an animal moves 
from day to night conditions (Kleinschmidt and Dowling, 1975; 
Daly and Normann, 1985; Schneeweis and Schnapf, 2000), that the 
strength of the horizontal cell signal changes (decreases) as the con-
ditions move from day to night (Teranishi et al., 1983; Yang and Wu, 
1989a), and, fi nally, that there is a change in the degree of horizontal 
cell coupling (an increase) with the change from day to night con-
ditions (Dong and McReynolds, 1991; Xin and Bloomfi eld, 1999; 
Weiler et al., 2000). Put together, these facts lead to a mechanism 
for shifting the circuit’s behavior. The novelty is the use of gap 
junction coupling as a shunting device (see Discussion) – the 
model makes use of the fact that coupling produces a shunt, and, 
therefore, has the capacity to weaken or inactivate a cell class. By 
casting the coupling as a shunting mechanism, the actions of the 
components of the circuit – the photoreceptors, the bipolar cells, 
the horizontal cells, and the light-dependent change in horizontal 
cell coupling – fall into place to explain how the system can shift 
from one state to another. A formalized version of the model is 
given in Appendix 2.

We test the proposal in Figure 3. To do this, we used a trans-
genic mouse line that cannot undergo horizontal cell coupling 
(Hombach et al., 2004; Shelley et al., 2006) (Figure 3A). These 

mice lack the gene for the gap junction specifi c to the horizontal 
cells, connexin 57 (Cx57), so their horizontal cells are locked into 
the uncoupled state. We emphasize that this particular gap junction 
gene is not expressed anywhere in the nervous system besides the 
horizontal cells (Hombach et al., 2004); thus, the elimination of 
this gene produces a very specifi c perturbation. Figure 3B shows 
the temporal integration curves from wild-type and knockout mice 
in the night condition, measured both at the behavioral level and 
at the ganglion cell level with the three stimuli used in Figure 1. 
In all cases, the shift to long integration times was impaired, that 
is, the normal increase in amplitude at low frequencies, and the 
normal decrease in amplitude at high frequencies did not occur 
(Figure 3B) or was signifi cantly hindered (Figure 3C) [p < 10−4 
for the behavior, p < 10−3 for the ganglion cell responses, t-test 
comparing the centers of mass of the frequency response curves 
for the night (scotopic) condition with those for the day (pho-
topic) condition].

The robustness of the results is demonstrated in Figure 3D. 
Using data that allow a direct comparison to be made between 
behavioral and ganglion cell results, specifi cally, where the results 
were obtained using the same stimuli – the drifting sine wave 
 gratings – we show the complete set of individual responses. The 
left side of Figure 3D shows the behavioral performance for all 
animals under day and night conditions, and the right side shows 
the performance for all ganglion cells under day and night con-
ditions. As shown in the fi gure, by day, the performance of the 
knockout closely matches that of the wild-type, but at night, the two 

FIGURE 2 | The circuit that controls visual integration time can be shifted 
from one state to another by a change in the gap junction coupling of one 
of its cell classes. (A) Visual integration time is shaped, in large part, by a 
negative feedback loop in the outer retina: photoreceptors send signals forward 
to both bipolar cells and horizontal cells; the horizontal cells then, in turn, provide 
negative feedback to the photoreceptors (Baylor et al., 1971; Kleinschmidt and 
Dowling, 1975; Dowling, 1987). Note that the fi gure shows only one type of 
horizontal cell and a generic photoreceptor; this is consistent with our model 
system, the mouse retina, which has only one type of horizontal cell, and it acts 
on both rods and cones (Peichl and González-Soriano, 1994; Trumpler et al., 2008; 

Babai and Thoreson, 2009). (B, left) In daylight conditions, horizontal cell feedback 
is strong. This cuts photoreceptor integration time short, and the system shifts to 
high temporal frequency responses. At night (B, right), when the system needs 
longer integration times, a reduction in horizontal cell feedback is needed. The 
opening of the gap junctions provides a mechanism for achieving this. It produces 
a shunting of horizontal cell current that weakens or inactivates the horizontal 
cells. The photoreceptor integration time then becomes longer, and the system 
shifts to low temporal frequency responses. The change in the gap junction 
coupling acts, effectively, as a knob to regulate the strength of the negative 
feedback. (See Appendix 2 for a formalized version of the model.)
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FIGURE 3 | When horizontal cell coupling is prevented, the shift to long 
integration times is impaired at both the behavioral level and the ganglion 
cell level. (A) Horizontal cell coupling in a retina from a Cx57 knockout versus 
horizontal cell coupling in a retina from a wild-type sibling control. In each retina, 
a single horizontal cell was injected with dye, and the extent of dye spread was 
measured for >1 h. Consistent with the results in (Hombach et al., 2004; Shelley 
et al., 2006; Dedek et al., 2008), coupling is abolished. Scale bar = 50 µm. (B) 
Behavioral performance curves measured from Cx57 knockouts and wild-type 
sibling controls under the night condition. The shift to long integration times (low 
temporal frequency responses) is signifi cantly impaired (p < 10−4). (C) Ganglion 
cell performance curves measured from Cx57 knockout animals and wild-type 
sibling controls under the night condition. As in (B), the shift to long integration 

times is signifi cantly impaired (p < 10−3). All measurements were taken as in 
Figure 1; for the behavioral experiments, n = 5 wild-type mice, 5 knockout mice, 
and for the ganglion cell measurements, n = 20 cells from wild-type retinas, 24 
cells from knockouts. (D) Left, performance for all animals shown individually. In 
daylight conditions, the performances of the knockouts are essentially identical 
to those of the wild-type animals. In night conditions, they diverge: the wild-type 
animals make the shift toward longer integration times, while the knockouts do 
not. Right, performance for all ganglion cells. Similar to plots on the left, the 
performances of the ganglion cells from the knockout and wild-type animals are 
the same in daytime conditions but diverge at night: the ganglion cells from the 
wild-type animals undergo the shift toward longer integration times, while those 
from the knockout are left behind.
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performances diverge. At night, the wild-type makes the expected 
shift toward longer integration times, but the knockout – which 
lacks horizontal cell coupling – does not.

DISCUSSION
The nervous system faces a shifting problem. It has to shift its mode 
of operation from one state to another as it faces new demands 
(i.e., it has to shift its attention, its contrast sensitivity, its temporal 
integration time, etc.). How it achieves this isn’t clear. Here we 
examined a case where it was possible to obtain an answer, and the 
answer was intriguingly simple: the system produced the shift by 
changing the gap junction coupling of one of its cell classes. The 
coupling acted as a way to inactivate the cell class, and, by doing 
so, change the system’s behavior.

The fi ndings are both surprising and exciting: surprising, because 
a seemingly complicated problem was solved with a simple mecha-
nism, and exciting, because the mechanism is present not just in 
the retina, but throughout the brain, suggesting it might general-
ize to other network shifts. To be specifi c, gap junction coupled 
networks are present in visual cortex, motor cortex, frontal cortex, 
hippocampus, cerebellum, hypothalamus, and striatum, among 
many other places (Galarreta and Hestrin, 1999, 2001; Bennett 
and Zukin, 2004).

Furthermore, a regulator is also in place. In the retina, the regu-
lator is a neuromodulator, dopamine: Light triggers the release 
of dopamine, which closes gap junctions via second messengers 
(McMahon et al., 1989; Dong and McReynolds, 1991; Weiler et al., 
2000). Dopamine, as well as noradrenaline and histamine, have 
been found to open and close gap junctions in several of these brain 
areas (Cepeda et al., 1989; Yang and Hatton, 2002; Onn et al., 2008; 
Zsiros and Maccaferri, 2008).

The possibility for generalization to other networks is substantial 
and straightforward to see:

(1) While the results in this paper show the mechanism in non-
spiking neurons, it readily applies to spiking cells as well and thus 
to networks in the brain. This is because the mechanism invol-
ves only basic biophysics – a change in cells’ input resistance. 
Briefl y, if a cell class is coupled by gap junctions, it has the poten-
tial to have its input resistance turned up and down. When the 
junctions are closed, the input resistance of the cells is high. This 
makes the cells more responsive to incoming signals and allows 
them to send strong signals out. When the junctions are opened, 
the input resistance drops. This makes the cells less responsive to 
incoming signals and allows them to send out only weak signals. 
In the case of spiking neurons, the signals can become so weak 
that the probability of fi ring can be reduced essentially to 0; i.e., 
the cells can be effectively turned off.

(2) The mechanism has the potential to affect many types of 
network operations. While the one presented in this paper was 
a negative feedback loop – the gap junction coupling provided 
a way to turn the feedback on or off (or up or down) – one can 
readily imagine many other operations that could be altered 
by turning the activity of a pivotal cell class in a network on or 
off, such as alterations in feedforward signaling, lateral signa-
ling, recurrent signaling (e.g., the stabilization of attractors), 
to name a few.

(3) The timescale over which the mechanism operates, that is, the 
timescale over which the change in coupling occurs – a scale 
of seconds (McMahon et al., 1989; McMahon and Mattson, 
1996) – is consistent with many state changes, such as chan-
ges in arousal, changes in attentional set, shifts in decision-
making strategies, e.g., shifts in the weighting of priors, shifts 
to speed versus accuracy (Standage and Paré, 2009), allowing 
it to mediate many behavioral processes.

(4) Since the cellular machinery for regulation of gap junction 
conductances is in place, the mechanism can evolve via a 
change in a single gene, a gene for a gap junction protein. 
This makes it an easy gain from an evolutionary standpoint. 
A powerful selective advantage – the ability to shift a network 
from one state to another – could be rapidly acquired, and, 
in addition, acquired independently in multiple networks. 
(For a review of gap junction proteins, see Bennett and 
Zukin, 2004.)

Figure 4 emphasizes this latter point, that this gap junction 
coupling mechanism offers a single gene solution to a seemingly 
complicated set of problems, network state changes. To address this, 
we used, again, the horizontal cells, as an example. Specifi cally, we 
took the behavioral results from the wild-type and Cx57 knockout 
animals and imposed them on a predator-detection scenario. We 
fi lmed an approaching predator, restricting the movies to the tempo-
ral frequencies available to each genotype, as indicated in Figure 3D 
left. The results are shown in Figure 4. In day conditions the movies 
for the two genotypes are essentially the same; the predator can 
be seen when it is moving, i.e., when the movie is dominated by 
high temporal frequencies, and when it is still, i.e., when the movie 
is dominated by low temporal frequencies. In contrast, in night 
conditions, the movies diverge. In the movie fi ltered through the 
frequencies visible to the wild-type animal, the predator remains 
visible even when it is still; this is consistent with the wild-type’s 
ability to shift to low temporal frequencies. In the movie fi ltered 
though the frequencies visible to the knockout, the predator disap-
pears. Only a ghost is present (see Supplementary Material for the 
complete movies). The wild-type’s maintenance of visual contact 
with the predator gives it an obvious selective advantage.

ESTIMATING THE EXTENT TO WHICH INPUT RESISTANCE CAN BE 
REDUCED BY COUPLING
As discussed above, changes in coupling can act as a dial to turn 
the input resistance of a cell up or down. We can estimate the 
range of the dial as follows: The standard experimental measure of 
coupling is the length constant (Xin and Bloomfi eld, 1999; Shelley 
et al., 2006). Xin and Bloomfi eld measured the length constant of 
horizontal cells under several scotopic and photopic light levels and 
found the maximal difference to be a factor of ∼3. The maximal 
difference occurred when the scotopic light level was 1–1.5 log units 
above rod threshold and the photopic light level was >3 log units 
above rod threshold, levels that we matched for this paper. Since, 
for 2-D coupling (Lamb, 1976), input resistance is inversely propor-
tional to the square of the length constant (detailed in Materials and 
Methods and Appendix 2), the input resistance of the horizontal 
cells at the scotopic light level is estimated to be about a factor of 
9 less than that at the photopic light level.

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Frontiers in Computational Neuroscience www.frontiersin.org March 2010 | Volume 4 | Article 2 | 186

Pandarinath et al. A mechanism for network switching

In the general case, as with horizontal cells, the extent to which 
gap junction coupling can shunt a cell is the ratio of the total 
conductances of the gap junctions that can be modulated, to the 
cell’s baseline (“leak”) conductances. Many factors – including the 
cell’s geometry and the complement and distribution of channels 
and gap junctions – combine to determine this ratio. The exam-
ple of horizontal cells shows that this can be as much as an order 
of magnitude.

LINKING A BEHAVIOR TO A NEURAL MECHANISM
Following a behavioral change down to the mechanism that under-
lies it is often not possible experimentally. It was possible here 
because of a confl uence of factors: the relevant network could be 
identifi ed and its component cell classes are known (as shown in 
Figures 1 and 2), and the protein around which the mechanism 
revolves, the particular gap junction protein, Cx57, is present 
only in one cell class (the horizontal cells) and not elsewhere in 
the brain (Hombach et al., 2004), allowing the circuit to be selec-
tively disrupted. The signifi cance of the latter is that it allowed a 
direct connection to be made between the disruption in the cir-
cuit and the disruption in the behavior, since no other circuits 
were perturbed.

POTENTIAL ALTERNATIVE MODELS FOR THE SHIFT TOWARD LOW 
TEMPORAL FREQUENCIES
As an animal moves from a light-adapted to a dark-adapted state, 
several changes occur in the retina other than the change in hori-
zontal cell coupling via the Cx57 gap junctions. How can we be 
sure that our result – the shift toward low temporal frequencies – is 
not produced by these other changes? Here we systematically go 
through them.

The most well known change is the shift from cone to rod 
photoreceptors. This can’t account for our results, because the 
knockout undergoes the same cone-to-rod shift, and it doesn’t 
undergo the shift to low frequencies (Figure 3). In addition, it’s 
well known that the cone-to-rod shift affects high frequencies, 
not low. We show this in Appendix 1, Figure 5, specifi cally for our 
species, the mouse. As shown in the fi gure, the frequency response 
curves for the rod and cone are both fl at below 0.5 Hz, meaning 
there is no frequency-dependent change in this region. In contrast, 
our results show a selective boost at frequencies below 0.5 Hz; that 
is, the system shifts to favor low frequencies. The shift from cones 
to rods can’t account for this.

Another change that occurs during dark adaptation is rod–cone 
coupling (see Ribelayga et al., 2008, for rod–cone coupling as a 
result of circadian rhythms; also Yang and Wu, 1989b; Wang and 
Mangel, 1996; Trumpler et al., 2008). Rod–cone coupling, though, 
is mediated by gap junctions formed by Cx36, Cx35, and Cx34.7 
(reviewed in Li et al. (2009)), not Cx57 (Janssen-Bienhold et al., 
2009). Cx57 is not present in rods and cones (Hombach et al., 2004; 
Janssen-Bienhold et al., 2009) and thus the knockout is not per-
turbing these couplings.

Similarly, gap junction coupling in the inner retina likely plays a 
role in dark adaptation, since the AII amacrine cells of the rod pathway 
are coupled by gap junctions (Bloomfi eld et al., 1997). However, Cx57 
is not a gap junction in these cells (Janssen-Bienhold et al., 2009), so 
changes in inner retinal coupling can not account for our results.

FIGURE 4 | The selective disadvantage of a Cx57 gene loss. (A) Movie of 
an approaching predator, fi ltered through the frequencies available to the wild-
type animal, as provided by Figure 3D left. In day conditions, the predator can 
be seen both when it is moving (when the movie is dominated by high 
temporal frequencies), and when it is still (when the movie is dominated by 
low temporal frequencies). In night conditions, the signal is weaker, but the 
predator can still be seen both when moving or still. The visibility in the still 
condition is possible because of the shift to low temporal frequencies that 
occurs in the dark. The traces below the fi gures provide the intensity of each 
pixel in a horizontal slice through the image; the location of the slice is 
indicated by the arrow. (B) Same movie, fi ltered through the frequencies 
available to the knockout animal. In night conditions, the predator vanishes, 
see trace below fi gures. The wild-type’s continued visual detection of the 
predator gives it an obvious selective advantage. (For the frequencies available 
to each genotype, see Figure 3D left: specifi cally, the range of frequencies 
seen by the knockout at night (red curves in 3D bottom left) is a subset of the 
range seen by the wild-type (blue curves); the lack of low frequency sensitivity 
in the knockout (below ∼0.3 Hz) causes the predator, when it is still, to 
disappear. Note that the temporal fi ltering was applied to the entire movie; 
only a representative frame from each fi ltered version is shown here. For the 
complete fi ltered versions, see Supplementary Material).
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Recent reports have indicated that some gap junctions act as 
hemichannels (Kamermans et al., 2001; Shields et al., 2007). If 
Cx57 acted in this fashion, it could provide for ephaptic transmis-
sion of a feedback signal. However, the possibility that Cx57 is a 
hemichannel has been examined at the ultrastructural level, and 
ruled out (Janssen-Bienhold et al., 2009). Furthermore, feedback to 
photoreceptors has been shown to be intact in the Cx57 knockout 
by two groups (Shelley et al., 2006; Dedek et al., 2008).

Finally, a standard concern with most or all knockout experi-
ments is that knocking out a gene could lead to secondary devel-
opmental effects. While we can’t completely rule this out, there is 
no evidence for altered development in the Cx57 knockout: retinal 
anatomy appears unperturbed (Hombach et al., 2004; Shelley et al., 
2006), temporal tuning by day, as measured at the ganglion cell and 
behavioral level, remains intact, i.e., is the same as in wild-type 
(Figure 3D), and spatial processing, also measured at the ganglion 
cell and behavioral level, remains intact as well (Dedek et al., 2008). 
While compensatory effects are possible, the likelihood that they 
would lead to such close matches along all these axes is very low.

Thus, while cone-to-rod shifts, photoreceptor coupling, and 
other factors contribute to dark adaptation, they can’t account for 
the results presented here, and the probability that the results could 
be accounted for by developmental effects, as mentioned above, 
is very low.

One issue that we can’t completely rule out, though, is the fol-
lowing: even though horizontal cell feedback to photoreceptors 
is known to be present and can account for our results, we can’t 
completely rule out the possibility that the shunting of horizontal 
cell current causes the shift in tuning through some other action. 
For example, if horizontal cells were to act as a mediator between 
multiple circuits with different kinetics (e.g., different photore-
ceptor readout circuits), then the shunting of the horizontal cell 
current could shift tuning by causing a switch from one circuit to 
another. But note that any alternative model must be consistent with 
the known constraints: (a) the difference between wild-type and 
knockout is present under scotopic conditions (Figure 3), where all 
responses are rod-driven, (b) the tuning shift involves low frequen-
cies, (c) the mouse retina has only one kind of horizontal cell, and 
it serves both kinds of photoreceptors, and (d) connexin-57 is only 
involved in horizontal cell-to-horizontal cell coupling. We chose 
the horizontal cell feedback model shown in Figure 2 because it is a 
parsimonious model that satisfi es these constraints and is consistent 
with current known actions of horizontal cells.

We conclude by mentioning that in one species (the rabbit), 
when light levels are much lower, more than an order of mag-
nitude below the scotopic level used in this study, gap junctions 
close (Xin and Bloomfi eld, 1999) with no corresponding reversal 
of the shift in integration times (Nakatani et al., 1991). This sug-
gests that in this extreme range, other mechanisms must take over, 
mechanisms likely intrinsic to the photoreceptors, as described in 
Tamura et al. (1989).

RELATION OF CX57 TO SPATIAL PROCESSING IN THE DARK- AND LIGHT-
ADAPTED CONDITIONS
Horizontal cells provide negative feedback to photoreceptors 
(Werblin and Dowling, 1969) and antagonistic feedforward to 
bipolar cells (Yang and Wu, 1991), and it has long been thought 

that they contribute to the receptive fi eld surround. One might 
expect, therefore, that eliminating coupling in these cells would 
alter spatial processing as well as temporal processing as the retina 
shifts from day to night vision. A previous study, though, shows 
that spatial tuning remains normal in the Cx57 knockout (Dedek 
et al., 2008). The likely basis for this is the fact that the surround 
is generated by circuits in more than one layer – specifi cally, by 
amacrine cell circuits in the inner retina, as well as by horizontal 
cells in the outer retina (Cook and McReynolds, 1998; Taylor, 1999; 
Roska et al., 2000; Flores-Herr et al., 2001; McMahon et al., 2004; 
Sinclair et al., 2004). As mentioned in Dedek et al. (2008), the lack 
of a change in spatial tuning in the knockout implies that inner 
retinal mechanisms dominate for the problem of adjusting spatial 
tuning to different light-adaptation levels.

COUPLING AS A MECHANISM TO PRODUCE SYNCHRONY
We conclude by mentioning that gap junction coupling has also 
been proposed as a mechanism to create synchronous fi ring among 
neurons, e.g., for creating oscillations (for review, see Bennett and 
Zukin, 2004). The idea presented in this paper – that changes in cou-
pling serve as a way to inactivate a cell class or reduce its impact – is 
not mutually exclusive with this proposal. This is because the effect 
of coupling depends on the state of the cell. As mentioned above, 
when a cell becomes coupled to other cells, its input resistance 
drops. For spiking neurons, this means the probability of reaching 
threshold and fi ring is reduced. If, however, the cell receives strong 
enough input to allow it to cross threshold, its fi ring can produce 
synchronous spikes in coupled cells. Thus, gap junction coupling 
can potentially mediate more than one network operation.

MATERIALS AND METHODS
ANIMALS
Generation of the Cx57-defi cient mouse line was previously reported 
(Hombach et al., 2004). Briefl y, part of the coding region of the Cx57 
gene was deleted and replaced with the lacZ reporter gene (Hombach 
et al., 2004). Cx57-defi cient mice (Cx57lacZ/lacZ) and wild-type (lit-
termate) controls aged 2–4 months were used for all experiments. 
After each behavioral test or recording, the genotype of the retina 
was confi rmed with staining for β-galactosidase activity and PCR as 
described (Hombach et al., 2004). All experiments were conducted in 
accordance with the institutional guidelines for animal welfare.

THE DEGREE OF HORIZONTAL CELL COUPLING AND LIGHT INTENSITY
Light intensities (photopic and scotopic) were chosen to span the 
range where changes in horizontal cell coupling are at, or are close 
to, their largest. Xin and Bloomfi eld (1999) showed that coupling 
reaches its maximum between 1 and 1.5 log units above rod thresh-
old and its minimum at or above rod saturation (estimated at 3 log 
units above rod threshold). For the behavior experiments, scotopic 
intensity was 1.4 × 10−4 cd/m2, which is between 0.9 and 2.1 log units 
above rod threshold, with mouse rod threshold estimated at 1 × 10−6 
to 1.8 × 10−5 cd/m2 (Umino et al., 2008; G.T. Prusky, Personal com-
munication). Photopic intensity, 142 cd/m2, was more than 3 log 
units above rod saturation (Xin and Bloomfi eld, 1999). The light 
source was Dell, 2007FPb, Phoenix, AZ, USA; neutral density fi lters 
were used to attenuate the monitor’s output to the desired photopic 
and scotopic levels.
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is a lower bound on the input resistance ratio, since, as mentioned 
above, Shelley et al. measured length constants in knockout and 
wild-type only at a single light level.

Note that the 27% decrease in R
m

 has an additional implica-
tion: the observed change in temporal tuning that results from 
the change in coupling constitutes a lower bound, as the decrease 
in R

m
 would have the effect of reducing the difference between 

knockout and wild-type.

BEHAVIORAL TESTING USING A VIRTUAL OPTOKINETIC SYSTEM
Behavioral responses were measured using the Prusky/Douglas vir-
tual optokinetic system (Prusky et al., 2004; Douglas et al., 2005). 
Briefl y, the freely moving animal was placed in a virtual reality 
chamber. A video camera, situated above the animal, provided live 
video feedback of the testing arena. A pattern was projected onto 
the walls of the chamber in a manner that produced a drifting 
sine wave grating of fi xed spatial frequency when viewed from 
the animal’s position (0.128 cycles/degree, following the stimulus 
protocol of Umino et al., 2008). A drifting grating of a pre-selected 
temporal frequency at 100% contrast appeared, and the mouse was 
assessed for tracking behavior, as in Prusky et al. (2004). Grating 
contrast was systematically reduced until no tracking response was 
observed. The reciprocal of this threshold contrast was taken as the 
contrast sensitivity.

STIMULATING AND RECORDING GANGLION CELL RESPONSES
Three stimuli were used: drifting sine wave gratings, a binary ran-
dom checkerboard (white noise), and a spatially uniform stimulus 
with natural temporal statistics (natural scene). The sine wave 
gratings were presented at eight temporal frequencies, ranging 
from 0.15 to 6 Hz, all with a spatial frequency of 0.039 cycles/
degree. This spatial frequency was lower than the one used in the 
behavioral experiments, to ensure robust responses at the scotopic 
intensity. Each temporal frequency was presented for 2 min. The 
white noise stimulus was a random checkerboard at a contrast 
of 1, in which the intensity of each square (9° × 9° in mouse) 
was either white or black, randomly chosen every 0.067 s (large 
checkers were chosen to ensure stimulation of the large ganglion 
cell receptive fi elds at scotopic intensities, as indicated in Dedek 
et al., 2008). The natural scene stimulus was a spatially uniform 
movie whose intensities were taken from a time series of natural 
intensities (van Hateren, 1997), resampled for presentation at a 
0.100-s frame period. This movie was 2 min long and presented 
10 times, interleaved with a 2-s gray (mean intensity) screen. 
Measurements always started at the scotopic intensity. After all 
three stimuli were presented, the light intensity was increased. 
After 20 min of adaptation to the photopic intensity, the stimuli 
were presented as above.

Extracellular recordings made from central retina using a multi-
electrode array, as described previously (Nirenberg et al., 2001; 
Sinclair et al., 2004). Retina pieces were approximately 1.5–2 mm 
across, which corresponds to 4.5–6 horizontal cell length constants 
under scotopic conditions and 15–20 under photopic (as indicated 
above, there is an estimated factor of 3 difference in length con-
stant between the scotopic and photopic conditions used here, with 
the photopic condition taken from Shelley et al. (2006) Figure 7B, 
which gives a wild-type light-adapted length constant). Spike 

For the electrophysiology experiments, which were carried out 
with a different light source (Sony, Multiscan CPD-15SX1, New 
York, NY, USA), the intensities were, for the scotopic, 4 × 10−4 cd/m2, 
which is between 1.3 and 2.6 log units above rod threshold, and, 
for the photopic, 23 cd/m2, which is still >3 log units above rod 
saturation. As above, neutral density fi lters were used to attenuate 
the monitor’s output to the desired photopic and scotopic levels.

THE RELATION OF HORIZONTAL CELL INPUT RESISTANCE TO COUPLING 
FOR SCOTOPIC VERSUS PHOTOPIC CONDITIONS AND FOR WILD-TYPE 
VERSUS KNOCKOUT ANIMALS
As mentioned in the Discussion, the standard experimental measure 
of horizontal cell coupling is the length constant (Xin and Bloomfi eld, 
1999; Shelley et al., 2006). Xin and Bloomfi eld measured length 
constants physiologically in the rabbit (via the dependence of the 
voltage response on distance from a light stimulus) under different 
scotopic and photopic conditions and found the maximal scotopic-
to-photopic ratio to be ∼3. (As indicated in the previous section, the 
conditions used in this paper were matched to those that produce 
the maximal ratio.) Given this length constant ratio and the relations 
below, we can fi nd the quantity we need, the input resistance ratio due 
to gap junction coupling. As given in Xin and Bloomfi eld (1999),

λ = R

R
m

s

,
 

(1)

where λ is the length constant, R
m

 is the membrane resistance, and 
R

s
 is the junctional resistance (also referred to as the sheet resist-

ance). Rearranging in terms of R
s
 gives

R
R

s
m=

λ2
.

 
(2)

For a 2-D cable and a point source, the input resistance, Z, is 
proportional to R

s
. This follows from Eq. 2 of Lamb (1976) (see 

Appendix 2 Eqs 14–19 for details). Thus, it follows from Eq. 2 
that

Z
R∝ m

λ2
.

 
(3)

This indicates that a 3-fold greater value of λ, as was measured 
by Xin and Bloomfi eld, corresponds to a 9-fold smaller value of Z, 
assuming that R

m
 remains the same in the scotopic and photopic 

conditions. Bloomfi eld notes that R
m

 may actually be higher in the 
photopic, indicating that a factor of 9 may be an underestimate.

The same analysis can be used to determine the input resistance 
ratio for the knockout and wild-type mouse using the measure-
ments of Shelley et al. (2006), which were taken in these animals. 
These measurements, however, were taken only at one light level, 
and thus can provide only a lower bound on the ratio. Shelley et al. 
report a 2.3-fold greater value for λ in wild-type as compared to 
knockout, which, following Eq. 3, corresponds to a 2.32 = 5.29-fold 
lower value for Z. It should be noted that R

m
, as measured in isolated 

horizontal cells, is 27% lower in the knockout than the wild-type. 
When this is taken into account in Eq. 3, the wild-type-to-knockout 
ratio for Z is (1 − 0.27)/(1/2.32) = 3.86. We emphasize again that this 
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trains were recorded and sorted into units (cells) using a Plexon 
Instruments Multichannel Neuronal Acquisition Processor (Dallas, 
TX, USA), as described previously (Nirenberg et al., 2001). 

Only ON ganglion cells were used, since the optomotor response 
in rodents is driven exclusively by the ON pathway (Dann and Buhl, 
1987; Giolli et al., 2005). With respect to cell selection, only cells 
with readily detectable (by eye) spike triggered averages (STAs) were 
included in the data set; this corresponds to cells whose STA in the 
center checker of the receptive fi eld was approximately 1.5 times 
above background.

DATA ANALYSIS
Temporal tuning curves were created from ganglion cell responses to 
drifting sine wave gratings using standard methods (Enroth-Cugell 
and Robson, 1966; Purpura et al., 1990; Croner and Kaplan, 1995). 
Briefl y, for each grating, the fi rst harmonic of the cell’s response, 
R(f), was calculated as follows:

R
L

i t j
j

( ) exp ,f
1

f= − ∑ 2π
 

(4)

where f is the temporal frequency of the drifting sine wave grating 
(cycles/s), L is the duration of the stimulus (s), which was always 
an integer multiple of 1/f, and t

j
 is the time of the jth spike of 

the cell’s response to the given grating. For averaging across cells, 
responses were weighted by the reciprocal of the peak sensitivity, 
so that each cell’s tuning curve contributed approximately equally 
to the average, independent of its absolute sensitivity.

Mutual information was estimated between the input and 
responses (for the white noise, the input was the stimulus inten-
sity of the checkerboard square that produced the largest response 
for a given cell; for the natural scene, the input was the full-fi eld 
intensity). Information was estimated at each frequency using the 
coherence rate, following van Hateren and Snippe (2001):

I R( , ) log ( ) ,S f= − −( )2
21 γ

 
(5)

where γ(f) is the coherence between stimulus and response at tem-
poral frequency f. Coherence was estimated using the multi-taper 
method [Chronux library for Matlab (Mitra and Bokil, 2007), avail-
able at http://chronux.org], using effective bandwidths of 0.27 Hz 
(white noise) and 0.33 Hz (natural scene). For averaging across 
cells, information curves were weighted by the reciprocal of their 
areas, so that each cell’s information curve contributed approxi-
mately equally to the average. Note that the above estimation of 
information is only rigorously correct for a Gaussian linear chan-
nel, and is necessarily an underestimate of the true information. 
However, our focus is not on the amount of information per se, 
but on its frequency-dependence.

FILTERED PREDATOR MOVIES
The “predator” movie, taken with a handheld digital cam-
era (Casio, Exilim EX-Z750, Dover, NJ, USA), was fi lmed at 
33 frames/s. The complete movie was fi ltered for each genotype, 
according to the behavioral data in Figure3D left: 0.1–6 Hz for 
the wild-type photopic, the same for knockout photopic, 0.16–
3.2 Hz for wild-type scotopic, and 0.38–3.13 Hz for knockout 

scotopic. Representative frames from each fi ltered version are 
shown in Figure 4; the complete fi ltered versions are shown in 
Supplementary Material.

APPENDIX 1:
THE FREQUENCY RESPONSE DIFFERENCE BETWEEN THE RODS AND 
CONES LIES IN THE HIGH FREQUENCIES, NOT THE LOW
The shift to low temporal frequencies cannot be accounted for by 
the shift from cones to rods, as the cone-to-rod shift affects the high 
frequencies, not the low; see cone and rod impulse responses in Luo 
and Yau (2005), Nikonov et al. (2006). Here we show this explicitly 
in the model system we are using, the mouse. Figure 5A shows 
the impulse responses of the two photoreceptors, and Figure 5B 
shows the frequency responses, the latter generated by the Fourier 
transformation of the impulse responses. As shown in the fi gure, 
the frequency response difference lies in the high frequencies.

APPENDIX 2:
FORMAL TREATMENT OF THE MODEL IN FIGURE 2: THE EFFECT OF GAP 
JUNCTION COUPLING ON HORIZONTAL CELL FEEDBACK TO THE 
PHOTORECEPTOR
Section A formalizes the model of the photoreceptor–horizontal 
cell circuit to show how changing the strength of the horizontal 
cell feedback shapes the photoreceptor’s temporal tuning, and, ulti-
mately, the ganglion cell’s temporal tuning. Section B then shows 
how a change in gap junction coupling modulates the strength of 
the horizontal cell feedback. Section C describes how these con-
siderations apply to spatial confi gurations of the stimulus, and 
Section D briefl y discusses how these considerations apply to other 
network geometries.

Section A
We start by briefl y reiterating the model shown in Figure 2. As men-
tioned in the main text, it builds on the well-known negative feed-
back between the horizontal cell and the photoreceptor, whereby 
the horizontal cell sends a signal to the photoreceptor that shortens 
the latter’s integration time (Baylor et al., 1971; Kleinschmidt and 
Dowling, 1975; see also Smith, 1995).

To understand how the photoreceptor is able to shift its integra-
tion time from short to long as the retina is shifted from a light-
adapted to a dark-adapted state, we proposed the following: In the 

FIGURE 5 | The frequency response difference between the rods and 
cones lies in the high frequencies, not the low. (A) Impulse responses of 
the two photoreceptors, reproduced from Nikonov et al. (2006) for cone and 
Luo and Yau (2005) for rod. (B) Frequency responses of the two 
photoreceptors, generated by Fourier transforming the impulse responses.
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light-adapted condition, the gap junctions of the horizontal cells 
close. This makes the horizontal cell feedback signal strong and 
keeps the photoreceptor integration time short. In the dark, the gap 
junctions open. This causes a shunting of horizontal cell current, 
which reduces horizontal cell feedback and shifts the photorecep-
tors to long integration times.

The proposal is based on three established facts – that the 
integration time of photoreceptors increases as the retina moves 
from light-adapted to dark-adapted conditions (Kleinschmidt and 
Dowling, 1975; Daly and Normann, 1985; Schnapf et al., 1990), that 
the strength of the horizontal cell feedback signal decreases as the 
retina moves from the light-adapted to the dark-adapted condition 
(Teranishi et al., 1983; Yang and Wu, 1989a) and that the degree of 
horizontal cell coupling increases as the retina moves from the light 
adapted to the dark-adapted condition (Dong and McReynolds, 
1991; Xin and Bloomfi eld, 1999; Weiler et al., 2000). Taken together, 
these facts led to a proposal for how the circuit shifts its behavior. 
The novelty was the view of gap junction coupling as a shunting 
device, that is, a mechanism that can turn up or down the activity 
of a cell class, in this case, the horizontal cells. With this view, the 
three facts can account for the shift from one state to another.

In the main text, we proposed this schematically. Here we for-
malize it and use the formalized model to determine the feedback 
strength required to produce the observed state change.

We start with the well-known data of Schneeweis and Schnapf 
(2000). The data are measurements of photoreceptor responses 
across a range of light-adaptation levels and show the shift in inte-
gration time that occurs as the retina moves from the dark-adapted 
state to states of increasing levels of light-adaptation. We use the 
model to determine the change in feedback strength needed to pro-
duce the changes in photoreceptor integration time in Schneeweis 
and Schnapf (2000) and, ultimately, to produce the changes in 
ganglion cell integration time shown in this paper. (In Section B 
we show that the changes in feedback strength can be accounted 
for by the differences in horizontal cell coupling that occur in the 
dark- and light-adapted states.)

With these goals in mind, we use a linear systems approach. We 
do this for simplicity and generality, and because it allows us to 
focus on the essential features that lead to the shifts.

To construct the linear model, we denote the transfer function 
between light and the photoreceptor response in the absence of the 
feedback by %P( )ω , the feedback transfer function (photoreceptor 
output to horizontal cell, and back to photoreceptor) by %F( )ω , and 
the strength of the feedback by g. With this setup, the photorecep-
tor’s output, %L g( , ),ω  is given by the standard feedback formula 
(Oppenheim et al., 1997)

%
%

%L g
P

gF
( , )

( )

( )
.ω ω

ω
=

+1
 (6)

To assign physiological values to the quantities in Eq. 6, we use, 
as mentioned above, the measurements of Schneeweis and Schnapf 
(2000), who present photoreceptor responses in the dark-adapted 
state (i.e., the no-feedback or essentially-no-feedback state, g = 0) 
through several light-adapted states (i.e., various levels of feedback 
up to g = 1) (Figure 6).

We determine the photoreceptor transformation P directly from 
Schneeweis and Schnapf ’s dark-adapted data, since when g = 0, 
P = L (see Eq. 6). Specifi cally, we use their fi t for P(t), which is a 
phenomenological fi t, given by:

P t w t At e w t Ben t t( ) ( ) ( )/ /= −( ) +− −1 1 2τ τ , where 

w t
t

m( )
/

,=
+ ( )

1

1 3τ
 (7)

and A = 3999, B = 1.68, τ
1
 = 0.063 s, τ

2
 = 0.646 s, τ

3
 = 0.200 s, n = 3, 

and m = 4. The corresponding transfer function %P( )ω  is then deter-
mined from the impulse response P(t) by Fourier transformation. 
Both P(t) and %P( )ω  are shown in Figure 7A.

We then determine the feedback transformation F from the 
light-adapted measurements of Schneeweis and Schnapf. Since F 
was not measured directly, we proceed as follows. As mentioned 
above, F is the net result of two synapses in series: photoreceptor 
to horizontal cell, and horizontal cell back to photoreceptor. For 
simplicity, we use the same impulse response f(t) for each synapse, 
and we use a difference of exponentials, a standard  synaptic impulse 
response (Destexhe et al., 1995) for its functional form:

f t e tt ta b( ) ( )/ ( )/= − ≥− − − −δ τ δ τ δe for .  (8)

Since the two synapses act in series, the feedback transfer func-
tion %F( )ω  is proportional to the product of the transfer functions 
at each synapse. We also include an overall scale factor F

0
 in %F( )ω , 

so that we can pin the modeled response at g = 1 to the measured 
response at the highest level of light adaptation. Since we use the 
same transfer function %f ( )ω  for the two synaptic components of F, 
the transfer function of the feedback transformation is given by

% %F F f( ) ( ) .ω ω= 0
2  (9)

FIGURE 6 | Measured photoreceptor responses at increasing levels of 
light adaptation. Photoreceptor (macaque rod) responses under dark-
adapted conditions (solid curve) and at increasing levels of light adaptation 
(dashed curves). The dark-adapted curve corresponds to the no-feedback or 
essentially-no-feedback condition; the light-adapted curves correspond to 
increasing levels of feedback. Adapted from Schneeweis and Schnapf (2000) 
Noise and light adaptation in rods of the macaque monkey. Visual 
Neuroscience 17, pp. 659–666, with permission of the publisher, Cambridge 
University Press. Curves are peak-normalized and inverted so that light 
responses are plotted up.
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FIGURE 7 | Modeled photoreceptor responses at increasing levels of light 
adaptation. Impulse responses (left) and transfer functions (right) for the 
components of a simple feedback model of photoreceptor responses at 
increasing levels of light adaptation. (A) P, the response of the photoreceptor in 
the absence of feedback, corresponding to the dark-adapted state. (B) The 

feedback transformation F. (C) The resulting photoreceptor output, L (Eq. 6). The 
g = 0-curve (solid) is the same as (A); the dashed curves correspond to g = 0.1, 
0.2, 0.5, and 1. (D) The photoreceptor responses reported by Schneeweis and 
Schnapf (2000), as in Figure 6. All curves are shown peak-normalized; transfer 
functions are plotted as a function of frequency, f = ω/2π.
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FIGURE 8 | Modeled ganglion cell responses at increasing levels of light 
adaptation. (A) Transfer functions for photoreceptor output (L, Eq. 6) at 
increasing levels of light adaptation (i.e., increasing levels of horizontal cell 
feedback), taken from Figure 7C. (B) Transfer functions for ganglion cell 

responses (R, Eq. 11), obtained by high-pass fi ltering the curves in (A). (C) Same 
as (B), but plotted on semilog coordinates. These curves are reproduced in 
Figure 2 of the main text. From left to right within each panel, values of feedback 
strength are: g = 0, 0.1, 0.2, 0.5, and 1.0.

The parameters (τ
a
 = 0.5 s, τ

b
 = 0.01 s, δ = 0.01 s, and F

0
 = 10) 

are chosen so that for a maximal feedback strength of g = 1, the 
photoreceptor output L given by Eq. 6 matches the most light-
adapted response obtained by Schneeweis and Schnapf. The feed-
back impulse response F(t) is the inverse Fourier transform of %F( )ω ; 
both are shown in Figure 7B. As seen in Figure 7C, without chang-
ing this feedback transformation – just changing its strength g – the 
feedback model accounts for Schneeweis and Schnapf ’s responses 
at intermediate light levels.

To summarize, then, the modeled photoreceptor responses 
(Figure 7C) closely match the observed photoreceptor responses of 
Schneeweis and Schnapf (Figure 6) (also reproduced in Figure 7D 
for the reader’s convenience). This enables us to obtain an esti-
mate of the horizontal cell feedback strength needed to produce 
the range of changes in photoreceptor tuning. As shown in the 
fi gure, an approximate 10-fold change is needed: since g = 0 and 
0.1 give nearly identical responses, we take g = 0.1 as the lower 
end of the range.

We now relate the photoreceptor output to the ganglion cell 
output. Specifi cally, we take into account the transformations 
that occur in the second processing layer of the retina (the inner 
plexiform layer). While these transformations have many details 
(Werblin and Dowling, 1969; Victor, 1987; Sakai and Naka, 1988), 
the common denominator is that signals become more transient, 
i.e., high-pass fi ltering occurs. We represent this with a standard 
RC fi lter in feedback confi guration,

%X
i

k i
I

I I

( ) ,ω ωτ
ωτ

= +
+ +
1

1
 (10)

choosing the parameter values (k
I
 = 4 and τ

I
 = 6 s) to match the 

dark-adapted ganglion cell response, as in Figure 3C (wild-type). 
Thus, the ganglion cell response is determined by the output of the 
photoreceptor–horizontal cell feedback circuit (Eq. 6), followed by 
the schematic inner plexiform layer fi lter (Eq. 10):

% % % %
%

%R g X L g X
P

gF
( , ) ( ) ( , ) ( )

( )

( )
.ω ω ω ω ω

ω
= =

+1
 (11) 

Figure 8 shows the results. Figure 8A recapitulates the photorecep-
tor output from Figure 7C, and Figure 8B shows the correspond-
ing ganglion cell output after applying Eq. 11. (Figure 8C shows 
the same result on a semilog plot, to be consistent with the main 
text.) As shown in Figure 8C, as horizontal cell feedback strength 
decreases, the temporal tuning of the ganglion cell response shifts to 
lower frequencies. The shift in the peak frequency is approximately 
3-fold, from 0.6 to 0.2 Hz, and can be accounted for by a factor of 
10 reduction in horizontal cell feedback strength. Since the shift we 
observe in Figure 3C is a subset of this, a 10-fold change in feedback 
strength more than suffi ces to account for the shift in tuning we 
observe at the ganglion cell output.

To summarize: Using the data of Schneeweis and Schnapf 
(2000) as the starting point, we showed that, as horizontal cell 
feedback strength increases, the tuning of the photoreceptor and, 
ultimately, the ganglion cell, shifts to higher frequencies. As shown 
in Figure 8C, the peak frequency shift is approximately 3-fold and 
can be accounted for by a 10-fold change in horizontal cell feedback 
strength. Since the shift we present in the main text (Figure 3C) is 
a subset of this, a 10-fold change in feedback strength is more than 
suffi cient to account for it.

In the next section, we show how the measured changes in gap 
junction coupling are suffi cient to produce the changes in feed-
back strength (an expansion of the analysis presented in Materials 
and Methods).

We conclude the section by mentioning that the analysis done 
here focused on rod conditions, that is, rod responses were shown 
with various levels of horizontal cell feedback. We focused on rod 
conditions, since these are directly compared in the main fi gure 
of the paper, Figure 3C. Specifi cally, Figure 3C compares the rod 
condition in the high feedback state (the state in the knockout in 
the dark, where horizontal cells are forced to remain uncoupled) 
with the low feedback state (the state in the wild-type in the dark, 
where horizontal cells are maximally coupled).

Section B
In this section we detail the relationship between changes in gap 
junction coupling and horizontal cell feedback strength, an expan-
sion of the description in the Materials and Methods section “The 
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Relation of Horizontal Cell Input Resistance to Coupling for 
Scotopic Versus Photopic Conditions and for Wild-type Versus 
Knockout Animals”. We show that the measured changes in cou-
pling are suffi cient to produce a 10-fold change in feedback strength 
and thus are suffi cient to account for our results and also for the 
larger range of shifts shown in Figure 8C.

As mentioned in “Materials and Methods,” the standard measure 
of horizontal cell coupling is the length constant. The strength of 
the horizontal cell signal, on the other hand, is determined by the 
cell’s input resistance, since the cell’s voltage response is the input 
resistance multiplied by the input current (Ohm’s law). Thus, to 
determine how much the horizontal signal changes, we need to 
determine how much of a change in input resistance is produced 
by a measured change in length constant.

This is readily accomplished with a well-known model of the 
horizontal cell network, the two-dimensional cable (Naka and 
Rushton, 1967; Lamb, 1976; Xin and Bloomfi eld, 1999; Packer 
and Dacey, 2005; Shelley et al., 2006). We use the two-dimensional 
cable model to link horizontal cell coupling and length constant, 
and then to link length constant and input resistance. As we will 
show, input resistance is inversely proportional to the square of the 
length constant (for a point source of current, but see also Section 
C). Xin and Bloomfi eld (1999) measured length constants under 
different degrees of coupling. Their results showed that length 
constant increases by a factor of 3 between the minimally- and 
maximally-coupled states. A 3-fold increase in length constant 
corresponds to a 9-fold decrease in feedback strength, nearly the 
10-fold change needed to account for the complete range of shifts 
in Figure 8C.

The following details the link between horizontal cell coupling 
and length constant, and then the link between length constant 
and input resistance. We focus on the regime in which capacitative 
effects can be neglected, since the phenomena of interest occur 
below 2 Hz. At the end of Section D, we comment on how the 
analysis can be extended to include capacitative effects.

As mentioned above, we start by modeling the horizontal cells 
as a two-dimensional sheet, as is standard (Naka and Rushton, 
1967; Lamb, 1976; Xin and Bloomfi eld, 1999; Packer and Dacey, 
2005; Shelley et al., 2006). Within this sheet, horizontal cell cou-
pling determines resistance to current fl ow, and we denote the sheet 
resistance by R

s
. Thus, our immediate goal is to link R

s
 to length 

constant, denoted by λ.
This linkage is well-known, and is given by the classic work of 

Lamb (1976). As Lamb showed (his Eq. 2) the length constant of 
a two-dimensional sheet is given by

λ = R Rm s ,  (12)

corresponding to Eq. 1 in the main text. Rearranging this yields

R Rs m= / ,λ2  (13)

corresponding to Eq. 2. Equation 13 demonstrates the relation-
ship between length constant λ and horizontal cell coupling, as 
measured by the sheet resistance R

s
.

The next step is to link input resistance to length constant. We 
start with a point source current, and consider other geometries 
in Sections C and D. For a point source current, we begin with 

Lamb (1976) (his Eq. 8), which provides the voltage response of 
the sheet. At a distance r from the injection of a current i

0
, the 

resulting voltage V(r) is

V r i
R

K rs( ) ( / ),= 0 02π
λ  (14)

where K
0
 is a modifi ed Bessel function of the second kind.

Input resistance is the ratio of the voltage response to the injected 
current. At a distance r from the point source, the ratio Z

r
 = V(r)/i

0
 is

Z
V r

i

R
K rr = =( )

( / ),
0

02
s

π
λ  (15)

which follows from Eq. 14.
We would like to use Eq. 15 to determine Z

r
 at r = 0 (the 

point of injection), and how it depends on the horizontal cell 
parameters. Since the Bessel function in Eq. 15 diverges at the 
origin, Z

0
 is formally undefi ned. However, real measurements 

correspond to values of r that are small but not 0. Therefore, 
instead of focusing on Z

0
, we focus on the limiting behavior of 

Z
r
 when r is small2.
To determine the behavior in the small-r limit, we approximate 

the Bessel function in Eq. 15, whose argument is u = r/λ. When 
this argument is small (i.e., when r << λ), the Bessel function has 
an asymptotic expansion, K

0
(u) = −(ln u) [1 + o(u)] (Abramowitz 

and Stegun, 1965, Eq. 9.6.54). Therefore,

Z
R

r o r
R

r o rr = − +( ) = −( ) +( )s s

2
1

2
1

π
λ λ

π
λln( / ) ( / ) ln( ) ln( ) ( ) .  (16)

In the small-r limit, the −ln(r)-term grows, eventually dominat-
ing the ln(λ)-term, Thus, Z

r
 has an asymptotic expansion

Z
R

r o rr = − +( )s

2
1

π
ln ( ) .  (17)

Equation 17 shows that in the limit of a point current injection, 
input resistance and sheet resistance are proportional (corresponding 
to the comment following text Eq. 2). Finally, we use the relation-
ship between sheet resistance and length constant (Eq. 13) to rewrite 
Eq. 17 as

Z
R

r o rr = − +( )m

2
1

2πλ
ln ( ) .  (18)

Thus, in the small-r limit, the input resistance is proportional 
to R

m
 and inversely proportional to λ2, as in text Eq. 3:

Z
R

r ∝ m

λ2
.  (19)

To summarize: horizontal cell coupling (sheet resistance) deter-
mines the length constant via Eq. 12, and these are linked to input 
resistance via Eqs 17 and 18.

2For an alternative derivation that relies only on a dimensional analysis, see Section D.

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Frontiers in Computational Neuroscience www.frontiersin.org March 2010 | Volume 4 | Article 2 | 194

Pandarinath et al. A mechanism for network switching

Section C
Above, we considered the input resistance for a point input source; 
we now turn to consider other spatial patterns. To do this systemati-
cally, we determine the input resistance for spatial grating pattern of 
spatial frequency k, which we denote Z(k). That is, Z(k) is the ratio 
of the voltage response to an applied grating-shaped current. We 
determine this voltage response by fi rst determining the response 
to a current injected along a narrow line. Then we superimpose a 
continuum of line sources to form the grating.

In the scenario of a current injected along a narrow line (say, 
along the y-axis) into a sheet in the (x, y)-plane, there is transla-
tional symmetry along the y-axis. Along the x-axis, the problem 
reduces to that of a one-dimensional cable. (This is the geom-
etry considered by Xin and Bloomfi eld, 1999). Thus, we can use 
standard one-dimensional cable theory to determine the resulting 
voltage distribution: at a distance x from a line of injected current 
I

0
, the resulting voltage distribution is:

V x I Z x
line e( ) ,| |/= −

0 0
λ  (20)

where

Z R R0

1

2
= m s  (21)

is the input resistance of the equivalent one-dimensional cable 
(Koch and Segev, 1998).

Next, we create a grating from these line sources. At each 
location x

0
 along the x-axis, we place a source with strength 

I(x
0
;k) = I

0
cos(kx

0
); the net result of these sources is a spatial grating 

of current. Each of these sources yields a voltage response accord-
ing to Eq. 20, and they superimpose to yield the voltage response 
to the grating. Specifi cally, the contribution of the line source at 
position x

0
 to the voltage at position x isV

line
(x − x

0
)cos(kx

0
), and 

superimposing them yields the grating response:

V x k V x x kx dxgrating line( ; ) ( )cos( ) .= −
−∞

∞

∫ 0 0 0
 (22)

Carrying out this Fourier integral yields

V x k kx V u e du kx
I Ziku

grating line( ; ) cos( ) ( ) cos( )
/

= =
+−∞

∞

∫ 0 0
2

2

1λ λ kk 2
. (23)

Thus, Z(k), the input resistance for a current injection pat-
terned as a sinusoid of spatial frequency k, is the ratio of the volt-
age response to the applied current:

Z k
V k

I

Z

k
R

k
( )

( ; )

/
,= =

+
=

+
grating

m

0 2

1

1

10

0
2 2 2 2λ λ λ

 (24)

where we have used Eqs 12 and 21 in the last step.
Equation 24 shows how length constant and spatial frequency 

interact to determine the input resistance. At suffi ciently low spa-
tial frequencies, the shunt current has nowhere to go, so the input 
resistance is R

m
, independent of the length constant. At suffi ciently 

high frequencies, the shunt is very effective: input resistance is 
inversely proportional to λ2, just as in the point source. For exam-
ple, at k = 3/λ, Z(k) = R

m
/10, indicating that 90% of the input 

resistance can be shunted away, while at k = 1/λ, Z(k) = R
m

/2, 
indicating that half of the input resistance can be shunted away. 

Since spatial frequency k is measured in radians, the latter cor-
responds to a spatial wavelength of 2πλ. Thus, perhaps counter-
intuitively, Eq. 24 shows that the shunt retains effectiveness even 
for a grating pattern whose period is a fairly large multiple (2π) 
of the length constant.

To summarize: the reduction in input resistance due to gap 
junction coupling diminishes at low spatial frequencies, but the 
falloff is gentle, as shown in Eq. 24. For gratings whose period is 
small in comparison to 2πλ, the shunt remains large. This was 
the case in the present experiments under scotopic conditions. We 
used gratings of 0.039 cycles/degree, corresponding to a spatial 
period of 795 µm [in the mouse retina, 1° = 31 µm (Remtulla and 
Hallett, 1985)], and a spatial frequency k of 2π/795 = 0.0079 µm−1. 
Given the estimated scotopic length constant of λ = 300 µm (see 
Stimulating and Recording Ganglion Cell Responses), Eq. 24 
yields Z(k) = 0.15R

m
, indicating that 85% of the signal can be 

shunted away.
We conclude by mentioning that while the interaction of spatial 

pattern and gap junction coupling is a potentially interesting topic, 
the paper focused on temporal processing and, thus, was not set 
up to explore this: this is because of a limitation in the size of the 
retinal pieces used for the multi-electrode array recording. To test 
the predictions in Eq. 24, retinal pieces of greater than twice the size 
would be needed to avoid edge effects (shunting through contact 
with the edge of the retinal piece) and to allow sampling of suf-
fi ciently low spatial frequencies. We included the above discussion 
of the theoretical effects of spatial pattern in any case, because it 
makes predictions for future work, both in retina and other brain 
areas where gap junction coupled networks are present.

Section D
Because the gap-junction switch has the potential to operate in a 
wide range of neural networks, here we briefl y note how the above 
considerations generalize to geometries not directly related to the 
horizontal cell network of the retina.

First, we mention that the notion that gap junction conductance 
modulates input resistance is not limited to situations in which the 
gap-junction-coupled cells form part of a feedback loop. That is, 
opening the gap junctions of a group of neurons is simply a general 
way to reduce their gain and thus remove them functionally from 
a network, whatever their role.

For networks within the brain parenchyma, a three- dimensional 
space-fi lling network may be a more appropriate caricature than 
a two-dimensional syncytial sheet. (We have in mind a scenario 
in which each neuron is connected to its neighbors in all three 
spatial dimensions, but that only a part of the volume is occupied 
by these neurons.) In this case, the dependence of input resistance 
on gap junction coupling is Z Rs∝ 3 2/ , an even stronger depend-
ence than the proportionality which holds in two-dimensional 
case, Eq. 17.

To see this, we apply a dimensional analysis. In three dimensions, 
the resistance R

m
 to the bath (i.e., extracellular space) has units of 

ohm-cm3, and the internal resistance, R
s
, has units of ohm-cm. 

Thus, the input resistance for a point source must be proportional 
to R Rs m

3 / , since this is the only parameter combination that has 
units of ohms. The length constant λ is still R Rm s/ , so the input 
resistance is also proportional to Rm / .λ3
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FIGURE 9 | The visual system undergoes a shift in integration time as it shifts 
from day to night (photopic to scotopic) conditions. This fi gure reproduces the 
data in Figure 1 of the main text, but un-normalized. Note that in the un-normalized 

plots, the shift in tuning to low temporal frequencies is superimposed on an overall 
decrease in sensitivity, as is well-known at the behavioral level [Kelly, 1961 (human); 
Umino et al., 2008 (mouse)] and at the ganglion cell level (Purpura et al., 1990).

FIGURE 10 | The circuit that controls visual integration time can be shifted from one state to another by a change in the gap junction coupling of one of its 
cell classes. This fi gure reproduces the model shown in the main text, but with the response curves un-normalized (see Figure 2 of the main text or Figure 8C of 
Appendix 2).
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There is a simple intuition behind this result and the corre-
sponding ones results in the earlier sections: for a point source, 
the input resistance decreases in proportion to the number of 
neurons to which an input current spreads. In a “cable” of effec-
tive dimension D and length constant λ, this number is propor-
tional to λD.

Finally, we mention that in all of the above analyses, we have 
considered the gap-junction-coupled network to be purely  resistive. 
This is a reasonable approximation for the  experiments considered 
here: the phenomena of interest occur below 2 Hz. These frequen-
cies are much slower than the estimated RC time constant for the 
horizontal cell, which is 20 ms, based on membrane resistance and 
capacitance values provided by Smith (1995). Nevertheless, our 
treatment immediately generalizes to scenarios in which capaci-
tive effects become relevant, by  replacing the resistance parameters 
R

m
, R

s
, and Z by corresponding frequency-dependent impedances 

(Koch and Poggio, 1985). The cable  formalism still applies, but now, 
the effective length constant will be frequency-dependent, and the 
shunt may be associated with a phase shift.

APPENDIX 3:
FIGURES UN-NORMALIZED
Figures 1, 2, and 3 are reproduced in un-normalized form as Figures 
9, 10, and 11.
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FILTERED MOVIES
The selective disadvantage of a Cx57 gene loss, demonstrated using a 
natural movie
As indicated in the main text, we fi lmed an approaching predator 
and restricted the movies to the temporal frequencies available to 
each genotype, using the data from Figure 3D left. In Figure 4 we 
showed single frames from the movies; here we show the movies 
in total. As indicated in the main text, in daytime conditions, the 
movies for the two genotypes are essentially the same – see Video 
1, Wild-type by Day, and Video 2, Knockout by Day. In nighttime 
conditions, though, the two movies diverge. In the movie fi lte-
red through the frequencies visible to the wild-type animal, the 
predator is visible both when it is moving, i.e., when the movie is 
dominated by high frequencies, and when it is still, i.e., when the 
movie is dominated by low frequencies. In the movie fi ltered though 
the frequencies visible to the knockout, the predator disappears in 
the still condition. Only a ghost remains – see Video 3, Wild-type 
at Night, and Video 4, Knockout at Night.

FIGURE 11 | When coupling is prevented, the shift to long integration times 
is impaired at both the behavioral level and the ganglion cell level. This 
fi gure reproduces the data in Figure 3 of the main text, but un-normalized. As in 
the main text, the knockout response fails to make the normal shift in tuning to 
low temporal frequencies, because the feedback signal is not reduced by the 
shunt. Note that the un-normalized plots show that at low temporal frequencies, 

the wild-type response is higher, while at high temporal frequencies, the 
knockout response is higher. This is predicted by the model (Figure 10, which 
shows the un-normalized model predictions; lower right of fi gure). Note also that 
this crossover (the higher response in the no-feedback state at low frequencies, 
and the higher response in the high-feedback state at high frequencies) is a well-
known phenomenon in light adaptation (Purpura et al., 1990).
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and by recurrent and inhibitory network connections. This 
 hypothesis is anchored on the fact that spontaneous activity 
is often observed to emanate from localized sources or burst-
 initiation zones (BIZ), propagating from them to excite large 
populations of neurons (Raichman and Ben-Jacob, 2008, reviews 
possible mecahnsimis).

Most of the firing activity is observed within a very short time 
window at the beginning of the SBE which is then followed by decay 
over longer period of time (Raichman et al., 2006). Moreover, each 
neuron in a SBE has its own temporal firing pattern which can 
greatly vary between different neurons but is usually consistent 
over days (Raichman and Ben-Jacob, 2008).

The capability of cultured neural networks to spontaneously 
generate repeating motifs on long time scales (hours) is highly 
significant for various applications. For example it affords neuro-
nal networks in vitro to maintain long-term memory (Raichman 
and Ben-Jacob, 2008; Raichman et al., 2009). It was shown that 
printed (by local chemical stimulation) new activity motifs (activity 
propagation patterns) can also be maintained by the cultured net-
works for long times (Baruchi and Ben-Jacob, 2007). The number 
of motifs and the statistics of their appearance are connected with 
the architecture (topology, geometry and strengths of synaptic con-
nections) of the network (Volman et al., 2005).

Large networks can generate few different SBEs, each with its 
own characteristic spatial-temporal pattern of activity propaga-
tion across the network (Hulata et al., 2004; Segev et al., 2004). 
Engineered coupled network, such as the quadruple networks 

INTRODUCTION
MULTIELECTRODE ARRAYS AND SBEs
The human brain is considered to be one of the most complex sys-
tems and thus understanding the principles which underlie its activ-
ity requires simpler models (Koch and Laurent, 1999). Cultured 
neural networks with engineered geometry provided simple model 
systems for studying important motives of mutual synchronization 
and activity propagation (Baruchi et al., 2008; Raichman and Ben-
Jacob, 2008; Raichman et al., 2009). Multielectrode arrays (MEA) 
have provided simple, tractable and efficient model systems for 
studying important motives of cultured networks and also pro-
vide a useful framework to study general information processing 
properties and specific basic learning mechanisms in the nervous 
system (Potter, 2001; Baruchi and Ben-Jacob, 2007; Chiappalone 
et al., 2007).

The spontaneous activity of many types of cultured networks is 
characterized by rapid collective neuronal firings called synchro-
nized bursting events (SBEs) or “network bursts.” These bursts last 
hundreds of milliseconds and are followed by longer (seconds) 
inter-burst-intervals (IBI) of sporadic firings (Segev et al., 2002; 
Raichman and Ben-Jacob, 2008) (Figures 1A1, 1A2). It was found 
that SBEs are important for the development of the nervous system, 
in the initiation of epileptic seizures, and in cortical integration of 
sensory information (Chiappalone et al., 2007).

There are a few suggested mechanisms for SBE activity, one 
of which is based on the hypothesized presence of localized ini-
tiation zones. These are characterized by high neuronal  density 
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The spontaneous activity of engineered quadruple cultured neural networks (of four-coupled 
sub-networks) exhibits a repertoire of different types of mutual synchronization events. Each 
event corresponds to a specific activity propagation mode (APM) defined by the order of 
activity propagation between the sub-networks. We statistically characterized the frequency of 
spontaneous appearance of the different types of APMs. The relative frequencies of the APMs 
were then examined for their power-law properties. We found that the frequencies of appearance 
of the leading (most frequent) APMs have close to constant algebraic ratio reminiscent of Zipf’s 
scaling of words. We show that the observations are consistent with a simplified “wrestling” 
model. This model represents an extension of the “boxing arena” model which was previously 
proposed to describe the ratio between the two activity modes in two coupled sub-networks. 
The additional new element in the “wrestling” model presented here is that the firing within each 
network is modeled by a time interval generator with similar intra-network Lévy distribution. We 
modeled the different burst-initiation zones’ interaction by competition between the stochastic 
generators with Gaussian inter-network variability. Estimation of the model parameters revealed 
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different APMs as numerical simulation of the model predicts.
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We found that half of the networks had algebraic scaling between 
the frequency of appearance of the leading (more frequent) APMs 
reminiscence of the Zipf ’s power-law scaling of words in natural 
language. During the 1930s Zipf showed that a power-law distri-
bution described word counts in the English language (Zipf, 1932, 
1935). A modern demonstration of this concept on Wikipedia’s 
corpus has also been shown (Grishchenko, 2006). Research on the 
origins of the power-law and efforts to observe and validate them 
in the real world is extremely active in many fields of modern sci-
ence, and seems to be a ubiquitous statistical feature of complex 
systems (Bak, 1996; Sornette, 2007).

There is a body of experimental (Beggs and Plenz, 2003, 2004; 
Petermann et al., 2009) and theoretical work (De Arcangelis et al., 
2006; Kinouchi and Copelli, 2006; Levina et al., 2007) on occurrence 
of power-laws with cutoff in cultured neural networks. In these 
references the power-law scaling was of the time intervals between 
events (neuron firing and network bursts). Here, we investigated 
the statistics of the frequency of appearance of the different APM 
regardless of their timing.

THE WRESTLING MODEL
Toward the interpretation of the observed repertoire, we modeled 
the interplay between the intrinsic potential to fire of the differ-
ent BIZ in terms of interacting “clocks” with variable rates. Once 
one BIZ fires, it stimulates the other BIZs and resets their “clock,” 
thus disabling their initiation of spontaneous activity. This varia-
ble-clock game is an extension of the “boxing arena” model pro-
posed for two coupled networks (Feinerman et al., 2007). Here we 
extended this work to multiple BIZs and used a Lévy distribution 
for the clock internal variability and Gaussian distribution for the 
inter-variability between the clocks. Using maximum likelihood 
we estimated the model’s parameters and we observed similarity 
between parameters across cultures with different typical inter-
burst-time intervals.

MATERIALS AND METHODS
CULTURE AND PREPROCESSING
The experimental protocol of the recordings of the coupled net-
works’ activity which were analyzed here has been previously pre-
sented in details (Raichman and Ben-Jacob, 2008). We used six 
recorded cultures which are summarized in Table 1 along with 
their characteristics.

 studied here, exhibit different types of mutual SBE, each with 
its own order of activity propagation between the sub-networks 
(Baruchi et al., 2008; Raichman and Ben-Jacob, 2008).

SBE SORTING
Dimensionality reduction clustering algorithms (e.g., principle 
component analysis) are used to identify and sort the different SBE 
motifs (sometimes referred to as network repertoire). These algo-
rithms enable to simplify the representation of the network activ-
ity. In evoked activity experiments where the states of the system 
are expected due to the controlled stimuli, supervised algorithms 
can be used (Marom and Shahaf, 2002). However, in the case of 
spontaneous activity, only un-supervised methods are applicable.

In previous studies, identifications of the distinct SBEs were 
based on a measure of burst similarity (correlation) metric space. 
This similarity was defined either by (i) the firing intensity of indi-
vidual neurons, with disregard of the temporal delays between 
neurons (Mukai et al., 2003; Madhavan et al., 2006) or (ii) by 
the time-space correlation between neuronal spike-trains (Segev 
et al., 2004). The latter approach enables to distinguish between 
bursts in which the firing profiles of the individual neurons are 
conserved but with different time delays between the activity of 
the different neurons. More recently, a delay similarity method was 
proposed (Baruchi et al., 2008; Raichman and Ben-Jacob, 2008). 
The method identifies repeating motifs that strictly depend on the 
delays between initiations of neuronal activity, while disregard the 
burst intensity and burst duration.

Despite the importance of timing, it has been shown that the 
information about evoked stimulus position can be retrievable just 
from the recruitment order, regardless of precise timing (Shahaf 
et al., 2008). Motivated by these observations we characterize here 
the different activity propagation modes (APM) of the mutual 
SBEs in terms of the order of activity propagation between the 
sub-networks (Figure 1B1).

It is believed that a central property of a complex system is 
the possible occurrence of coherent large scale collective behaviors 
with a very rich structure, resulting from the repeated non-linear 
interactions among its constituents.

Given such a complex system as neuronal network, a first stand-
ard attempt in order to quantify and classify the characteristics and 
the possible different dynamics consists in (i) identifying discrete 
events, (ii) measuring their features, and (iii) constructing their 
probability distribution (Sornette, 2007).

In our analysis, these discrete events are the SBE timings and their 
measured feature is the different APM assigned to each SBE.

POWER-LAW SCALING
Once identified, we investigated the network repertoire – the sta-
tistics of the frequency of appearance of the different APMs. The 
idea is that similar to the case of other complex systems, the sta-
tistics of system level events can provide important clues about 
the underlying mechanisms that regulate the network activity 
(Sornette, 2007).

Identification and understanding of such underlying mecha-
nisms that regulate the activity of coupled neural networks can 
provide important clues on how to regulate, control and change 
the repertoire of such networks.

Table 1 | Time characteristics of the recorded cultures.

# T N B D A IBI

A 3.5 49 1053 1.3  0.5 0.8  0.1 11  5
B 49.7 19 748 1.7  0.7 0.6  0.1 250  120
C 2.3 14 82 0.3  0.4 0.3  0.1 100  100
D 23.0 49 5904 1.2  0.6 0.7  0.1 16  6
E 47.2 37 9620 0.5  0.3 0.6  0.2 9  7
F 31.0 16 4969 0.1  0.1 0.3  0.1 14  10

#, Culture label; T, duration of recording (h); N, number of sorted neurons in the 
recording; B, total number of SBEs during the recorded time; D, SBE duration (s); 
A, SBE activity (fraction of participating neurons); and IBI, inter-burst-interval (s). 
All columns show mean  standard deviation where applicable.
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number of active neurons within the 2 s window. We ignored events 
that had less than 10–50% active neurons, or that were less than 5 s 
apart from the previously found SBE. Once an SBE was located, we 
used a pre-trigger and post-trigger of 2 s as the SBE time-support 
(Chiappalone et al., 2004; Raichman and Ben-Jacob, 2008).

IDENTIFICATIONS OF THE ACTIVITY PROPAGATION MODES
As was mentioned earlier, the APM are characterized by the order 
of activity propagation between the sub-networks (Figure 1B2). 
With four-coupled networks each APM is described by a permu-
tation of the sequence [1234]. For example, X = [1, 2, 3, 4] means 
that APM X was such that sub-network “1” fired first, then “2,” “3” 
and lastly “4.” Therefore, for four sub-networks there are 4! = 24 
different possible APMs.

Usually once a sub-network becomes active it does not relax and 
become active again within the same mutual SBE (representing a 
finite sub-network refractory period).

The networks were grown on MEA consisting of 60 round spot 
recording sites (each with diameter of 30 µm). The spatial organi-
zation was specially designed. The electrode array was consisted 
out of four clusters in the corners of a 1.8 mm  1.4 mm rec-
tangle. Each cluster was consisted of 13 equally spaced electrodes 
(250 µm). Other 7 electrodes were located in the regimes between 
the clusters.

Spike sorting of the extra-cellular recordings was based on 
wavelet packet decomposition (Hulata et al., 2002). This resulted 
in a (binary) time series of spike timings with a resolution of mil-
liseconds for each identified neuron.

In order to identify the network bursts we followed the standard 
procedure of scanning the binary data of the network temporal 
spike activity in consecutive windows of 2 s, with a 50% overlap. 
Each window was divided into bins of 200 ms, and each bin was 
summed up over the number of active neurons. The timing of an 
SBE was defined as the time bin in which there were a maximum 

FIGURE 1 | (A1) Typical raster plot of the recorded activity of for coupled neural 
network. Each line corresponds to the recorded activity from a specific 
electrodes. Bars indicated neuronal firing. The results show the formation of 
mutual SBEs. (A2) Zoom in on the raster plot showing five distinct SBEs. 
(B1) Color code of the order of individual neuron firings within the different 
APMs from the first firing neuron (blue) to the last (red). Location and size of the 

electrodes is not in scale. Gray bars mark PDMS lines used to separate between 
the sub-networks. The order of activity of the four sub-networks follows a 
wave-like pattern, where the first firing group first activates each of the two 
nearest clusters. (B2) The activity order of the five leading (most frequent) 
activity propagation modes (APMs). (A1), (A2), and (B1) are reproduced with 
permission (Raichman and Ben-Jacob, 2008).
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( typically 50 ms). Next we define a normalized Pearson’s cross 
correlation Cn

i j, ( ) between the bursts couple (i, j) per neuron 
with time displacement :
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Finally, a max correlation matrix EC is defined as the maximum 
(over ) of the sum (over neurons) of the correlation Cn

i j, ( )

EC i j Cn
i j

n

N

( , ) arg max ( ),

1

This correlation matrix can be interpreted as representation of 
N

SBE
 bursts in a N

SBE
 dimension space. This metric space is then 

clustered using the dendrogram algorithm tree – an agglomera-
tive hierarchical cluster technique based on distances (Mathworks, 
2009). This clustering method allows sorting of the SBEs into dif-
ferent modes, each with its own pattern of correlations between 
the neuron firings.

The delay similarity method is based on a delay activation matrix 
B such that Bi

n m,  is the delay between the first spikes of neuron n 
and m in the ith SBE. Neurons that did not fire in the particular SBE 
are assigned a NULL value in the activation matrix. The similarity 
between bursts is than defined as:

S i j
N N

A n m A n mi j

n m

( , )
( )

, ,
1

1 0

Where  is the Heaviside function and 
0
 is a threshold which is 

set to 30 ms following the average spike precision in bursts (Bonifazi 
et al., 2005). The method detects the center (motive) of SBE clusters 
with high similarity, by applying a two-stage method that uses a 
hierarchical clustering algorithm followed by an iterative search 
for independent cluster centers.

For comparison between the correlation and delay similarity 
methods with our approach, we used the previous methods’ metric 
matrix and reordered these matrices in three different fashions: 
(i) by clustering with respect to the same metric space (e.g., correla-
tion metric reordered according to the correlation space and vice 
versa), (ii), we repeated the procedure with the alternative metric 
space (e.g., delay metric reordered based on correlation metric and 
vice versa), (iii) we reordered the metrics by the APMs that our 
method identified.

In the result section we show that, while our method is consistent 
with the other two methods, it is more efficient.

POWER-LAW TESTING AND ESTIMATION
To quantify the finite scaling of the frequency of appearance of the 
different APMs we followed and extended the method of (Goldstein 
et al., 2004; Clauset et al., 2009). The estimation and significant 
testing of the power-law (p(k)  k ) distribution’s parameter ( ) 
have been extended for the case of the observed finite power-law. 
This is defined as a finite repertoire of motifs’ (alphabet) distribu-
tion which follows the power-law only for k  M where k is the 
event frequency rank.

Timing the sub-network activity
Three different methods for timing the sub-network activity 
were tested: (1) average the firing time of first spikes (“first”), (2) 
 center-of-mass of activity profile (“COM”), and (3) max firing 
rate (“max rate”).

The “first” time is defined as: t N ti
k
N

k
i

first

first
first1 1/ , where N

first
 is 

equals to the number of spikes that are considered to be “first” (this 
number is selected to optimize the measure), and t

k 
is the time of 

the kth spike in the ith sub-network.
The motivation to measure only the first spikes, is in line with 

results showing that spike timing is more accurate in the beginning 
of the spike-trains, both in spontaneous firing and in bursts gener-
ated as a response to electric stimuli. Moreover, it was suggested that 
bursts propagates as traveling waves where local networks act as the 
substrate of sequential firing patterns since activity which passes 
through a given point initiates similar local sequences. (Jimbo and 
Robinson, 2000; Bonifazi et al., 2005; Luczak et al., 2007; Raichman 
and Ben-Jacob, 2008; Shahaf et al., 2008).

The number of first spikes N
first

 introduces a tradeoff between 
robustness and accuracy. We chose the criterion for choosing N

first
 

to be such that more bursts fall into the same motif, thereby iden-
tifying a smaller number of distinct APMs.

The “center-of-mass” time was defined as:
 
t N tk

N
kCOM tot

tot1 1/ , 
where N

tot
 is the overall number of spikes fired by the sub-network. 

This method is based on the assumption that different sub-networks 
fire with similar patterns of firing rate. In this case, averaging the 
whole firing pattern can produce a fine and robust measure of the 
sub-network firing pattern. This method assigns larger weight to 
time periods with higher firing rates in the weighted average. The 
reason is that such time periods are relatively less noisy (assuming 
Poisson noise).

The “max rate” time was defined using a histogram: 
b t m t m t tm k

N
k k1 1tot ( ) (( ) ), where  is the Heaviside 

function and t the histogram resolution (1 ms).
The estimated maximum rate time was defined at the center 

of the histogram maximum: t t b
m mmaxrate (arg max . ).0 5  The 

motivation for this measurement is to order activity of the dif-
ferent sub-networks by the delays of the maximum local activity. 
The idea is that the first spikes describe the propagation front of 
the neural signal, but once each sub-network is activated it has its 
own internal activity propagation.

In the results section we compare between these three timing 
methods. We then selected the method that yielded the least dis-
tinction entropy between the different APMs, following the idea of 
minimum-entropy data partitioning (Roberts et al., 2001).

Consistency test
In order to test for consistency of our method of identification of 
the APMs, we compared it with the correlation and delay similarity 
methods mentioned in the introduction.

The correlation method is based on a binary activity matrix 
Ai

N T  representation of a SBE where N is the number of neurons 
and T is the number of time bins. The element is Ai

n t, 1 if neu-
ron n fired during the time bin t in SBE i = {1 N

SBE
} (zero other-

wise). First, the activity vector of each neuron ( ( ))A tn
i  is convolved 

with a normalized Gaussian kernel with width adjusted to the 
firing rate in order to obtain a smooth rate representation D tn

i ( ) 
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 parameter). The symmetry parameter 
Levy

 was set to zero (no 
drift). This difference in  was generated from a Gaussian dis-
tribution with zero mean and STD of int er

2  and was rolled once 
before each simulation.

The normalized version of the model has two parameters only: 
first, the variability variance ratio ( ) which is the IBI’s intra-
variability variance normalized by the inter-variability variance. 
Secondly, the Lévy’s distribution power coefficient ( ). The details 
of the model simulation and the procedure of parameter estima-
tion are described in the Appendix (see Model Details and its 
Parameter Estimation).

RESULTS
CONSISTENCY TEST
We analyzed the activity of six cultures all having similar structure 
of four-coupled sub-networks (see Materials and Methods). All 
of these cultures showed global synchronization marked by the 
existence of mutual SBEs. First, we show a typical sorting of the 
different SBEs using the methods of correlation and delay similarity 
(see Materials and Methods). Then, we compared this similarity/
correlation metric matrix when reordered by our new characteri-
zation approach.

The new method provides an efficient and clear sorting of SBE 
into distinct motives of APMs which can be seen as areas of strong 
intra-group and weak inter-group delay similarity (Figure 2). 
It is worthwhile noting that although this method achieved a 

We focus only on estimating the power parameter, while M was 
fixed and chosen such that it differentiated between APMs with 
frequency higher and lower than that calculated for the limit of 
uniform frequency of appearance.

The details of the estimation and testing is detailed in the 
Appendix (see Power-Law Testing and Estimation).

THE WRESTLING MODEL
We developed a semi-realistic model which recovers quite effi-
ciently the observed statistical behaviors of the APMs repertoire. 
This “wrestling” model is an extension for the “boxing arena 
model” which was proposed for two coupled networks (Feinerman 
et al., 2007).

The central assumption is that each sub-network has several 
BIZs and they all “compete” to be the first to initiate a mutual 
SBE. We assume that each sub-network, had it been isolated from 
the other sub-networks, have its own innate mean time between 
SBEs. In other words, each sub-networks a stochastic SBEs gen-
erator with its own innate “clock.” However, since the statistics 
of IBI (inter-bursts-intervals) follows a Lévy distribution (Segev 
et al., 2002; Ayali et al., 2004), the definition of the generator 
and the clock have to be done with extra care. In the model used 
here, we used a stochastic generator that generates a Lévy flight 
process (Chambers et al., 1976). The generators of the different 
sub-networks had the same  (slope) and  (variability) param-
eters while each sub-network had its own most probable IBI (the 

FIGURE 2 | Comparison of delay similarity (row (A)) and correlation (row 
(B)) metric matrices with culture #A (see Materials and Methods). The 
x- and y-axis are 300 SBEs indices while the color at each pixel represents the 
normalized metric value (red-high, blue-low). These metrics were reordered 
according to three different permutations (1–3 columns): (1) delay similarity, 

(2) correlation matrix, and (3) our APM method. The latter APMs were 
bordered (white line) and rearranged (without breaking groups) to fit bets 
the permutation of the relevant metric (row (A) or (B)). Notice the sequence 
[3412] and [2143] have opposite activation order and thus have low cross delay 
similarity metric values.
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Although the different networks had very different time scales 
and activity, we estimated similar parameters for the different sub-
networks.

To avoid confusion we note that there is the set of parameters of 
the Lévy distribution of the IBI generated by the stochastic genera-
tor and the set of parameters of the distribution of the frequency 
of appearance of the APMs.

The set of parameters for the IBI distributions are defined as: 
(1) the stability parameter (the slope of the tail of the distribu-
tion) – the  parameter of the Lévy distribution. (2) the scaling 
parameter , that is equal to the ratio between the variability 
parameter of the generated IBI sequences (related to the gen-
eralization of the STD for Lévy distribution) and the variability 
(

inter
) in the mean IBI of the generated IBI sequences of the four 

 precise classification, it is much less computationally demanding 
than  previous techniques based on metric estimation since the 
 computation of the O N( )SBE

2 metric space is not needed.
We found that two APMs with a reverse order of activity propa-

gation, such as the APMs [2, 1, 4, 3] and [3, 4, 1, 2] (Figure 2A3), 
show low delay similarity. And, two APMs in which the activity 
starts at the same sub-network show high delay similarity.

ASSESSMENT OF THE ACTIVITY TIMING METHODS
Comparison between the different methods of activity timing 
revealed that the “first” timing method (based on the firing time of 
the first few spikes), yields the statistically most significant sorting 
of the APMs. The statistical significance was assessed by calculating 
the minimum-entropy data partitioning approach (Roberts et al., 
2001). In this approach the entropy of the frequency of appearance 
of the APMs is calculated (the relative frequency of appearance of 
each APM is taken as its probability). A distribution with lower 
entropy corresponds to sorting that is more statistically significant 
(higher deviation from a uniform distribution).

We found that the best sorting by the “first” timing method is 
obtained when the first five spikes are taken (N

first
 = 5) as is shown 

in Figure 4.

FREQUENCY OF APPEARANCE
Half of the networks (three out of six) expressed scaling consistent 
with a finite power-law with p-value higher than 20% (Figures 5A–C 
cultures). The three other networks only showed power-law scal-
ing for the leading APMs. Moreover, we compared the power-law 
with an alternative exponential model. The exponential model was 
rejected in five out of six networks (Figure 3).

Note that all networks deviated greatly from what would be 
expected from a uniform distribution of the frequency of appear-
ance (black transparent patches in Figure 5).

EMPLOYING THE WRESTLING MODEL
The results of the wrestling model simulation are in good agreement 
with the observed distributions. The level of the agreement indicates 
that the model may explain some observed features and in particular 
the four orders of magnitude ratios in the frequency of appearance 
(see Figure 5 y-axis) and the finite cutoff in the power-law scaling.

FIGURE 3 | Comparison between the significance levels of a power-law 
model versus an exponential one. Half of the networks showed a 
significance p-value such that the null hypothesis of a power-law distribution 
(with cutoff) cannot be declined. On the other hand, only 1/6 of the networks 
showed similar significance for the exponential model.

FIGURE 4 | Comparison between the different methods to estimate the 
APMs’ timing on culture #A (see Materials and Methods). (A1) The 
frequency of appearance (log) of the frequency of appearance of the APMs 
using the different methods is similar. (A2) The “first” method shows the 
closer to power-law like behavior and the entropy. (B) The sub-network activity 
timing can be measured by averaging the first Nfirst spikes (blue), by the 
center-of-mass (COM) of activity (red), or by the maximum firing rate (green) 
as can be seen plotted on the activity profile histogram (bin size 100 ms). 
(C) The “first” method entropy is minimized at Nfirst = 5.
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An additional important observation is related to the value of 
the inter-burst-time interval (IBI) which preceded the appear-
ance of each APM. The wrestling model predicts that the distri-
bution of the observed bursts IBIs would be of the same order of 
magnitude for the different sub-networks in agreement with the 
experimental observations.

In other words, the mean IBI of a specific BIZ conditioned of it 
being the shortest one in the current round is smaller than the aggre-
gated IBI mean and is comparable to the most frequent BIZ’s IBI:

IBI IBI IBI IBIi
r

j
j
r

r j
j
r

i
r

r
i arg min ~ arg min

We compare the simulation result to the real data by treating 
each APM as it was generated by different IBI and in both the 
“winning” IBIs is relatively flat (Figure 6).

different sub-networks is. It is important to note that  equals 
to 1 for the case that the internal variability of the IBI sequences 
and the variability between the sub-networks are comparable. The 
symmetry parameter 

Lévy
 was set to zero (no drift) and should 

not be confused with  used here that is the slope of the algebraic 
(power-law) part of the distribution of the APMs’ frequency of 
appearance.

Employing the wrestling model, we found that the parameters 
that fits the observations were:

 
1 98 0 01. . , 1 0 1.  ( SEM) 

for the Levy distribution and 0 52 0 06. .  for the power-law 
slope (   SEM). Note that the Lévy slope was almost 2 which is on 
the edge of Gaussian. We note the similarity across cultures by meas-
uring the coefficient of variance of the model parameters: CV( , 

, ) = (0.01, 0.28, 0.24). We also note that, five out of six cultures 
passed a leave-one-out multi-variant ANOVA test with 5% thresh-
old with the null hypothesis being the same parameters mean.

FIGURE 5 | Distributions of the frequency of appearance of the APMs of 
six different four coupled networks (labeled (A) to (F)). The dots represent 
the frequency of appearance of the APMs on a log scale, ranked from the 
most frequent one and down The red dots are the leading (most frequent) 
APMs – the ones which were more frequent than random (1/24) and blue are 
the APMs with lower frequency of appearance (including one additional point 
which was above it). The black patches represent the 1–99% Monte Carlo 
simulation of a ranking a uniform distribution with alphabet size equal to the 
maximum number of possible words (24) and to the number of words above 
uniform (red) (population size = number of culture SBEs and 10,000 repeated 
simulations). The orange line is the maximum likelihood fit to a power-law 
model of the points above uniform (red). The Green patches represent the 
1–99% Monte Carlo simulation of wrestling model simulation with parameters 
which were estimated according to maximum likelihood measurement on a 

grid search (see Materials and Methods). The green line is the mean value of 
the patch. The number summarize the wrestling arena model simulation 
parameters ( , ), the power-law estimated slope ( ) and the power-law test 
p-value (p). Notice that also the cultures had very different time properties (e.g., 
mean IBI lasting from 10 to 250 s; see Materials and Methods) the global 
distribution parameters are similar and consistent across cultures. Moreover, 
the maximum likelihood wrestling model fit gives higher values to more 
frequent events, but nevertheless the model fits nicely also to rare events 
upto 1 to 1000. In order to emphasize the break of symmetry in the frequency 
of appearance of the different SAO, we also compared the apparent 
distribution to a ranking of a uniform distribution. We repeated this first with an 
alphabet size equal to the maximize number of possible sequence (4! = 24) 
and secondly with an alphabet size equal to the number of SAO which were 
more frequent then uniform.

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Frontiers in Computational Neuroscience www.frontiersin.org September 2010 | Volume 4 | Article 25 | 206

Shteingart et al. Wrestling model of neural networks

APPENDIX
POWER-LAW TESTING AND ESTIMATION
To quantify the finite scaling of the frequency of appearance of the 
different APMs we followed and extended the method of (Goldstein 
et al., 2004; Clauset et al., 2009). The estimation and significant test-
ing of the power-law (p(k)  k ) distribution’s parameter ( ) have 
been extended for the case of the observed finite power-law. This 
is defined as a finite repertoire of motifs’ (alphabet) distribution 
which follows the power-law only for k  M where k is the event 
frequency rank. We focus only on estimating the power parameter, 
while M was fixed and chosen such that it differentiated between 
APMs with frequency higher and lower than that calculated for the 
limit of uniform frequency of appearance.

Finite power-law estimation
We estimated the power-law only on a subset of the distribution 
at k  M. The justification for this approach is as follows: if the 
subset accumulates q fraction of the whole distribution P

0
, the 

subset distribution P is related to it as P = qP
0
. Since maximum 

likelihood estimation maximizes P and since q is independent on 
the distribution parameters ( ), it can be omitted and P can be 
treated as if it was the real distribution.

  Assuming that the one sample distribution is defined as:

P k M k k MM, ( ) { , }
1

1 2

where M
k
M k( ) 1  is the partition function for the case of M 

discrete values and the exponent . Note that this is not the real 
partition function and it does not normalize the whole distribution 
rather only the power-law subset part.

If the measurements are statistically independent, the log 
likelihood ( ) of  with N observations { }ki i

N
1 can be written as 

( ) log ( ) log log .N kM
n
N

n1  To find its minimum, 
we differentiate with respect to the parameter and get the ML 
estimator:

, , ( )

( )
log

M k
N k

i i

N
M

M n
n

N
1

1

0

DISCUSSION AND SUMMARY
We showed that four-coupled cultured networks exhibit mutual 
SBEs with a reach repertoire of APM, each with a distinct order 
of activity propagation between the sub-networks. Investigations 
of the frequency of appearance of the APMS revealed power-
law scaling between the several leading (most frequent) ones. 
In complex systems, power-law scaling can be a manifestation 
of hierarchy and robustness (Sornette, 2007). The non-uni-
form nature of Finite power-law suggests some kind of control 
mechanism that prevents a winner-takes-all scenario by the 
most active sub-network (so it does not generate almost all the 
mutual SBE).

We introduced a “wrestling model” to account for the observa-
tions. Simulations of the model to fit with the observations revealed 
that the scaling parameter  has to be close to 1. This result indicates 
that the intrinsic variability in the IBI sequences generated by the 
sub-networks is regulated to fit the variability in the mean IBI 
between the different sub-networks.

This result ( . )1 0 1  suggests that there must be some unknown 
mechanism which can co-regulate the local intra-variability and 
the global inter-variability to be comparable.

One possible mechanism might be related to the propagation of 
calcium waves in the astrocytes. It has been proposed that astrocyte 
calcium waves may constitute a long-range signaling system within 
the brain (Cornell-Bell et al., 1990).

The calcium waves can be regulated by the rate of activity of the 
different sub-networks and in turn regulates the effective synaptic 
strengths. Since they have a long time scales and can propagate 
over long distances, the calcium waves might provide a mechanism 
that couples the intrinsic scaling of IBI and the global variability 
between the different sub-networks. The possible role of calcium 
wave can be tested experimentally by testing the effect of regula-
tions of the astrocyte calcium wave’s dynamics on the frequency 
of appearance of the APMs.

Finally we would like to note that the similarity in the model’s 
parameters across cultures might suggests that these are invariants 
of the culture network.

FIGURE 6 | Mean IBI just before one of the five most frequent (highest rank) 
APMs of six different networks and a simulation of the “wrestling arena.” We 
normalized these IBI according the mean IBI of the most frequent APMs (thus the 
most frequent mean is “1”) (errors are SEM). It seems that the IBI before each 
APM is the same for the different leading APMs despite the high variability of the 

IBIs. The wrestling model predicts this (typical simulation  = 1.9,  = 1, N = 1000). 
The model predicts that if a slower BIZ wins over the most frequent APM its IBI is 
shorter than usual and of the same order of magnitude as the most frequent APM 
(or smaller). Note that the wrestling simulation can produce a finite power-law like 
behavior (not in all runs) with a cutoff similar to the observed data.
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true value, then at least (2 ) 2 synthetic data sets should be gener-
ated (Clauset et al., 2009). If, for example, the p-value is accurate 
to about two decimal points,  = 0.01 should be chosen, which 
implies a generation of about 2500 samples minimum. In our test, 
we used 10,000.

MODEL DETAILS AND ITS PARAMETER ESTIMATION
At each round (r = [1, N

r
], N

r
 = 1000) the ith BIZ produces a 

random IBI according to the sum of its own mean IBI µ
i
  N(0, 

inter
) and its centered Lévy distribution realization l Li

r ( , ) 
such that IBIi

r
i i

rl . At each round the winning BIZ (Wr) is 
the one with the shortest IBI: W r

i i
rarg min( ).IBI  The histo-

gram H W ii r
N rr

1 ( , ) of winning BIZs is then sorted (ranked) 
and normalized where (i, j) being the Kronecker’s delta. The 
probability distribution of the different ranks is thus simply 
p H Hi k

M
k i( ) .1

1

We estimated the model parameters by a grid search 
(  = [1:0.01:2],  = [0.5:0.05:2]). For each couple of parameters, 
we estimated the probability distribution of each rank { } .pk

M

k 1  
Then we computed the log likelihood by modeling the observed 
frequency of rank { }xk

M

k 1
 as multinomial distribution. We found 

( , )ML ML  which maximize the log likelihood  using the rela-
tion log log .i

M
i ix p1  For the ML estimated parameters’ 

values we computed the 98% (1–99%) confidence interval of the 
frequency of appearance for each rank (from the same Monte 
Carlo simulation).

Obviously, when the scaling parameter  is large we expect only 
one BIZ to win (“winner-takes-it-all” scenario), thus producing 
a delta function in the ranked SAO distribution. However, if it 
is small, it would create a uniform distribution since all BIZ are 
equally likely to “win.” We claim that only variability ratio of the 
order of one (   1) can explain the observed SAO distribution 
which is neither uniform nor exclusive.

We note that  is somehow problematic as for  lower than 2, 
the variance of the Lévy’s distribution diverges. Therefore, we used 
the empiric variance and normalized it according to inter

2 .

ACKNOWLEDGMENTS
We are thankful to Liel Rubinsky and Mark Shein. One of us HS 
thanks Prof. Hagit Messer-Yaron for partial support during part 
of this research. This research has been supported in part by the 
Tauber Family Foundation and the Maguy-Glass Chair in Physics 
of Complex Systems at Tel Aviv University.

where we mark the partition function derivation as 
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k
Md

d
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Thus we get the implicit expression for the estimated power ˆ :

M

M

n
n

N

N
k

ˆ

ˆ
log

1

1

which can be solved numerically for every observation set { }ki
M

i 1
 

and fixed M.

Power-law testing
Observing an approximately straight line on a log-log plot is a nec-
essary but not sufficient condition to indicate power-law scaling 
(Clauset et al., 2009). Thus, we tested the hypothesis of power-law 
distribution in a statistically significant manner using goodness-of-
fit test based on Kolmogorov–Smirnov (KS) statistic test (Goldstein 
et al., 2004). A significant p-value for this test (typical more than 
0.05) means that the power-law null hypothesis cannot be rejected 
which means that the data is compatible with the null hypothesis.

To avoid estimation bias, we used a Monte Carlo calibration 
process in which we drew a large number (n  103) of synthetic data 
sets from different power-laws distributions with uniform random 
slope  in the range [0, 1] (   U(0, 1)) of discrete alphabet size 
M  [3, 24]. Then we fitted each one individually to the power-law 
model (see previous subsection) and calculated the KS statistic for 
each one relative to its own best-fit model. We then measured the 
test’s p-value by estimating the fraction of trials which had a KS 
value larger than the observed one.

To summarize, in order to test the hypothesis that the observed 
data set is drawn from a power-law distribution one should: 
(1) Determine the best fit of the power-law to the data by estimat-
ing the scaling parameter  using the ML method, (2) Calculate 
the KS statistics for the goodness-of-fit of the best-fit power-law 
to the data, (3) generate a large number of synthetic data sets. Fit 
each according to the ML method, and calculate the KS statistic for 
each fit, (4) calculate the p-value as the fraction of the KS statistics 
for the synthetic data sets whose value exceeds the KS statistic for 
the real data, (5) If the p-value is sufficiently small, the power-law 
distribution can be ruled out (Clauset et al., 2009).

An analysis of the expected worst-case performance of the 
method produced a rule of thumb for determine the number of 
trials (n): if the p-values is to be accurate to within about  of the 
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