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ABSTRACT

There are two aspects to unsupervised learning of invariant representations of images: First, we can reduce the
dimensionality of the representation by finding an optimal trade-off between temporal stability and informa-
tiveness. We show that the answer to this optimization problem is generally not unique so that there is still
considerable freedom in choosing a suitable basis. Which of the many optimal representations should be selected?
Here, we focus on this second aspect, and seek to find representations that are invariant under geometrical trans-
formations occuring in sequences of natural images. We utilize ideas of ‘steerability’ and Lie groups, which have
been developed in the context of filter design. In particular, we show how an anti-symmetric version of canonical
correlation analysis can be used to learn a full-rank image basis which is steerable with respect to rotations. We
provide a geometric interpretation of this algorithm by showing that it finds the two-dimensional eigensubspaces
of the average bivector. For data which exhibits a variety of transformations, we develop a bivector clustering
algorithm, which we use to learn a basis of generalized quadrature pairs (i.e. ‘complex cells’) from sequences of
natural images.

1. INTRODUCTION

The representation of images as vectors of pixel intensities is highly redundant1 and largely obscures the char-
acteristic structure of objects in natural scenes. In particular, a large fraction of variance can be classified as
‘appearance’ changes which leave the content of the image invariant. For illustration, we can have many different
images of the same object due to changes in pose or lighting. Inverting this one-to-many mapping in a way that
still allows one to discriminate between different objects is known as the ‘invariance problem’.

Invariant representation learning can be viewed as a preprocessing step which removes distracting variance
from a data set, so that downstream classifiers or regression estimators perform better. Clearly, it is an inherent
part of training a classifier to make its response invariant against all within-class variations. Rather than learning
these invariances for each object class individually, however, we observe that there are transformations such as
translation, rotation and scaling, which apply to any object independent of its specific shape. This suggests that
signatures of such transformations exist in the spatio-temporal statistics of natural images which allow one to
learn invariant representations in an unsupervised way.

In a generative model, it is rather straightforward to apply transformations to objects even if they have
complicated 3D shape. Estimating the generative coefficients of such models from a given image, however, is
generally hard. Therefore, rather than building invariant representations for full-blown objects, the goal of
unsupervised methods is to extract low-level image features which behave in a desirable way under common
transformations. What is meant to be ‘common’ is determined by the spatio-temporal image statistics. The
assessment of whether an image feature behaves in a ‘desirable’ way or not can be made precise in terms of an
objective function. This should not belie the fact, however, that there are many different objective functions of
similar plausibility.

An important goal of this paper is to tie together two different lines of work on invariant filters that have
developed rather independently over the last fifteen to twenty years: (a) the work on unsupervised learning, most
of which seeks to derive receptive field properties of visual neurons,2 and (b) the concept of ‘steerability’,3 which
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is more common in the computational vision literature and often dedicated to analytic derivations of (steerable)
filter kernels. While the filters in (b) are designed to model transformational changes with a clear geometrical
meaning, the filters derived by unsupervised learning in (a) are usually determined by a trade-off between signal
power and insensitivity to certain appearance changes. Here we seek to clarify the differences and commonalities
between the two approaches and also to develop algorithms which combine the advantages of both.

The paper is organized as follows: First, in section 2, we review previous work on unsupervised invariant
representation learning which builds upon simultaneous diagonalization of certain covariance matrices. We first
explain the diagonalization and then discuss different interpretations that have been used in the context of
representation learning. Next, in section 3, we consider the ideal case of perfect predictability to show important
differences between the eigenfunctions of symmetric and anti-symmetric covariance matrices. In section 4 we
present the theoretical foundations of how steerable filters can be learned from a spectral decomposition of the
anti-symmetric part of the time-lagged covariance matrix. Next, we use this method to learn a complete steerable
basis for the problem of rotation invariance. Finally, in section 6, we provide a geometric interpretation of the
anti-symmetric part of the time-lagged covariance matrix as the average bivector. This interpretation allows us
to extend the algorithm in order to cope with multiple clusters of bivectors. In particular, we use a bivector
clustering algorithm to learn a basis of generalized quadrature pairs from sequences of natural images.

2. UNSUPERVISED REPRESENTATION LEARNING FROM SPATIO-TEMPORAL
CORRELATION ANALYSIS

A large body of work on invariant representation learning4–11 is ultimately based on linear correlation analysis12

oftentimes endowed with a nonlinear feature space.11,13–15 A crucial commonality in all of this work is the use of
spectral decompositions of covariance matrices or Gram matrices as it is well known from principal component
analysis (PCA).

In this paper, we focus particularly on the following generalized spectral decomposition of the covariance
function Cx(τ) = 〈x(t + τ)xT (t)〉 of a wide-sense stationary vector-valued process x(t) ∈ Rd, which is at the
core of many studies on representation learning from temporal sequences:

Cx(0)−1/2Cx(τ)Cx(0)−1/2 = UDV T (1)

The r.h. side is the singular value decomposition (SVD) with U, V being orthogonal (i.e. UUT = UTU =
V V T = V TV = Id) and D = diag(λ1, λ2, . . . , λd) is diagonal with non-negative entries placed in descending
order λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. If a singular value λk is well separated from all other singular values (i.e.
| log(λk) − log(λj)| ≥ ε > 0) then the k-th column of the left eigenbasis U and the k-th column of the right
eigenbasis V are uniquely determined. Furthermore, if Cx(τ) = Cx(τ)T = Cx(−τ) is symmetric, then U = V ,
and representing the process x(t) by using the new representation y(t) := UTCx(0)−1/2x(t) yields the covariance
matrices

Cy(0) = (UTCx(0)−1/2)Cx(0)(UTCx(0)−1/2)T = UT Cx(0)−1/2Cx(0)Cx(0)−1/2︸ ︷︷ ︸
Id

U = Id (2)

Cy(τ) = (UTCx(0)−1/2)Cx(τ)(UTCx(0)−1/2)T = UT Cy(0)−1/2Cx(τ)Cx(0)−1/2︸ ︷︷ ︸
UDUT

U = D , (3)

which are both diagonal. Again, if the singular values are well separated, then the new representation y(t) :=
UTCx(0)−1/2x(t) is unique in decorrelating the different components 〈yj(t)yk(t)〉 and 〈yj(t)yk(t + τ)〉 for all
j 6= k at the same time.

There are multiple interesting interpretations to the very same decomposition in Eq. 1, and thus it has
been motivated from various perspectives. In the next section, we present four of these interpretations includ-
ing oriented PCA, 2nd-order independent component analysis, slow feature analysis, and canonical correlation
analysis/predictive coding. In particular, we explain their differences and meanings specific to the problem of
invariant representation learning.



2.1. Dimensionality reduction vs predictive coding in invariant representation learning

If a representation is invariant against certain changes in the image, then the information about these changes
is lost. Therefore, it is important to tell apart two different sorts of problems that are confounded in the task of
invariant representation learning: (a) Which image informations are irrelevant and hence can be discarded? (b)
Which representation should be used to represent the remaining relevant information?

In unsupervised learning, question (a) is usually addressed by resorting to some heuristics. For instance,
principal component analysis (PCA) is a popular method frequently used for the purpose of dimensionality
reduction which seeks to maximize the signal energy. Oriented PCA5 is a generalization of that method which
is also employed in the context of invariant representation learning.10,11,16 It models the data x ∈ Rd as a
superposition x = s + n of a relevant signal s and irrelevant noise n and seeks to find a subspace spanned by
y = Wx, W ∈ Rm×d, m < d which maximizes the signal-to-noise ratio. Analogous to plain PCA, it is instructive
to start with the one-dimensional case m = 1. In this case, oriented PCA searches for a filter w which optimizes
the generalized Rayleigh quotient

w = arg max
w

wTCxw
wTCnw

= arg max
w

wTC
−1/2
n CxC

−1/2
n w

wTw
= arg min

w

wTC
−1/2
x CnC

−1/2
x w

wTw
(4)

where Cx denotes the total covariance of the data and Cn stands for the noise covariance. Note that in case of
isotropic noise (i.e. if Cn ∝ Id) the optimization reduces to the usual eigenvalue problem of plain PCA. If Cn
is not proportional to the identity matrix, one can use the generalized eigenvalue problem spelled out in Eq. 1
to find the optimum with respect to the Rayleigh quotient (Eq. 4). In the case of more than one dimension
(i.e. m > 1) the signal-to-ratio is maximized for all filter matrices W ∈ Rm×d which maximize the ratio of the
corresponding determinants:

Wo = arg max
W

det(WTCxW )
det(WTCnW )

. (5)

It does not come as much of a surprise that the eigenvectors of the m largest eigenvalues of C
−1/2
x CnC

−1/2
x take

a maximum for this ratio, but this maximum is not unique: any other W̃ := AWo with arbitrary A ∈ Rm×m of
full rank (i.e. det(A) 6= 0) equivalently maximizes the signal-to noise ratio.

In order to use oriented PCA for unsupervised representation learning, the crucial question is how to decom-
pose the data covariance Cx into signal and noise covariance. In invariant representation learning, the idea of
“slowness” has been employed as heuristic11,17–19 building on the assumption that the perceived environment
changes slowly and the quickly varying components in the sensory input carry less important local information.
The optimization for slowness in slow feature analysis (SFA)11 mirrors the reasoning behind oriented PCA.
In the case of one dimension, the objective function of SFA is given by

w = arg min
w

wT 〈(x(t + τ)− x(t))(x(t + τ)− x(t))T 〉w
wT 〈x(t)x(t)T 〉w

(6)

= arg max
w

wT 〈x(t)x(t)T 〉w
wT 〈(x(t + τ)− x(t))(x(t + τ)− x(t))T 〉w

which can be interpreted as a special case of oriented PCA for which the noise covariance is set proportional to
the covariance 〈(x(t + τ)− x(t))(x(t + τ)− x(t))T 〉 of changes at a given time scale τ .

For SFA, it has never been specified what the objective function is in case of many dimensions m > 1. The
interpretation of Eq. 6 in terms of a signal-to-noise ratio offers a reasonable extension to the multi-dimensional
case via Eq. 5. However, it must not be forgotten that the optimal filter matrix W ∈ Rm×d is always ambiguous
for m > 1 because left multiplication with an arbitrary A ∈ Rm×m of full rank leaves the signal-to-noise ratio
invariant.

Therefore, only the subspace but not the spanning basis is distinct in terms of the objective function (Eq. 5).
Clearly, the generalized eigendecomposition for finding this subspace suggests to use the eigenbasis returned
by the standard algorithm, but neither maximization of the signal-to-noise ratio nor maximization of slowness



provides a theoretical justification for this choice. For illustration, after selection of the subspace one would
obtain the same eigenbasis by solving for the opposite objective function (i.e. minimization of the signal-to-noise
ratio or maximization of swiftness) as it leads to the same eigendecomposition.

Generally speaking, dimensionality reduction can only serve to answer question (a), but not question (b):
It makes no statement how to represent the remaining relevant information. This can be derived from the fact
that any invertible mapping leaves the signal-to-noise ratio unchanged: if y = Wx maximizes the signal-to-noise
ratio, the same is true for any other representation y = AWx with A ∈ Rm×m and rank(A) = m. Consequently,
the filters or ‘receptive fields’ of such a representation are not unique but any other basis of the same subspace
could be used just as well.

Which reasoning may be used to rank one basis to be preferable above others? This important issue will
be addressed in the following. For the sake of clarity, we will from now on ignore the issue of dimensionality
reduction and assume that all irrelevant information has been discarded already.

A well known possibility of choosing a unique basis is independent component analysis (ICA)20 which has
been studied extensively in the context of blind source separation. In practice, ICA seeks to minimize some
empirical measure of statistical dependency between the filter responses. Thus, the generalized eigenbasis of
Cx(0) and Cx(τ)+Cx(−τ) is a reasonable choice according to the objective of ICA, because this choice is unique
in removing all the considered correlations between different components of x. This particular method is known
as second-order ICA4,21 or the ‘AMUSE’ algorithm as it has been named originally in Ref. 4. In contrast to
oriented PCA and slow feature analysis, the motivation underlying ICA is not related to the extremal properties
of the generalized eigenvalues. Instead, second-order ICA exploits the uniqueness of simultaneous diagonalization
for non-degenerate spectra. The mathematical rule used in SFA to obtain a unique set of basis functions relies
on the same objective as AMUSE, namely decorrelation. Without this further assumption, receptive fields with
very different shapes would provide a representation that achieves exactly the same “slowness”. Furthermore,
decorrelation alone is sufficient to determine the receptive fields.

If a basis is chosen only with the goal of maximizing statistical independence, it is not clear whether the
filter responses will also have a geometrical meaning in terms of transformations as it would be desirable in the
context of invariant image representations. Intuitively, it is clear that the separation of structure from appearance
should be useful for object recognition or other visual inference tasks. In other words, we would ideally want
a representation (~s,~a) which represents any image patch ~x in terms of a structure vector ~s and an appearance
vector ~a. An important aspect of such a new representation (~s,~a) is that it combines an invariant representation
of structure given by ~s with an equivariant representation of the appearance change specified by ~a, which together
preserve all the information. Therefore, such representations have been termed a ‘split of identity’22.

Two different classes of models implementing this idea have been studied: One uses a bilinear generative
model, where the two coefficient vectors describing structure and appearance both influence the generation of
an image vector in a linear way.23,24 In the other approach, pairs of basis vectors are used whose coefficients
are represented in polar coordinates. A well known example is the energy model of complex cells.25 As pointed
out in Ref. 22, energy and phase of such complex cells implement an invariant-equivariant split of identity: The
energy is invariant against structural changes but varies with contrast in an equivariant way (i.e. changes in
energy are proportional to changes in contrast). Conversely, the phase is invariant against changes in contrast
but sensitive to structural changes. Additionally, the complex cell can be designed such that the phase provides
an equivariant representation of certain geometrical changes. This is the idea behind steerable filter design3,22

and the approach taken in this paper.

While the analytical design of steerable filters is well understood, we want to do unsupervised learning of
invariant representations with quadrature pairs. In particular, we will present two algorithms for this task: The
first one is an anti-symmetric version of canonical correlation analysis, the other one an extension using a bivector
clustering-algorithm.

We now proceed to another interpretation of Eq. 1, which we will use later to study the relationship between
representation learning and certain transformations. The following interpretation of Eq. 1 is based on predictive
coding26 and canonical correlation analysis (CCA).12,27



For a wide-sense stationary process, the two covariance matrices Cx(0) and Cx(τ) are sufficient to tell how
well x(t + τ) can be predicted from observing x(t) on the basis of a linear predictor Lτ in the mean squared
error sense 〈||x(t + τ) − Lτ [x(t)]||22〉. Assuming without loss of generality that 〈x(t)〉 = 0, the optimal linear
predictor is given by Lτ [x(t)] = Cx(τ)C−1

x (0). After a whitening transformation y(t) := C
−1/2
x (0)x(t) the form

of the linear predictor further simplifies to Lτ [y(t)] = Cy(τ).

Canonical correlation analysis (CCA)12 is tightly related to the linear predictor. Precisely, it is equal to the
singular value decomposition of the linear predictor Lτ [y(t)] = UDV T if the covariance of the input random
variable is ‘white’ (i.e. Cy(t) = Id). Similar to the maximum variance components found with principal compo-
nent analysis, CCA can be used to find the components with the maximum correlation coefficient between a pair
of vector-valued random variables. Since for Gaussian random variables the mutual information is determined
by the correlation coefficient, one can motivate CCA between y(t) and y(t + τ) by an infomax principle across
time.

In the general case, the singular value decomposition of the time-lagged covariance matrix returns two different
orthogonal bases U and V , one for y(t) and one for y(t− τ) such that the covariance between UTy(t) and
V Ty(t− τ) becomes diagonal. Since the time-lagged covariance between y(t) and y(t− τ) equals the linear
predictor, one can interpret the two bases as follows: Let (u1, . . .un) and (v1, . . .vn) denote the column vectors
of U and V , respectively. Then the linear predictor maps v1 7→ u1, v2 7→ u2, and so on. In other words, the
k-th component uk in the input ‘predicts’ the k-th component vk of the output.

For the problem of invariant representation learning, it is interesting to note that the spectrum of a square
matrix can always be decomposed into its symmetric and its anti-symmetric part:

Cy(τ) =
1
2

(
Cy(τ) + CT

y (τ)
)

︸ ︷︷ ︸
symmetric

+
1
2

(
Cy(τ)− CT

y (τ)
)

︸ ︷︷ ︸
anti−symmetric

(7)

These two parts have different geometric meanings. In the next section we show that the symmetric part is
related to structurally constant features, while the anti-symmetric part is related to structural changes such as
translations, rotations or other Lie groups. These transforms and their spectral properties have been studied
extensively in the context of steerable filter design.28 As an original contribution of this paper we show how
steerable filters are related to the anti-symmetric part of the time-lagged covariance matrix and how this can be
used for unsupervised representation learning.

3. PERFECT PREDICTABILITY

In order to assess the differences between the eigenfunctions of the time-lagged covariance matrix in the symmetric
and the anti-symmetric case, it is instructive to assume perfect predictability. That is, we assume for now that
y(t + τ) = Lτy(t) for all t. We will also assume that the instantaneous covariance matrix Cy(0) = Id, as this
can always be achieved via the whitening transformation y(t) := Cx(0)−1/2x(t).

Perfect predictability imposes strong limitations on the class of possible transformations Lτ : Since Cy(0) = Id
and stationarity imply that Id = Cy(0) = LτCy(0)LTτ = LτL

T
τ , we can restrict our discussion to orthogonal trans-

formations. Furthermore, perfect predictability implies that we can write y(t) = L
t/τ
τ y(0) for time-continuous

processes.

If we assume, like in 2nd-order ICA, the time-lagged covariance matrix to be symmetric (i.e. Cy(τ) =
1
2 (Cy(τ) + Cy(τ)T ), then, the only orthogonal transformation Lτ which is continous in τ is the identity Lτ ≡ Id.
This follows from the fact that a symmetric transformation L can always be decomposed into an orthogonal
eigenbasis L = UDUT with D = diag(D11, . . . , Ddd), and because LLT = UD2UT = Id implies that D2

kk = 1.
Although it is possible to have det(L) = 1 if an even number of the Dkk are negative, we can exclude this case
by requiring that Lτ can be changed continuously into the identity under the additional constraint of symmetry
L = LT (i.e. we want limτ→0

1
2 (Lτ + LTτ ) → Id).

In conclusion, a symmetric time-lagged covariance matrix Cy(τ) and perfect predictability implies that y(t) =
const and hence also x(t) = const. This holds true even in the case of nonlinear feature maps provided that



they are invertible. Conversely, a symmetric Cy(τ) can differ from the identity matrix only because of noise
or imperfect predictability. The anti-symmetric part is not always zero. In contrast to the symmetric part of
the covariance matrix, the anti-symmetric part is always sufficient to determine the orthogonal transformation
describing the time-evolution under the assumption of perfect predictability.

An orthogonal matrix is in general neither symmetric nor anti-symmetric and its singular value decomposition
cannot reveal any pattern because the singular values are all equal to one. However, if the singular value
decomposition is applied only to the anti-symmetric part of an orthogonal matrix, then all non-zero singular values
show up in pairs: The corresponding left eigenvectors uj ,uj+1 being mapped onto the same but interchanged
right eigenvectors vj = uj+1 and vj+1 = uj . Moreover, if one represents the orthogonal transform Lτ using
either the left or the right eigenbasis of its anti-symmetric part Lτ −LTτ , then the corresponding matrix UTLτU
becomes block-diagonal with two-by-two blocks or ±1 on the main diagonal (see Eq. 10 below).

For any transformation L which is similar to an orthogonal transform, having a representation W such that
WLW−1 is block diagonal implies that the energy for each block is invariant. For orthogonal transforms it is
always possible to find a block diagonal representation such that each block is at most two-dimensional. The
corresponding pairs of basis functions can be seen as generalized quadrature pairs or steerable filters3,28 of the
considered transform L.

Two orthogonal filters are called a ‘quadrature pair’ if they are related to each other via the Hilbert transform
which induces a 90 degree phase shift within each frequency band. Simple examples are sin(x) and cos(x)
or slightly more generally sin(k(x + ∆x)) and cos(k(x + ∆x)). The important role of quadrature pairs in
the context of invariant representations shall be illustrated briefly for one-dimensional translations. Let f(x)
describe an arbitrary one-dimensional pattern defined over the real axis. This can be shifted via the transform
L∆x[f(x)] := f(x −∆x). Using the definition of the standard scalar product 〈g(x), h(x)〉 =

∫
g(x) h(x)dx, it is

well known that the power spectrum

P (k) = 〈sin(kx),L∆x[f(x)]〉2 + 〈cos(kx),L∆x[f(x)]〉2 (8)

is invariant under the (Lie group) transformation L for all k. This finding is a direct consequence of the fact
that {exp(ikx) : k ∈ R} are the eigenfunctions of L and the modulus of all eigenvalues is equal to one. The real
and imaginary part of these eigenfunctions are exactly the sine and cosine functions that show up as ‘quadrature
pairs’ in Eq. 8. P (k) reflects the energy within each subspace in the span of the quadrature pair at frequency k.
The fact that P (k) does not depend on ∆x means that one can think of L as being a direct sum of individual
operators L =

⊕
k Lk, each of which acts independently on mutually orthogonal subspaces. Conversely, whenever

the transformation of a pattern can be decomposed into such elementary transformations, the energy conservation
can be made explicit by using quadratic feature maps.

The distinct properties of sines and cosines are easily assessed by noting that any translated sinusoidal
function of a given frequency can be perfectly represented by a linear superposition of a pair of sine and cosine
functions of same frequency:

sin(kx + ∆x) = a(∆x) sin(kx) + b(∆x) cos(kx) (9)

This property is called steerability3,28–30 and the coefficients as a function of the transformation parameter ∆x
are called the steering functions. The steering functions themselves are again sine and cosine functions for which
the sum of squares [a(∆x)]2 + [b(∆x)]2 = k is constant.

4. UNSUPERVISED LEARNING OF GENERALIZED QUADRATURE PAIRS

Now we focus on the issue whether and how we can find two-dimensional subspaces that stay invariant under
the action of interesting image transformations. In particular, we explain how the action of certain Lie-groups
can be described as a set of rotations within mutually orthogonal, two-dimensional, and real-valued subspaces.
To this end, we start with considering the special orthogonal group SO(n). Its elements are the orthogonal



matrices with determinant one, and it forms a real compact Lie group of dimension n(n-1)/2. Moreover, for any
orthogonal matrix R it is possible to find a factorization R = OGOT , where O is orthogonal and G has the form

G =


G1

. . .
Gm

±1
. . .

±1

 , (10)

where the Gk are 2×2 rotation matrices as defined below in Eq. 12. The subspace spanned by those column vectors
in O which belong to the eigenvalues ±1 correspond to dimensions that do not change under the transformation
R. For the construction of invariant representations we want to exclude these dimensions and hence we assume
the following generative model:

x(t) = AGA−1x(t− τ) (11)

where G =
⊕n

k=1 Gk is a block-diagonal matrix with 2× 2 dimensional rotation matrices

Gk =
(

cos(∆φk) − sin(∆φk)
sin(∆φk) cos(∆φk)

)
(12)

on the main diagonal. A is invertible but otherwise arbitrary and plays the role of the mixing matrix. The set
of all matrices M = {M : M = AGA−1} defines the class of all possible transforms that can be addressed with
this generative model. As discussed above, this set contains all matrices which are similar to an (interesting)
orthogonal matrix.

In the following we show how A and G can be inferred from a time series (x(0),x(τ),x(2τ), . . .x(nτ))
generated according to Eq. 11. We first define Q := (AAT )−1/2A in order to obtain the factorization A =
(AAT )1/2Q where (AAT )1/2 is symmetric positive definite and Q orthogonal. Inserting this factorization into
Eq. 11 we get

x(t) = (AAT )1/2QGQT (AAT )−1/2x(t− τ) (13)

Note that AAT can be estimated from the zero-time lag covariance matrix as it can be shown that E[x(t)xT (t)] =
1
2AAT . Next we define two whitened data matrices X := (AAT )−1/2(x(0),x(τ),x(2τ), . . .x((n − 1)τ)) and
Y := (AAT )−1/2(x(1),x(τ),x(2τ), . . .x(nτ)) of dimension d× n which only differ by the presence or absence of
x(0) and x(nτ), respectively. Thus we can write compactly

Y = QGQTX (14)

Given that XXT is invertible we can multiply from the right with the pseudo-inverse X− = XT (XXT )−1

yielding
Y X− = QGQT . (15)

This equation is different from an eigenvalue decomposition of Y X− only by the fact that G is block diagonal
rather than diagonal. For each block it holds that

(Gk −GT
k )2 =

(
0 − sin(∆φk)
sin(∆φk) 0

)2

=
(

sin2(∆φk) 0
0 sin2(∆φk)

)
(16)

so that (G − GT )2 is diagonal with sin2(∆φk) on the main diagonal for block ‘k’. Hence, whenever the ∆φk
are mutually different, we can identify Q up to a rotation within each block by computing the eigenvalue
decomposition of

(Y X− − (Y X−)T )2 = Q(G−GT )2QT . (17)

In other words, we are able to find an orthogonal basis U for which each pair of column vectors (u2k−1,u2k)
spans the same invariant subspace as the corresponding pair of column vectors (q2k−1,q2k) of the original matrix
Q such that UTQ = Kψ. The block-diagonal rotation matrix Kψ accounts for the ambiguity of a global phase



Figure 1. Steerable basis learned with ACA. For each generalized quadrature pair, the two basis functions are at the
same location within the upper and the lower box, respectively. The quadrature pairs are sorted with respect to the size
of the corresponding eigenvalues (which corresponds to angular frequency).



shift. Note that G can be identified as well because (via Eq. 16) the ∆φk are determined by the arc sine of the
square root of the eigenvalues.

To sum up, let us recall that the time-lagged covariance matrix after whitening equals the optimal linear
predictor. In classical CCA, a different left and right basis is used to diagonalize this matrix. Our algorithm,
which we refer to as Anti-Symmetric Correlation Analysis (ACA), proceeds by diagonalizing the squared anti-
symmetric part L2

A := 1
2 (L− LT )2 of a linear transformation L.

In contrast to 2-nd order ICA, ACA assumes that the independent sources are not merely vectors, but rather
two-dimensional subspaces spanned by generalized quadrature pairs. Therefore, it can be seen as a 2-nd order
subspace ICA.31

The anti-symmetric part of the time-lagged covariance matrix appears to be more appropriate to model
common structural changes in the data: Orthogonal transforms in pixel space do not change the contrast but
the amplitude ratios between different basis functions which directly corresponds to structural changes in an
image. In the next section, we present an example which shows that ACA can be used to learn a complete basis
of rotation invariant, steerable filters.

5. LEARNING A ROTATION INVARIANT, STEERABLE BASIS

For illustration, we use the ACA algorithm for learning a steerable basis consisting of quadrature pairs that can
be steered w.r.t rotations in the image plane. To this end we construct a rotation operator for 32× 32 patches
based on the discrete two-dimensional Fourier basis where each basis vector is mapped onto its rotated version.
We use the first 484 basis vectors out of a total of 1024. In order to avoid distortions due to the square shape
of the patches all pixels are set to zero outside the circle of 16 pixel radius. Using the eigenvalue decomposition
of the anti-symmetric part of the rotation operator, as explained in the previous section, we obtain a complete
steerable basis. The result is shown in Fig. 1.

Steerability with respect to rotations is in principle very similar to the case of translation discussed above:
if the image is represented in polar coordinates (r, φ) with the origin at the center of rotation, then the eigen-
functions of the rotation operator R∆φf(r, φ) = f(r, φ + ∆φ) can be written as g(r) exp(iφ). Analogous to the
power spectrum in Eq. 8, the squared absolute values P◦(k) of these eigenfunctions are invariant under rotations
and can similarly be expressed in terms of their real and imaginary part

P◦(k) = 〈g(r) sin(kφ),R∆φ[f(r, φ)]〉2 + 〈g(r) cos(kφ),R∆φ[f(r, φ)]〉2 . (18)

6. ROBUST LEARNING OF QUADRATURE PAIRS FROM SEQUENCES OF
NATURAL IMAGES VIA BIVECTOR CLUSTERING

There are multiple different sorts of changes in sequences of natural images which cannot all be described by
the same transformation. For instance, if the image is translated to the left for some period and then translated
to the right for another period, the anti-symmetric part of the corresponding covariance matrices add to zero
1
2 (Cx(τ) − Cx(τ)T ) + 1

2 (Cx(−τ) − Cx(−τ)T ) = 1
2 (Cx(τ) − Cx(τ)T ) + 1

2 (Cx(τ)T − Cx(τ)) = 0. Therefore, we
will now modify the ACA algorithm in order to cope with temporal sequences which contain a large variety of
different transforms.

In order to see how to modify ACA, it is instructive to explain its geometric meaning first: The anti-symmetric
covariance matrix can be interpreted as a representation of the average bivector with respect to a particular basis
constructed from pairs of consecutive data points in the temporal sequence. Bivectors are a special case of multi-
vectors which are used in geometric algebra32,33 or Grassmann algebra which allow one to deal conveniently with
multi-dimensional subspaces rather than uni-dimensional vectors only. Geometrically, bivectors are a basis-free
representation of two-dimensional subspaces or, more specifically, a rotation within that subspace, which can be
defined via the totally anti-symmetric wedge product between two plain vectors S(a,b) = a∧b = −b∧a. Then,
the ‘orientation’ of the resulting bivector S corresponds to the subspace spanned by the two plain vectors a,b,
and its length equals |a||b| sin(φ) where φ denotes the angle between a and b. In particular, the bivector is zero
if there is no structural change at all (i.e. if a ∝ b).



Figure 2. Left: Image basis obtained with the bivector clustering algorithm. The basis functions are ordered such that
the quadrature pairs are grouped next to each other within each row. Furthermore, the quadrature pairs are grouped into
four clusters of different spatial frequencies (rows 1-4, 5-8, 9-12, 13-16) and ordered with respect to orientation within
each cluster. Right: Random samples taken from four different clusters. The quadrature pair representing the cluster
centroid is plotted in the upper left corner for each cluster. There is a clear perceptual difference between the different
clusters as can be assessed by eye.

In order to avoid a lengthy introduction to the concepts of geometric algebra, we will here only use the fact
that for a fixed basis, the bivector coefficients can be defined as anti-symmetrized dyads a ∧ b = abT − baT

using common matrix algebra. Also, every linear combination of anti-symmetrized dyads again defines a bivector
with respect to the same basis. Therefore, the anti-symmetric part of the time-lagged covariance matrix can be
interpreted as the average bivector constructed from pairs of consecutive data points:

Cy(τ)− Cy(τ)T =
1

N − 1

N−1∑
k=1

x(kτ) ∧ x((k + 1)τ) =
1

N − 1

N−1∑
t=1

x((k + 1)τ)x(kτ)T − x(kτ)x((k + 1)τ)T . (19)

The crucial point here is that the time evolution between two consecutive time steps is modeled by a rotation
in the two-dimensional subspace rather than by a difference vector. Since changes in the length of an image patch
vector do only change the contrast but not the structural content, it is plausible to model structural changes
with bivectors which are insensitive to changes in the length but increase with the size of the rotation angle as
sin(φ).

In order to learn image bases which are adapted to the structural changes in sequences of natural images,
we would like to search for ‘typical’ subspaces optimally aligned with the clusters of the most common rotation
planes in the bivector space. To this end, we use a simple Grassmann clustering algorithm34 which is based on
the k-means algorithm and uses the projection F-norm to define a distance between any pair of subspaces:

d([U ], [V ]) := 2−1/2||UUT − V V T ||Fro ≡
1√
2
trace

{
(UUT − V V T )T (UUT − V V T )

}
. (20)

The subspaces [U ] and [V ] are represented by matrices U ∈ Rd×m1 and V ∈ Rd×m2 with UTU = Im1 and
V TV = Im2 . That is the columns of U and V define the bases of the two subspaces, and UUT and V V T

represent projections onto these subspaces.

For the two-dimensional subspace spanned by two consecutive image patch vectors, the representing matrix U
can be obtained from the sum s(kτ) := x((k+1)τ)+x(kτ) and the difference vector t(kτ) := x((k+1)τ)−x(kτ).



If the image patch vectors are normalized, the sum and difference vectors s(kτ), t(kτ) are orthogonal, and hence
U =

[
s
||s|| ,

t
||t||

]
can be used to compute the distance of the rotation from the cluster centroids. Note, that the

covariance between s(kτ) and t(kτ) equals the anti-symmetric part of the time-lagged covariance matrix Cx(τ):

〈st〉 = 〈(x((k + 1)τ) + x(kτ))(x((k + 1)τ)− x(kτ))T 〉 = Cx(τ)− Cx(τ)T (21)

This equality elucidates the deeper relationship between ACA, which searches for the eigensubspaces of the
average bivector, and the bivector clustering algorithm used in this section.

Figure 2 (left) shows the image basis obtained with the bivector clustering algorithm applied to a sequence
of 48000 image patches (16 × 16 pixels) of a movie sequence taken from the van Hateren movie data base as
described in.36 The basis functions are ordered such that the quadrature pairs are grouped next to each other
within each row. Furthermore, the quadrature pairs are grouped into four clusters of different spatial frequencies
(rows 1-4, 5-8, 9-12, 13-16) and ordered with respect to orientation within each cluster.

Each quadrature pair constitutes the centroid of a cluster of image patches. The r.h. in Fig. 2 shows random
samples taken from four different clusters. For comparison, the quadrature pair is plotted in the upper left corner
for each cluster. There is a clear perceptual difference between the different clusters as can be assessed by eye.

7. CONCLUSION

We disentangled the task of unsupervised invariant representation learning into two distinct aspects: dimension-
ality reduction and finding an invariant-equivariant split of identity. Also, we showed that the influential idea of
using ‘slowness’ or ‘temporal stability’ can be used only to address the problem of dimensionality reduction but
does not serve as a criterion to decide how to represent the relevant subspace.

While 2nd-order ICA allows one to choose a unique basis, it has been shown in Ref. 37 that the linear
generative model provides only a poor match to the true statistics of the data. Therefore, we studied the ideal
case of perfectly predictable transformations in order to get insights about what kind of statistics we can expect
to find in natural images. Following the idea of steerable filters, we argued for decorrelating the data into two-
dimensional subspaces rather than searching for one-dimensional eigenspaces. We presented a generative model
and an anti-symmetric version of Canonical Correlation Analyis, (ACA), which allows one to determine these
subspaces uniquely for non-degenerate spectra.

Each two-dimensional subspace found with this method can be interpreted as a generalized quadrature pair,
which instantiates the idea of an invariant-equivariant split of identity. The amplitude encodes only for contrast
and the phase only for structural changes. In particular, we demonstrated that ACA can be used to learn a basis
of steerable filters from a sequence of a rotating white noise pattern.

Finally, we extended the algorithm in order to cope with more complex data statistics, by clustering bivectors
corresponding to transformations in the data, and using the cluster-means as basis functions. We applied this
algorithm to movie sequences of natural images, and obtained a basis of generalized quadrature pairs. We
demonstrated that this basis separates the data into perceptually distinct clusters.
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17. P. Földiak, “Learning invariance from transformation sequences,” Neural Comput. 3(2), pp. 194–200, 1991.
18. J. Stone, “Learning perceptually salient visual parameters using spatiotemporal smoothness constraints,” Neural

Comput. 8(7), pp. 1463–1492, 1996.
19. C. Kayser, K. Kording, and P. Konig, “Learning the nonlinearity of neurons from natural visual stimuli,” Neural

Comput 15(8), pp. 1751–9, 2003.
20. A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis, John Wiley & Sons, 2001.
21. L. Molgedey and H. Schuster, “Separation of independent signals using time-delayed correlations,” Physical Review

Letters 72(23), pp. 3634–3637, 1994.
22. G. H. Granlund and H. Knutsson, Signal Processing for Computer Vision, Kluwer Academic, Dordrecht, 1995.
23. J. B. Tenenbaum and W. T. Freeman, “Separating style and content with bilinear models,” Neural Comput 12,

pp. 1247–1283, Jun 2000.
24. R. P. N. Rao and D. H. Ballard, “Development of localized oriented receptive fields by learning a translation-invariant

code for natural images.,” Network: Computation in Neural Systems 9(2), pp. 219–234, 1998.
25. E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for the perception of motion.,” J. of the Optical

Society of America A 2(2), pp. 284–299, 1985.
26. P. Elias, “Predictive coding (part 1+2),” IEEE Transactions on Information Theory 1(1), pp. 16–33, 1955.
27. D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical correlation analysis: an overview with application to

learning methods,” Neural Comput 16, pp. 2639–2664, Dec 2004.
28. Y. Hel-Or and P. C. Teo, “Canonical decomposition of steerable functions,” J. Math. Imaging Vis. 9(1), pp. 83–95,

1998.
29. E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable multi-scale transforms,” IEEE

transactions on informations theory 38(2), 1992.
30. H. Knutsson, R. Wilson, and G. Granlund, “Anisotropic nonstationary image estimation and its applications: Part

i–restoration of noisy images,” IEEE Trans. Communications 31(3), pp. 388–397, 1983.
31. G. Nolte, A. Ziehe, F. Meinecke, and K.-R. Müller, “Analyzing coupled brain sources: distinguishing true from

spurious interaction,” in Advances in Neural Information Processing Systems, J. P. Yair Weiss, Bernhard Schlkopf,
ed., 18, MIT Press, (Cambridge, MA), 2006.

32. D. Hestenes, Space-Time Algebra, Gordon and Breach, New York, 1966.
33. C. Doran and A. Lasenby, Geometric Algebra for Physicists, Cambridge, Cambridge, 2003.
34. P. Gruber and F. Theis, “Grassmann clustering,” in Proceedings of the European Signal Processing Conference,

(EUSIPCO 2006), (Florence, Italy), September 2006.
35. T. Kohonen, S. Kaski, and H. Lappalainen, “Self-organized formation of various invariant-feature filters in the

adaptive-subspace SOM,” Neural Computation 9(6), pp. 1321–1344, 1997.
36. J. van Hateren and A. van der Schaaf, “Independent component filters of natural images compared with simple cells

in primary visual cortex,” Proc R Soc Lond B Biol Sci. 265(1394), pp. 1724–1726, 1998.
37. M. Bethge, “Factorial coding of natural images: How effective are linear model in removing higher-order dependen-

cies?,” J. Opt. Soc. Am. A 23, pp. 1253–1268, June 2006.


