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INTRODUCTION
Understanding how stimuli and other inputs to neurons can be 
decoded from their spike patterns is an essential step towards under-
standing neural codes. Neurons communicate by sequences of action 
potentials, which can be viewed as a sequence of discrete events in 
time. Many sensory inputs, however, change continuously in time 
and have variations across a large range of different time scales. 
Similarly, the occurrence of spikes can depend on continuous elec-
trophysiological signals such as local fi eld potentials (Montemurro 
et al., 2008; Rasch et al., 2008). Here, we seek to achieve a better 
understanding of how such continuous signals can be decoded from 
neuronal spike trains, and how the basic biophysical dynamics of 
individual neurons affect the encoding process.

We will investigate these questions using leaky integrate-and-fi re 
neurons (LIFs) (Stein, 1967; Tuckwell, 1988). Leaky integrators con-
stitute a natural choice as they capture basic dynamical properties 
of neurons, yet are still amenable to analytical studies of dynamic 
encoding. In this model, a spike is emitted as soon as the integrated 
input reaches a threshold. Thus, the relative timing of spikes will 
contain information about the stimulus in the recent past. In the 
noiseless case, an elegant solution has been proposed for decod-
ing a time-varying stimulus from integrate-and-fi re neurons based 
on computing the pseudo-inverse (Seydnejad and Kitney, 2001) 
which can also be used to decode neural populations (Lazar and 
Pnevmatikakis, 2008).

Here, we seek to generalize from the noiseless to the noisy case. 
Specifi cally, we study decoding rules for reconstructing time-
 varying, continuous stimuli from populations of leaky integrate-
and-fi re neurons with noisy membrane thresholds. Incorporating 
noise into the model does not only make the model more realistic, 
but also naturally leads to a Bayesian approach to population cod-
ing (Rao et al., 2002; Huys et al., 2007; Natarajan et al., 2008). Each 
spike constitutes a noisy measurement of the underlying membrane 

potential and, using the Bayesian formalism, this relationship can 
be inverted in order to infer the posterior distribution over stimuli 
(Paninski et al., 2007; Lewi et al., 2009). While many studies have 
addressed Bayesian population codes and the representation of 
uncertainty in neural populations (Pouget et al., 2000; Rao et al., 
2002; Rao, 2005; Ma et al., 2006), the question of how posterior 
distributions can be decoded from the spike-times of LIFs has not 
been studied in detail. Natarajan et al. (2008), Huys et al. (2007) 
analyzed probabilistic decoding of continuously varying stimuli, 
but they did not use the LIF neuron model but an inhomogeneous 
Poisson point process.

A Bayesian decoding rule does not only return a point estimate 
of the stimulus, but also an estimate of the posterior covariance, 
representing the residual uncertainty about the stimulus. This 
uncertainty estimate is of critical importance for a ‘spike-by-spike’ 
decoding scheme (Wiener and Richmond, 2003), as it allows one 
to appropriately weight each observation by its reliability. In addi-
tion, the uncertainty directly relates to the accuracy of the neural 
code. By inspecting the posterior variance of different stimulus 
features, one can gain insight into the accuracy with which dif-
ferent features are represented by the population.

For the sake of clarity, we choose a simple threshold noise model, 
which does not affect the dynamics of the integration process but 
only sets the threshold to a new random value whenever a spike 
has been elicited (Gerstner and Kistler, 2002). The generation of 
spikes in this model class can be described by a renewal process. 
A Gamma point process is obtained as special case in the limit 
of a large membrane time constant when the threshold values 
are drawn from a Gamma distribution. In particular, when the 
exponential distribution is chosen, the spike generation process 
constitutes an inhomogeneous Poisson process. The Gamma distri-
bution is a computationally convenient distribution which ensures 
 positiveness of the threshold. Therefore, this choice of noise model 
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is conceptually simple, but nevertheless can be used to model a 
wide range of different spiking statistics. However, even for this 
simple noise model, the exact shape of the posterior distribution 
over stimuli can not be obtained in closed form in general and 
approximations have to be used. Here, we derive three decoding 
rules based on Gaussian approximations to the posterior distri-
bution. We show that the simple decoder which originates from 
the noiseless case is biased when introducing threshold noise. We 
then derive an expression for the bias length and state conditions 
under which this leads to an improved estimator of the stimulus. 
Furthermore, we show how this estimate can be updated iteratively 
every time a new spike is observed.

The paper is organized as follows: In the Section ‘Encoding’ 
we describe the basic encoding model as well as the stochastic 
description of the time-varying input. The decoding in the noise-
less case can be extended to include threshold noise as well. This 
leads to an approximate likelihood, from which we derive several 
approximations to the full posterior distribution in the Section 
‘Decoding’. In the Section ‘Alternative Methods’ we compare the 
resulting Bayesian decoding schemes to alternative reconstruc-
tions, such as the linear decoding (Bialek et al., 1991) andthe 
Laplace approximation (MacKay, 2003; Rasmussen and Williams, 
2006; Paninski et al., 2007) based on the likelihood approxima-
tion. Finally, in the Section ‘Simulations’, we apply the decoding 
schemes to different scenarios which illustrate different aspects of 
neural population coding.

ENCODING
The encoding process is split up into two parts: The fi rst one is 
the neural encoding part, which characterizes the spike genera-
tion process for a given stimulus. The second part describes the 
stimulus ensemble.

LEAKY INTEGRATE-AND-FIRE NEURON WITH THRESHOLD NOISE
We start with the classic leaky integrate-and-fi re neuron model 
(Tuckwell, 1988; Gerstner and Kistler, 2002). It consists of a mem-
brane potential V

t
 which accumulates the effective input I

t
. Here, V

t
 

and I
t
 are scalar functions if a single neuron is modeled, or vectors if 

a population is considered. Whenever the membrane potential of a 
neuron n reaches a pre-specifi ed threshold θn a spike is fi red and the 
membrane potential is reset to zero, i.e. lim ( ) .ε→ ε0 0Vt nk + =  In addi-
tion to the input I, there is a leak term which drives the membrane 
potential back to zero when no input is present. Correspondingly, 
the sub-threshold dynamics of the membrane potential can be 
described by the following ordinary differential equation (ODE):

τdV
t
 = I

t
dt − V

t
dt. (1)

The time constant τ specifi es the time scale of the neural dynam-
ics. Assuming the time of the last spike is t

k− , the membrane poten-
tial at any time t before the next spike is given by:
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Ft tk[ )( )
− , I  is a linear functional of the stimulus I depending on the 

time of the last spike t
k− and the current time point t. Due to the 

additional spiking nonlinearity that governs the dynamics when 

the membrane potential reaches the threshold, the LIF neuron 
 performs a complex mapping of continuous signals to spike pat-
terns. A simple way of incorporating noise into our model is to 
vary the threshold from spike to spike in a stochastic fashion. Every 
time a spike is fi red, the threshold is drawn from a known distribu-
tion with density pθ. Thus for every given (constant) stimulus, the 
resulting point process is a renewal process.

With these assumptions we can write down the likelihood of 
observing a spike train of one neuron for a given stimulus I

t
:
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with F t tk k[ ), −1
 defi ned as in Eq. 2 and I( )t tk k− ,1

 denotes the stimulus 
between t

k − 1
 and t

k
. The fi rst equality holds because of the renewal 

property of the spike generation process. In other words, the time of 
the next spike only depends on the time of the previous spike and 
the stimulus since then. Subsequently, we change variables from 
t

k
 to Ft tk k[ )( ).

− ,1
I  Note that F t tk k[ )( )

− ,1
I  is only a function of t

k
 because 

we condition on t
k − 1

 and I. As the value of the linear functional at 
the time of a spike equals the threshold θ, we plug in the density 
for the threshold pθ. The change of variables t

k
 to F t tk k[ )( )

−1 , I  is only 
one-to-one, if one uses the fact, that t

k
 is the fi rst time F t tk k[ )( )

−1 , I  
equals the threshold. Therefore, plugging in the threshold distribu-
tion without accounting for the problem, that F(I) may have been 
super-threshold turns the last equation into an approximation. If 
we consider a whole population, the likelihood reads:
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(4)

where t
k− denotes the time of the previous spike of the neuron, 

which fi red a spike at time t
k
. The threshold distribution pθ might 

be different for different neurons. For notational simplicity, how-
ever, we do not indicate this. In the following the spike times t

k
 

are ordered and indexed by the subscript k. Which neuron fi red 
the spike t

k
 only enters the calculation in the computation of the 

linear functionals F It tk k− , ( ). Therefore we drop the dependency of 
the neuron.

There is no simple way how the sub-threshold condition can be 
incorporated. However, we can include the condition that at the 
time of reaching the threshold, the membrane potential V

t
 must be 

increasing by adding the requirement 
d

d

F

t
tk tk

k

[ ) ( ), − I > 0 (Pillow and 
Simoncelli, 2002; Arcas and Fairhall, 2003).

For the threshold noise we assume a Gamma distribution with 
shape parameter α and scale parameter β:

pθ
α

αθ θ
β Γ α

θ

( )
( )

= −
−

1 e β

 
(5)

As a special case, if the input is non-negative and if the time 
constant goes to infi nity, the resulting point process is an inhomo-
geneous Gamma-renewal process.
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In this way we obtain an approximate likelihood, when the 
threshold is varied at the time of spikes. The case of white input 
noise and fi xed threshold is described in Paninski et al. (2004). This 
can equivalently be seen as varying the thresholds continuously 
according to an Ornstein Uhlenbeck process. For the case of soft-
threshold based likelihoods from the family of Generalized Linear 
Models (see Jolivet et al., 2006; Paninski et al., 2007).

SPECIFYING THE PRIOR: A MODEL FOR THE STIMULUS
The prior distribution specifi es the assumption about the range and 
relative frequency of different stimuli. A common approach is to use 
a maximum entropy prior. In particular, the normal distribution is 
a maximum entropy distribution for given mean and covariance. 
As stimuli are functions of time, we have to specify a distribution 
over functions. We choose a fi nite set of basis functions { f

i
} and then 

specify a distribution over the coeffi cients from which all possible 
functions are generated by a linear superposition:

I ct i i
i

M

f t=
=

( ).
1

∑
 

(6)

The coeffi cients c
i
 are drawn from the Gaussian prior distribu-

tion. We denote the mean and the covariance matrix by �
c
 and Σ

c
, 

respectively. For stationary processes, a natural choice of basis func-
tions is the Fourier basis. Any superposition of such basis functions 
will result in a smooth function. Defi ning a covariance structure for 
the coeffi cients directly translates into the structure of the power-
spectrum. Thus, I

t
 is a fi nite-dimensional Gaussian process. Using 

a fi nite number of basis functions poses a potential diffi culty for 
the spike generation process described in the previous section. If 
one uses basis functions which are bounded, so will be any sample 

from the input process. Therefore, there is a non-zero probability 
that a threshold is drawn which could never be reached by the 
membrane potential. However, if we use a fl at power-spectrum, i.e. 
isotropic covariance for the coeffi cients, and increase the number 
of Fourier basis functions the process will converge to a Brownian 
motion. For Brownian motion as input, the membrane potential 
is an Ornstein-Uhlenbeck process and therefore will eventually 
exceed any threshold. For the simulations in this paper, we never 
observed an infi nitely long inter-spike interval.

Using this model for the stimulus we can rewrite the lin-
ear functional of the stimulus as an inner product with the 
stimulus coeffi cients:
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Ignoring the likelihood term of the fi rst spike time t
0
, we can 

write down the approximate log-likelihood (Eq. 3) as follows:
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(8)

where the constant does not depend on t
k
, I

t
. As Paninski pointed 

out (Paninski et al., 2007), this model is a Generalized Linear Model 
(GLM). The resulting encoding process is illustrated in Figure 1.

FIGURE 1 | Illustration of the encoding process. We simulated a leaky (τ = 10) 
integrate-and-fi re neuron with threshold noise (mean 1.0, variance 0.05). The input 
is a pink noise process consisting of 80 basis functions, 40 sine and 40 cosine, 

frequencies equally spaced between 1 and 500 Hz. The stimulus is plotted in 
shaded gray, the membrane potential in black. The threshold is drawn randomly 
according to a gamma distribution every time a spike (vertical lines) is fi red.
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DECODING
In the previous section, we have seen that the encoding process 
can be described by a conditional distribution p(r |s), the prob-
ability of observing a neural response r, given that a stimulus s 
was presented. For the task of decoding, an important conceptual 
distinction can be made between point estimation and probabi-
listic inference. The latter consists of inferring the full posterior 
distribution p(s |r): the probability of stimulus s, given that we 
observed a specifi c neural response r. Point estimation in contrast 
requires to make a decision for one particular stimulus as a best 
guess. Typical point estimates are the posterior mean E[s |r] or 
the stimulus s* for which the posterior distribution takes its maxi-
mum (maximum a posteriori, MAP). These choices are optimal 
for different loss functions. A loss function specifi es the ‘cost’ 
of guessing stimulus ŝ if the true stimulus was s. The posterior 
mean is optimal for the squared error loss ||s − ŝ ||2, whereas the 
MAP is optimal under the 0/1 loss. Although the 0/1 loss, which 
has a constant loss for arbitrarily small errors, is an arguably 
unnatural choice for continuous stimuli, MAP decoding is still 
popular and often performs well also with respect to other loss 
functions. Further, the posterior mean together with the posterior 
variance can also be regarded as a Gaussian approximation to the 
full posterior distribution.

In the following we will start from the noiseless case, re-deriving 
the pseudo-inverse decoding scheme that has been presented before 
by (Seydnejad and Kitney, 2001). We show that when introducing 
noise, the pseudo-inverse can still be seen as an approximate decod-
ing rule, but suffers from an asymptotic bias. In order to cope with 
this problem, we derive a bias-reduced version as well, which canbe 
applied in an iterative ‘spike-by-spike’ fashion.

NOISELESS CASE
In the noiseless case, the problem of inverting the mapping from 
stimulus to spike-times can be interpreted as a linear mapping (see 
Seydnejad and Kitney, 2001; Pillow and Simoncelli, 2002; Arcas 
and Fairhall, 2003). Roughly speaking, each interspike interval 
defi nes one linear constraint on the set of possible stimuli that 
could have evoked the observed spike response. The evolution of 
the membrane potential during an interspike interval is obtained 
via Eq. 2. As the spike times correspond to threshold crossings 
of the membrane, we know that the membrane potential hits the 
threshold θ at time t

k
:

θ = −⎡
⎣⎢

⎤
⎦⎥

=( ) ,[ ) ( )
−

−∫1 1

τ τ
exp s t sk s

t

t

t t s

k

k

k k
I F Id

 

(9)

If we represent the stimulus in terms of a linear superposition 
of basis functions (see Encoding), we can address the decoding 
problem within the framework of fi nding a linear inverse map-
ping. Decoding of the stimulus signal I(t) is equivalent to inferring 
the coeffi cients c

i
 from the observed spike trains. Every interspike 

interval imposes a linear constraint on the coeffi cients c
i
.

θ = c�y(t
k−, tk

), (10)

where the components of y are defi ned as in Eq. 7. Note that Eq. 10 
is a necessary condition for the coeffi cients. The unknown coef-
fi cients c can be uniquely determined if the number of linearly 

independent constraints is equal to or larger than the number of 
unknown coeffi cients (see also Figure 2). We can summarize the 
constraints compactly in a linear equation:
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In general, a solution to this equation can be found by using the 
Moore–Penrose pseudo-inverse (Penrose, 1955):

c = L−θ (12)

The pseudo-inverse is well defi ned even if the matrix L is not 
square or is rank-defi cient. If the number of interspike intervals 
exceeds the number of coeffi cients, the pseudo-inverse is given by:

L− = (L�L)−1L�. (13)

DECODING IN THE PRESENCE OF NOISE
One dimensional stimulus: exact inference
We start with a simple case in which exact inference is possible: 
the stimulus consists of a constant (one dimensional) input c, i.e. 

FIGURE 2 | Example of noiseless decoding for a two dimensional 

stimulus and its limitations. The inset illustrates the linear constraints that 
the fi rst and the second interspike interval pose on the two coeffi cients c1 and 
c2. The driving stimulus is plotted in blue. Vertical bars at the bottom indicate 
the three observed spike times corresponding to threshold crossings of the 
membrane potential (solid black). Possible membrane potential trajectories, 
which obey the linear constraints are plotted in shaded green and red 
respectively, darker ones have smaller norm. As can be seen the linear 
constraints only refl ect that the membrane potential has to be at zero at the 
beginning of an interspike interval and at the threshold at the end of it. They do 
not refl ect that the membrane potential has to stay below threshold between 
spike times. Parameters are: τ = 1 ms, frequency for sine and cosine basis 
functions: 32 Hz.
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f
i
 ≡ 1. In this situation, we can write down the likelihood exactly. 

For the observations we have:
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In this case, we do not have to account for the sub-threshold 
condition as the evolution of the membrane-potential since the last 
spike is a monotonic function and therefore there is only one pos-
sibility to be at the threshold for a given stimulus at a specifi c time. 
In particular, if the threshold is Gamma distributed (as assumed 
in ‘Introduction’), we see that y

k
|c is also Gamma distributed with 

parameters α, β/c. For now we choose c to be Gamma distributed 
as well (say with parameters α

0
, β

0
). This choice deviates from the 

choice in the Section ‘Encoding’, but for this choice, we can write 
down the posterior exactly:
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Having the posterior in closed form we can calculate the posterior 
mean as well as the point of maximal posterior probability exactly. 
Thus, we have in the special case of a constant one- dimensional 
input a reference for later use (see also Figure 3).

Gaussian factor approximation
The pseudo-inverse solution of the Section ‘Introduction’ has also 
a probabilistic interpretation in linear Gaussian models (see also 
Bishop, 2006): In this setting, it can be interpreted as the posterior 
mean estimate for data with a Gaussian distribution. In particular, 
if (for the moment) we assume that the linear functionals y(t

k−, tk
) 

are observed and that c�y(t
k−, tk

) is Gaussian distributed around the 
mean of the threshold θ with a constant variance σθ

2 , the posterior 
mean of the coeffi cients c would be the same as the pseudo-inverse 
described above. However, this setting is not directly applicable to 
the context of decoding a stimulus from spike times of LIFs: In a 
linear Gaussian model, the observed functionals y(t

k−, tk
) would not 

be allowed to depend on either c or θ, but they do here. This is most 
easily explained for a one-dimensional stimulus: We have that θ = cy, 
and therefore y = θ/c. This can be highly non-Gaussian even if the 
distribution of θ and c are Gaussian1. We now derive a probabilistic 
decoding rule which is analogous to the pseudo-inverse used in the 
noiseless case. Each observation defi nes a linear constraint:

θ = c�y(t
k−, tk

)

We can approximate the distribution of the threshold by a Gaussian 
term. Each linear constraint defi nes one factor of the likelihood. That 
is, pθ in Eq. 3 is replaced with a Gaussian term of the form:
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where σ αβθ
2 2=  is the variance of the threshold distribution. 

Additionally, we have replaced θ by its mean �θ, because we are 
not observing θ but t

k
. Each of these factors peaks at �θ = c�y(t

k−, tk
), 

therefore refl ecting the linear constraint. Replacing every term in the 
likelihood by its corresponding Gaussian approximation and includ-
ing one Gaussian factor for the prior p(c) ∼ N(�

c
, Σ

c
), the posterior 

is approximated by a Gaussian with the following moments:

μ σ μ μ
σθ

θ

θ
p c k k

k
c c k

k
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−

− −
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟∑ ∑

1

1 2 1

2
Σ Σy y y�

 

(16)

Σ Σp c k k
k

= +
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(17)

In (16) and (17), we have abbreviated y(t
k−, tk

) = y
k
. In addition 

to the pseudo-inverse (Eq. 12), this approximation takes the prior 
distribution over stimuli into account, specifi ed by the mean �

c
 

and covariance Σ
c
 of the coeffi cients c. This can be seen by setting 

Σc
− =1 0, i.e. by using an uninformative prior. Then the mean of 

this approximation �
p
 is exactly the pseudo-inverse of Eq. 12. Our 

approach of replacing likelihood factors by Gaussians is similar 

FIGURE 3 | Comparison of the mean squared error (MSE) for different 

reconstruction methods in the case of a one dimensional stimulus. The 
best possible estimate is the true posterior mean (exact, blue). The error of 
the maximum a posteriori (MAP) estimator (magenta) is nearly the same as 
the error of the exact posterior mean and therefore cannot be distinguished 
from the exact one. The red line shows the error of the Moore–Penrose 
pseudo-inverse and the horizontal line indicates its asymptotic bias. The 
Moore–Penrose pseudo-inverse is called Gaussian Factor approximation (see 
Encoding). The bias corrected (BC) version of the Gaussian approximation 
(green) is explained later and here included for completeness (see Decoding). 
Parameters were: αprior = 20, βprior = 0.5, αθ = 2, βθ = 0.5.

1The coeffi cient vector c represents the stimulus of interest and can therefore cer-
tainly not be constant.
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to the extended Kalman fi lter, where the dynamics is linearized 
and therefore results in a Gaussian update for the hidden states. 
However, it is known that this approximation can be biased (see 
Julier and Uhlmann, 1997; Minka, 2001). Similarly, in our case, the 
mean of this approximation also does not converge to the true coef-
fi cient values for increasing number of observed spikes, as shown 
in Figure 3. Fortunately, under some simplifying assumptions, this 
bias can be calculated and therefore can be signifi cantly reduced as 
will be shown in the following section.

Bias reduction of the Gaussian factor approximation
In this section we calculate the asymptotic length bias for the 
approximate posterior mean of Eq. 16, assuming a correct ori-
entation of the coeffi cient vector. By fi xing a stimulus, i.e. c, we 
defi ne the average over all resulting interspike intervals E[y

k
]: = �

y
 

and Cov[y
k
]: = Σ

y
. We then fi nd asymptotically for n >> 1 and for 

a fi xed c:

Σ Σc k k
k

n− − − ⎛
⎝⎜

⎞
⎠⎟+ ⎯→ +∑1 2 2σ σ μ μθ θy y y y y

� �

 

(18)

    
y yk

k

n∑ ⎯→ �
 

(19)

Note that we do not know the distribution of the y
k
 and that this 

distribution depends on the distribution of the threshold as well 
as the choice of basis functions. However, the proportion of y in 
the direction of c is on average of magnitude �θ and the variance 
along c on the other hand is σθ

2 . Orthogonal to c, we assume, that 
y has zero mean and fi nite variance. This assumption is justifi ed in 
the one-dimensional case, because there is simply no orthogonal 
direction. Empirically, it turns out to reduce the amount of bias 
substantially; see Figure 6.

Therefore, we can rewrite
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Here, c� denotes the basis for the space orthogonal to c and 
σ σc cn1

2 2, ,…  are the variances in the direction of the basis vectors of 
c� which are not important for the calculation of the bias. Wecan 
now compute the asymptotic posterior mean:
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We obtain (21) from (20) by using the Woodbury matrix 
identity. By definition of U, all directions orthogonal to c cancel 
out and Eq. 22 follows. Equation 22 shows that (asymptotically) 
the norm of the posterior mean approximation is biased. The 
direction, however, is correct. Therefore, the Moore–Penrose 
pseudo-inverse is unbiased only in the noiseless case when 
σθ

2 0= . In the noisy case, however, we can divide the mean by 
its asymptotic bias in order to obtain an unbiased estimator for 
the coefficients. To improve the estimator also in the regime of 
few observations, we divide only the likelihood part �θ

θσ
∑2 ky  by 

the asymptotic bias. Therefore we have for the bias-reduced 
posterior mean:
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(23)

This bias-reduced version of the Moore–Penrose inverse is also 
plotted in Figure 3, which gives an improved estimate also for a 
small number of observations. The presented bias-reduced Gaussian 
approximation can also be rewritten into an online algorithm. The 
update equations to incorporate one additional observation y

k
 in 

the current posterior are given by:

� � �p
k

p
k

p
k

k k p
k
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(25)

Together with Eq. 23 we thus obtain a bias-reduced on-line 
estimator which allows one to recursively improve the stimulus 
reconstruction on a spike-by-spike basis:
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 (26)

We can now compare how well the different approximations per-
form compared to the exact solution in the one-dimensional case 
(see Introduction). In Figure 3 the mean squared error is shown 
as function of the number of observed interspike intervals. Plotted 
are the error of the MAP estimator (magenta), the exact minimum 
mean squared error (blue), the Gaussian-Factor approximation, 
which is the equivalent to the Moore–Penrose pseudo-inverse (red) 
and the bias reduced Gaussian-Factor approximation (green). 
Importantly, the solution obtained by the Moore–Penrose pseudo-
inverse does not converge to the true solution, but hasa strong bias. 
This bias can lead to a solution which is actually worse than the 
prior solution. Unfortunately, we do not have access to the exact 
posterior in general, especially in higher dimensions. Therefore, we 
need approximation schemes which are generally applicable in the 
general case, but which perform better than the Moore–Penrose 
pseudo-inverse.
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TWO-DIMENSIONAL CASE
In the section ‘Introduction’, we investigated the accuracy of the 
different reconstruction schemes in the one-dimensional case. If the 
stimulus is two- or higher-dimensional, the observation of a single 
spike does not give us full rank information about the stimulus. In 
the case of a two-dimensional stimulus, three types of scenarios can 
occur after one interspike interval has been observed:

1. The observation of an interspike interval only leads to one 
important constraint on the coeffi cients of the basis functions, 
namely that the membrane potential has to be at the threshold 
at the time of a spike. For example, if the observed interspike 
interval is relatively small, solutions which cross the threshold 
twice or hit the threshold from above, are very unlikely under 
the prior distribution. Therefore, to stay below threshold, one 
can neglect constraints other than being atthe threshold at the 
time of the observed spike, see also Figure 2. In this situation, 
all approximations should be almost equally good as they all 
account for this type of constraint.

2. If the interspike interval is longer, we might get another impor-
tant constraint for the posterior, namely by requiring that the 
threshold is hit from below, not from above. This possibility is 
ruled out by the Jacobian term of the pseudo-likelihood (Eq. 
32). Therefore the MAP estimate should be closer to the true 
posterior mean than the Gaussian or pseudo-inverse approxi-
mation, which does not satisfy this constraint. Here, crossing 
the threshold twice before hitting it again from below is still 
very unlikely according to the prior and therefore we do not 
get an effective restriction for the posterior by ruling out all 
these solutions which cross the threshold twice.

3. If the interspike interval is suffi ciently long, both types of 
violations of crossing the threshold between spike times are 
probable according to the prior. Some possible stimuli might 
exist for which the membrane potential would cross the thre-
shold twice before reaching the threshold again at the time 
of the observed spike. These stimuli are neither ruled out by 
the pseudo-likelihood nor by the Gaussian approximation. 
Therefore, both approximations can result in quite poor esti-
mates of the true posterior mean.

To illustrate the three scenarios, we simulated a single neuron 
with a stimulus consisting of two basis functions, one sine and one 
cosine function. We obtained an approximation to the true poste-
rior after single observations by rejection sampling. This true pos-
terior refl ects all of the constraints mentioned above. As can be seen 
in Figure 4, indeed three types of situations can be observed.

ALTERNATIVE METHODS
In the following, we will discuss the relationship between our 
decoding rule and previously proposed decoding algorithms. 
In particular, we compare our decoders with an optimal linear 
decoder, as well as with a Maximum-a-Posteriori decoder (MAP) 
based on the approximate likelihood.

RELATIONSHIP WITH LINEAR DECODER
Bialek et al. popularized a linear decoder for reconstructing the 
stimulus from a spike train (Bialek et al., 1991; Rieke et al., 1997). 

Here the spike train ∑ −i it tδ( ) is convolved with an acausal linear 
fi lter K in order to obtain an estimate of the stimulus:

ˆ( ) ( ) * ( )s t K t t K t ti
i

i
i

= − = −∑ ∑δ
 

(27)

The fi lter can be calculated by (see Rieke et al., 1997):
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(28)

where F is the Fourier transform. The average is taken over the 
joint distribution of stimuli and spike times, which can be done 
via sampling. Additionally, the stimuli we used are composed by a 
superposition of sine and cosine functions with discrete frequen-
cies, which we write here as complex functions f

l
(t) = exp(iω

l
t). 

Hence, the linear fi lter has also only non-vanishing power in those 
frequencies which are present in the stimulus.

In the noiseless case, the Pseudo-Inverse decoder can be inter-
preted as a linear fi lter, but one that depends on the particular spike 
train observed, as we will show in the following. To this end, we 
replace the stimulus ensemble used to calculate the linear fi lter with 
a single stimulus consisting of the stimulus reconstructed by the 
Pseudo-Inverse. That is, we replace F(s)(ω

l
) by ∑ ,

−
j i jL θ; see Eq. 12. 

If we furtherassume that there is no neuronal noise, we can neglect 
the expectation in the defi nition of the linear fi lter (Eq. 12), and 
defi ne a linear fi lter K

p
 corresponding to the Pseudo-Inverse:

c j

K
j k

k

j k
k

j k
k

j k
kp

i t

i t

:=
−( ) =

( )⎡
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−

,
−

,
−∑

∑
∑ ∑L Lθ θ ω

exp expω

exp

ii tj k
k

ω( )∑
2

 

(29)

Although this equivalence is only valid in the noiseless case, 
we can use Eq. 29 to illustrate the decoding performed by the 
Pseudo-Inverse. The linear fi lters we obtain for this decoder is dif-
ferent for different spike trains, refl ecting the increased fl exibility 
of the Pseudo-Inverse compared to the optimal linear predictor. 
The different reconstructions and associated fi lters are illustrated 
in Figure 5.

MAP and Laplace approximation
By inspecting the approximate likelihood (see Eq. 8) we see that the 
model is a generalized linear model. In this sense it is very similar to 
the soft-threshold noise model (Jolivet et al., 2006; Paninski et al., 
2007). However, the threshold noise there is Poisson-like, whereas 
here it is Gamma distributed. Further, the soft-threshold likelihood 
does not account for the fact that the threshold has to be reached 
from below. By ensuring that the Jacobian of the change of vari-
ables in Eq. 3 is positive, however, we can take this constraint into 
account. One approach for getting a possibly better point estimate is 
to fi nd the maximum of the approximate posterior density (MAP). 
To compute this posterior density, we have to multiply Eq. 3 by the 
prior density (which is Gaussian in our case). In this model, the MAP 
cannot be determined in closed form, but we may apply gradient 
ascent in order to fi nd it numerically. If both likelihood and prior 
are log-concave, which is true for the approximate likelihood and 
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the Gaussian prior used here, the posterior is unimodal (see Paninski 
et al., 2004). Hence, fi nding the MAP point is a convex problem. The 
gradient and the Hessian of the log posterior are straightforward to 
compute. For the sake of clarity, we only write down the gradient 
and the Hessian for one spike time t

k
 in the sum of Eq. 8:

∇
β

∇c c cc y
c y c y( )

( )
k

t t
t t t t

k k
k k k k= −
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Here, f(t
k
) is the vector consisting of all basis functions evaluated 

at the spike time t
k
. The Hessian is given by:
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(31)

Applying a gradient ascent scheme yields a point estimate that 
respects the constraint that the membrane potential crosses the 
threshold from below. Nevertheless, it does not take into account 
the sub-threshold condition between spike times: The solution we 
get might correspond to a membrane potential that crosses the 

FIGURE 4 | Log-likelihood approximations in two dimensions for three 

different cases of observations and different approximations to the 

posterior. The fi rst column is the true log-likelihood, the second is the 
approximate log-likelihood obtained by Eq. 43 and the third column is the 
Gaussian Factor approximation. The true log-likelihood is not available in higher 
dimensions and is plotted here for comparison and as a reference. It is obtained 
via rejection sampling. Point estimates are: true posterior mean ( ), MAP ( ), 
Gaussian Factor mean ( ) and the bias reduced version ( ). For each point 
estimate a Gaussian prior with unit isotropic covariance was chosen. Each 
subplot shows the log-likelihood (or its approximation) after one interspike 
interval is observed. The x and y axes indicate the two dimensions of the 

stimulus coeffi cients. Each row corresponds to a different scenario with 
different numbers of effective constraints for the posterior. If only one constraint 
is active (fi rst row) the true posterior does not differ much from the other 
approximations, and therefore the point estimates perform all almost equally 
well. If two constraints are active (the threshold has to be reached from below 
and the membrane potential has to be at the threshold at the time of a spike) the 
MAP performs better than the Gaussian Factor approximation. If three 
constraints are active, the MAP refl ects two of the three constraints and 
therefore is slightly shifted. As one observation is far away from the asymptotic 
regime, the Gaussian Factor approximation and its bias reduced version do not 
differ much.
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threshold twice before it hits it again from below. Therefore this 
point estimate suffers from the same source of bias as the Gaussian 
factor approximation.

This point estimate can be extended to give an approximation 
of the uncertainty as well by expanding the posterior to second 
order around the MAP point. The posterior we are using here is 
the likelihood (Eq. 3) times a prior term p(c):

p t t p p t

p t t t

n t

k k k tk

c c I

y I

| , ,{ }( ) |( )
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∏ d

d

c y�

1

1  

(32)

which itself is an approximation (see Introduction). Unfortunately, 
computing the normalization constant for this distribution with 
respect to c is not tractable. We therefore approximate the poste-
rior by a second-order expansion. In other words, the posterior 
distribution is approximated by a multivariate Gaussian, where the 
mean of the Gaussian is taken to be the MAP, and the covariance 
is found by looking at the second-order derivatives of the log-
posterior at the MAP:

c c
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The MAP and the Hessian are calculated by Eqs 30 and 31. This 
yields a Gaussian approximation known as the Laplace approxima-
tion (MacKay, 2003; Rasmussen and Williams, 2006; Paninski et al., 
2007; Cunningham et al., 2008).

SIMULATIONS
In this section, we present the results of three different simulations 
which highlight different aspects of neural population coding of 
time-varying stimuli with integrate and fi re neurons. As a general 
framework, we fi rst specify a generative model for the stimulus signal 
x(t) = [x

1
(t),…, x

m
(t)] and then we specify a mapping g : x(t)  I(t), 

which can be interpreted as the encoding strategy of the neural 
population. The dimension of I(t) = [I

1
(t),…, I

n
(t)] can be differ-

ent from the number of spatial stimulus components m. Each I
i
(t) 

represents one neuron within a population of n neurons. Each spatial 
component x

l
(t),l = 1,…,m is represented with a superposition of 

temporal basis functions f
k
(t),k = 1,…, M. In the fi rst simulation 

we have n = m = 1, M = 80. In the second and third simulation 
n >> m = 1, M = 40. In the last simulation we study the encoding 
of an amplitude and phase variable with n = m = 2, M = 40.

SIMULATION 1: ONE NEURON, ONE COMPONENT, 
MANY TEMPORAL DIMENSIONS
In order to evaluate the accuracy of our Gaussian Factor approxi-
mation to the posterior when the stimulus has several temporal 
dimensions (not to be confused with spatial dimensions m), we 
analyzed the decoding performance as a function of increasing 
number of observations. To this end, we simulated a neuron with 

FIGURE 5 | Comparison of the linear decoder and the Gaussian factor 

approximation. Upper left: Linear fi lter obtained via Eq. 28. Upper right: 
Average linear fi lter for the Pseudo-Inverse or Gaussian factor approximation, 
see Eq. 29. Bottom: Example of a decoded stimulus for a given spike train by 
two decoding schemes. The true stimulus is plotted in dashed black, the 
Gaussian factor reconstruction in red and the linear decoder reconstruction is 

plotted in blue. Shown are a window of the fi rst 10 out of 100 spikes. The 
stimulus consisted of 20 sine and 20 cosine functions with frequencies 
between 10 and 50 Hz. Spikes are generated with a leaky integrator withtime 
constant τ = 25 ms. The noise is relatively low: σθ =2 0.01, 1. �θ =  The squared 
errors for the trial here are: 3.27 for the linear decoder and 2.11 for the 
 pseudo-inverse.
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a stimulus consisting of a random superposition of 40 sine and 
40 cosine functions with equally spaced frequencies between 10 
and 50 Hz. In each trial the neuron was simulated until 104 spikes 
were accumulated. We calculated the mean squared error over 
100 repetitions. Interspike intervals taken into account for recon-
struction were randomly selected from the whole time interval of 
the simulation.

In Figure 6 we see that the simple Gaussian approximation 
(Gaussian Factor, red, dashed) is indeed biased and the bias is 
larger for larger noise levels. In the limit of no noise we expect 
a sharp drop off for the number of spikes equal to the number 
of dimensions for the stimulus. This is weakened in the presence 
of noise. For comparison, we also plot the asymptotic error of 
the Gaussian Factor approximation as derived analytically in the 
Section ‘Decoding’. Additionally the mean squared errors are plot-
ted for the linear decoder (see Introduction) and the bias-reduced 
version of the Gaussian approximation. The mean squared error 
for the MAP was obtained by gradient ascent (see Introduction). In 
order to start with a feasible solution, we initialized the optimizer 
with the true stimulus coeffi cients, turning the obtained solution 
in an optimistic estimate of the actual MAP.

SIMULATION 2: MANY NEURONS, MANY TEMPORAL DIMENSIONS
In this simulation, a population of n = 30 neurons with differ-
ent receptive fi elds were all driven by the same stimulus, which 
consisted of a superposition of 20 sine and 20 cosine functions 
x tk k k k k( ) sin cos .t c t c= ∑ += −1

20
2 1 2ω ω  The frequencies {ω }k k=1

20  were 
equally spaced between 1 and 100 Hz, and the coeffi cients { }c j j=1

40  
were drawn independently from a Gaussian distribution with 
unit variance.

Incorporating a receptive fi eld ri(t) for neuron i in our model can 
easily be done by pre-fi ltering the stimulus with the corresponding 
receptive fi eld:

I
t
 = [r1 

* x(t),…,rn 
* x(t)]�

Because of the linearity of the convolution, the decoding algo-
rithms stay the same with the exception that the basis functions 
f
k
(s) are replaced by ri 

* f
k
. The receptive fi elds ri(t) of each neuron 

were chosen to be a gamma tone:

ri(t) = atn−1 cos(2π f
i
t + φ) exp(−2πbt)

All parameters except the frequency f were fi xed (a = 0.01, 
b = 0.01[ ]1

ms , n = 2, φ = 0). The frequencies of each receptive fi eld 
were drawn from a uniform distribution ranging between 1 and 
100 Hz. The resulting receptive fi elds are shown in Figure 7(left). 
The stimulus and its reconstruction based on the spike times of 
this population are shown in Figure 7(right). The uncertainty is 
smaller within periods of higher fi ring rates, yet to a smaller extent 
than in the next setting (see Figure 9), because here the receptive 
fi elds have a larger temporal extent.

SIMULATION 3: HETEROGENEITY
Every new spike contributes new information about the stimulus, 
and leads to a reduction in reconstruction error. However, if the 
resulting linear constraints are correlated, the reduction can be 
arbitrarily small. This problem can become particularly severe for 
interspike intervals observed at different neurons. For example, if 
the parameters of different neurons (e.g. the receptive fi elds) are the 
same, spikes of different neurons tend to synchronize, even in the 
presence of threshold noise. This leads to similar interspike inter-
vals, and thus to highly correlated linear constraints. In this case, 
the information conveyed by different neurons can be redundant 
and be of limited use for decoding.

It is plausible that effi cient population codes should have hetero-
geneity in their receptive fi eld properties, to ensure that different 
properties of the stimulus are sampled by the population. In our 

FIGURE 6 | Mean squared error (MSE) as a function of the number of 

spikes used for the different decoding schemes. The stimulus consists of a 
superpostion of 40 sine and 40 cosine functions of discrete frequencies equally 
spaced between 10 and 50 Hz. The time constant of the neuron used for 

decoding is τ = 25 ms. The MSE is calculated as the average over 
100 repetitions for three different noise levels. Horizontal lines indicate the 
asymptotic bias for the different noise levels. The prior was an isotropic 
Gaussian with zero mean and covariance matrix 1 ⋅ 25.
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setting, diversity in receptive fi eld parameters would ensure that 
the constraints are less correlated and that the reconstruction error 
does not saturate with increasing numbers of neurons. As a result, 
we expect to get a better reconstruction if we have a larger diversity 
within the encoding population.

In this simulation, we extend the previous example by systemati-
cally varying the degree of similarity in the receptive fi eld properties 
among the different neurons. To construct heterogeneous popu-
lations with different degrees of diversity we sampled the center 
frequencies of the receptive fi eld (gamma tone) of each neuron 
from a uniform distribution within a frequency interval centered 
at 50 Hz (the center frequency of the stimulus used). The degree 
of diversity was then measured by the length of thisinterval, from 
0 to 25 Hz. Figure 8 shows the mean squared error as a function 
of number of neurons as well as the diversity within the recep-
tive fi elds. From this plot one can see that the rate with which the 
error drops with increasing number of neurons strongly depends 
on the degree of diversity. This result confi rms the general idea of 
redundancy reduction as an effi cient coding strategy.

SIMULATION 4: ENCODING OF AMPLITUDE AND PHASE VARIABLES
In this simulation we consider the case of decoding a two-
 dimensional, time-varying stimulus signal. In particular, we want to 
illustrate how the encoding of angular variables can be addressed in 
this framework, as the neural representation of edge orientations or 
motion directions are frequently studied in neuroscience. Therefore, 
we use the nonlinear polar coordinate transform to obtain an ampli-
tude and phase variable x(t) = [a(t), ϕ(t)]� as our stimulus signal. 
For simplicity, we consider the case where this signal is encoded by 
two neurons with identical temporal receptive fi eld properties but 
with 90° difference in the preferred stimulus angle. Specifi cally, the 
encoding model of the two neurons is given by:

I( ) ( )
sin ( )

cos ( )
.t t

t

t
=

⎛
⎝⎜

⎞
⎠⎟

a
ϕ
ϕ

As temporal basis functions we picked 20 sine and cosine basis 
functions with discrete equally spaced frequencies between 1 
and 10 Hz. The corresponding coeffi cients c

k
 were drawn inde-

pendently from a Gaussian distribution with variance2 σ2 = 0.06. 

FIGURE 7 | Left: Receptive fi elds of the population, each is a gamma tone with a different frequency, randomly drawn from a uniform distribution between 1 and 
100 Hz. Right: A time varying stimulus consisting of a superposition of 20 sine and 20 cosine functions is decoded from spike trains of a population of 30 neurons, 
each having a noise level of σθ = 0.05.

FIGURE 8 | Mean squared error as a function of the number of neurons 

and their diversity within their receptive fi elds. Diversity is measured by 
the width of the uniform distribution from which frequencies for the gamma 
tone receptive fi elds were drawn. The average is taken over ≥25 repetitions. 
All other parameters were as in the previous section.

2The small variance was chosen such that the resulting signal varies roughly between 
− π

2  and π
2 .
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The neurons were simulated according to Eq. 1, with parameters 
τ σθ= , = , = .10 1 0 012  � θ . As can be seen from Figure 9, the two 
dimensional signal (bottom two panels) can be reconstructed best 
in those time intervals which contains spikes (vertical black lines). 
The reconstruction and uncertainty (obtained via sampling) are 
transformed into phase and amplitude in the top two panels.

DISCUSSION
How to read out spatio-temporal spike patterns generated by popu-
lations of neurons is fundamental to the understanding of neural 
network computation. Most of the previous studies on population 
coding were limited to the static case where only spike countsfor a 
preset time window are considered. For the encoding of continu-
ously varying signals, however, it is important to understand how 
the accuracy of population codes is affected by the dynamics of 
neural spike generation.

Here, we studied dynamic population codes with noisy leaky 
integrate-and-fi re neurons. We presented an algorithm for Bayesian 
decoding similar to the one presented in Cunningham et al. (2008). 
In addition, we derived an approximate algorithm which yields a 
simple spike-by-spike update rule for recursively improving the 
stimulus reconstruction whenever a new spike is observed.

The decoding rules can also be applied for decoding the 
spike trains of populations of neurons, not just single neurons. 
Importantly, we do not have to assume that the neurons are uncou-
pled, i.e. conditionally independent given the stimulus. In particu-
lar, as we assume the encoding model to be known, we would also 

know the parameters describing the couplings between neurons. 
Then, the infl uence of one spike of a neuron on the membrane 
potential of any other neuron is just a known, given input and can 
be subtracted. Therefore, the same decoding framework can also 
be used for decoding coupled neurons.

The decoding rule is nonlinear and sensitive to the relative 
latencies between each spike and its predecessor in the popula-
tion. However, it is not optimal as it does not use the information 
that the membrane potential stays below threshold between spikes. 
To incorporate this kind of knowledge one has to integrate the 
coeffi cient distribution over the linear halfspace confi ned by the 
threshold similar to the method described in Paninski et al. (2004, 
2007) but with the additional complication that, the distribution is 
not Gaussian. Therefore, the optimal Bayesian decoding rule would 
be computationally much more expensive.

The main goal of this work was to derive a simple decoding rule 
that facilitates the analysis of neural encoding strategies such as effi -
cient coding, unsupervised learning, or active sampling. Bayesian 
approaches are particularly useful for these problemsas they do 
not yield a point estimate only but also aim at estimating the pos-
terior uncertainty over stimuli. Having access to this uncertainty 
allows one to optimize receptive fi eld properties or other encoding 
parameters in order to minimize the reconstruction error or to 
maximize the mutual information between stimulus and neural 
population response. In this way it becomes possible to extend 
unsupervised learning models such as independent component 
analysis (Bell and Sejnowski, 1995) or sparse coding (Olshausen 

FIGURE 9 | Decoding of an angular variable. Two neurons were stimulated 
with a(t)sinϕ(t) and a(t)cosϕ(t ), respectively (two bottom panels). Each of those 
signals was represented by a superposition of 20 sine and 20 cosine functions. 
From the reconstructed signal, the amplitude a(t ) and the phase angle ϕ(t ) were 
obtained by taking the Euclidean norm and the arc-tangent, respectively. The 

reconstruction (dashed) of the original stimulus (solid) was obtained by using the 
Gaussian approximation with bias correction. Confi dence intervals, indicating 
one standard deviation of the posterior variance, are plotted in shaded gray. The 
confi dence intervals of a(t ) and ϕ (t) were calculated by drawing 5000 samples 
from the approximate posterior.
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and Field, 1996) to the spatio-temporal domain with spiking neu-
ral representations. This seems highly desirable as comparisons 
between theoretically derived models and experimental measure-
ments would thus become feasible.

Furthermore, animals do not receive the sensory input in a pas-
sive way but actively tune their sensory organs to acquire the most 
useful data, for example by changing gaze or by head movements. 
Such active sampling strategies are related to the theory of optimal 
design or active learning (Lewi et al., 2009), where the next meas-
urement is selected in order to minimize the current uncertainty 
about the signal of interest. Such active sampling strategies give 
rise to ‘saliency maps’, which encode the expected information gain 
from any particular stimulus.

Maximizing the mutual information between stimulus and 
neural response is equivalent to minimizing the posterior entropy. 
Because of the Gaussian approximation, this can be done in our 
model by performing a gradient descent on the log-determinant 
of the posterior covariance matrix. The gradient can be calculated 
from Eq. 17. However, the approximated posterior covariance 
derived in this paper might also be subject to a systematic devia-
tion from the exact covariance matrix. Therefore, an important 
extension of the present work would be to correct for a bias in the 
approximate covariance estimate, too. In general the approxima-
tions considered in this paper usually tend to over-estimate the true 
underlying uncertainty, as they wrongly donot cut-off regions in 
the parameter space.

In this paper, we chose to represent the stimulus by a super-
position of a fi nite set of basis functions as this has some practi-
cal advantages. Alternatively, it is also possible to start from a full 
Gaussian process as stimulus model and then derive a discretiza-
tion for numerical evaluation. Analogous to the mean vector and 
covariance matrix of a fi nite-dimensional normal distribution, a 
Gaussian process prior over the stimulus is specifi ed by the mean 

and covariance function of the process. For numerical evaluation it 
is necessary to choose a grid of time points yielding a fi nite dimen-
sional normal distribution again. Note that for inference, integrals 
on the grid points have to be evaluated numerically and therefore 
a fi ne time resolution for the s

i
 should be chosen. Therefore, the 

computational load of decoding a discretized Gaussian process 
is considerably higher. For practical reasons, we can restrict the 
inference procedure to a time window around the current spikes, 
provided that the covariance function falls off quickly. In the non-
leaky case with no receptive fi elds this is the same setting as in 
Cunningham et al. (2008).

The extension to the Gaussian process setting is conceptually 
important as it allows one to replace the somewhat artifi cial thresh-
old noise model by membrane potential noise. The dynamics can 
then be described by a stochastic differential equation. Although 
the likelihood is much harder to calculate (Paninski et al., 2004, 
2007), it still has the renewal property and therefore a similar 
approximation scheme might be applicable. However, it has the 
further complication, that the obtained likelihood is only for a given 
threshold and therefore the threshold has to be marginalized. We 
hope that more studies will be devoted to the problem of decoding 
time-varying stimuli from populations of spiking neurons in the 
future. In particular, it will be crucial to achieve a good trade-off 
between the basic dynamics of neural spike generation, the accu-
racy of posterior estimates and the computational complexity of 
the decoding algorithm.
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