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The simplest example of the generalized linear spiking neu-
ron model is the linear-nonlinear Poisson (LNP) cascade model 
(Chichilnisky, 2001; Simoncelli et al., 2004). In this model, one 
first convolves the stimulus with a linear filter, subsequently trans-
forms the resulting one-dimensional signal by a pointwise non-
linearity into a non-negative time-varying firing rate, and finally 
generates spikes according to an inhomogeneous Poisson process. 
Importantly, the GLM model is not limited to noisy Poisson spike 
generation: analogous to the stimulus signal, one can also convolve 
the recent history of the spike train with a feedback filter and trans-
form the superposition of both stimulus and spike history filter 
outputs through the pointwise nonlinearity into an instantaneous 
firing rate in order to generate the spike output. In this way one can 
mimic dynamical properties such as bursts, refractory periods and 
rate adaptation. Finally, it is possible to add further input signals 
originating from the convolution of a filter kernel with spike trains 
generated by other neurons (Borisyuk et al., 1985; Brillinger, 1988; 
Chornoboy et al., 1988). This makes it possible to account for cou-
plings between neurons, and to model data which exhibit so called 
noise correlations, i.e., correlations which can not be explained by 
shared stimulus selectivity. Although the GLM only gives a phe-
nomenological description of the neurons’ properties, it has been 
shown to perform well for the prediction of spike trains in the retina 
(Pillow et al., 2005, 2008), in the hippocampus (Harris et al., 2003) 
and in the motor cortex (Truccolo et al., 2010).

In this paper we seek to explore the potential uses and limi-
tations of the framework for approximate Bayesian inference for 
GLMs based on the Expectation Propagation algorithm (Minka, 
2001). With this framework, we can not only approximate the 

IntroductIon
A common problem in system neuroscience is to understand how 
information about the sensory stimulus is encoded in sequences 
of action potentials (spikes) of sensory neurons. Given any stimu-
lus, the goal is to predict the neural response as well as possible, 
as this can give insights into the computations carried out by the 
neural ensemble. To this end, we want to have flexible generative 
models of the neural responses which can still be fit to observed 
data. The difficulty in choosing a model is to find the right trade-
off between flexibility and tractability. Adding more parameters 
or features to the model makes it more flexible but also harder 
to fit, as it is more prone to overfitting. The Bayesian framework 
allows one to control for the model complexity even if the model 
parameters are underconstrained by the data, as imposing a prior 
distribution over the parameters allows regularizing the fitting 
procedure (Lewicki and Olshausen, 1999; Ng, 2004; Steinke et al., 
2007; Mineault et al., 2009).

From a statistical point of view, building a predictive model 
for neural responses constitutes a regression problem. Linear least 
squares regression is the simplest and most commonly used regres-
sion technique. It provides a unique set of regression parameters, 
but one that is derived under the assumption that neural responses 
in a time bin are Gaussian distributed. This assumption, however, is 
clearly not appropriate for the spiking nature of neural responses. 
Generalized Linear Models (GLMs) provide a flexible extension of 
ordinary least squares regression which allows one to describe the 
neural response as a point process (Brillinger, 1988; Chornoboy 
et al., 1988) without losing the possibility of finding a unique best 
fit to the data (McCullagh and Nelder, 1989; Paninski, 2004).
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 posterior mean but also the posterior covariance and hence 
compute  confidence intervals for the inferred parameter values. 
Furthermore, the posterior mean is an alternative to the commonly 
used point estimators, maximum a posteriori (MAP) or maximum 
likelihood. Like the MAP also the posterior mean can be used with 
a Gaussian or a Laplacian prior leading to an L2 or an L1-norm 
regularization. To establish the approximate inference framework, 
we compare these point estimates on the basis of two different 
quality measures: prediction performance and filter reconstruction 
error. In addition, we investigate different binning schemes and 
their impact on the different inference procedures. Along with the 
paper we publish a MATLAB (the code is available at http://www.
kyb.tuebingen.mpg.de/bethge/code/glmtoolbox/) toolbox in order 
to support researchers in the field to do Bayesian inference over the 
parameters of the GLM spiking neuron model.

The paper is organized as follows. In Section “Generalized Linear 
Modeling for Spiking Neurons”, we review the definition of the 
Generalized Linear Model and present the expansion into a high-
dimensional feature space. We explain how a Laplace prior can 
improve the prediction performance in this setting and how dif-
ferent loss functions can be used to rate different quality aspects. 
In Section “Approximating the Posterior Distribution Using EP”, 
we present how the posterior distribution for observed data in the 
GLM setting can be approximated via the Expectation Propagation 
algorithm. Finally in Section “Potential Uses and Limitations” we 
systematically compare the MAP estimator to the posterior mean 
assuming Gaussian versus a Laplacian prior. In addition we apply 
the GLM framework to multi-electrode recordings from a popula-
tion of retinal ganglion cells and discuss the potential differences 
of discretizing time directly or discretizing the features.

GeneralIzed lInear ModelInG for SpIkInG neuronS
SpecIfyInG the lIkelIhood
The Generalized Linear Model (GLM) of spiking neurons describes 
how a stimulus s(t) is encoded into a set of spike trains { }t j

i  gener-
ated by neurons i = 1,…,N, j = 1,…,N

i
 (Brillinger, 1988; Chornoboy 

et al., 1988; Paninski, 2004; Okatan et al., 2005; Truccolo et al., 2005) 
(See Stevenson et al., 2008 for a recent review). More precisely, s(t) 
is a vector of dimensionality n, which describes the history of the 
stimulus signal up to time t according to a suitable parametrization. 
For example, in Section “Potential Uses and Limitations” where we 
apply the GLM to retinal ganglion cell data, the vector s(t) contains 
the light intensities of the full-field flicker stimulus for the last n 
frames up to time t. The GLM assumes that an observed spike train 
{t

j
} is generated by a Poisson process with a time-varying rate λ(t). 

In its simplest form the rate λ(t) depends only on the stimulus 
vector s(t). This special case of the GLM is also known as the LNP 
model (Simoncelli et al., 2004). Specifically, the rate can be written 
as a Linear-Nonlinear cascade:

λ( ) ( )t f t s= ( )s w

 
(1)

First, the stimulus is filtered with a linear filter w
s
 which is 

referred to as the receptive field of the neuron. Subsequently, the 
pointwise monotonic nonlinearity f transforms the real-valued out-
put of the linear filtering into a non-negative instantaneous firing 
rate. If the current stimulus has a strong overlap with the receptive 

field, that is if s(t)Tw
s
 is large, this will yield a large  probability of 

firing. If it is strongly negative, the probability of firing will be zero 
or close to zero.

In the classical GLM framework (McCullagh and Nelder, 1989), 
f −1 is also called “link function”. For the Poisson process noise 
model, the link function must be both convex and log-concave 
in order to preserve concavity of the log-posterior (Paninski, 
2004). Thus it must grow at least linearly and at most exponen-
tially. Typical choices of this nonlinearity are the exponential or a 
threshold  linear function,
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As the spikes are assumed to be generated by a Poisson process, 
the log-likelihood of observing a spike train {t

j
} is given by
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In this simple form, the GLM ignores some commonly observed 
properties of spike trains, such as refractory periods or bursting 
effects. In order to address this problem, we want to make the firing 
rate λ(t) dependent not only on the stimulus but also on the history 
of spikes generated by the neuron. To this purpose, an additional 
linear filtering term can be added into Eq. 1. For example, by con-
volving the spikes generated in the past with a negative-valued 
kernel, we can account for the refractory period. The instantaneous 
firing rate of the GLM then results from a superposition of two 
terms, a stimulus and a spike feedback term:

λ ψ( ) ( ) ( ) .t f t ts h h= +( )s w w 

 
(3)

The m-dimensional vector ψ
h
(t) describes the spiking history 

of the neuron up to time t according to a suitable parametrization. 
A simple parametrization is a spike histogram vector whose com-
ponents contain the number of spikes in a set of preceding time 
windows. That is, the k-th component (ψ

h
(t))

k
 contains the number 

of spikes in the time window (t − ∆
k+1

, t − ∆
k
] with ∆ ∆ ∆0 1< < < m . 

The linear weights w
h
 can then be fit empirically to model the specific 

dynamic properties of the neuron such as its refractory period or 
bursting behavior. The encoding scheme is illustrated in Figure 1.

Analogous to the spike feedback just described, the encoding can 
readily be extended to the population case, if the vector ψ

h
(t) for 

each neuron not only describes its own spiking history, but includes 
the spiking history of all other neurons as well. Taken together, the 
log-likelihood of observing the spike times { }t j

i  for a population of 
i = 1,…,N neurons is given by

log , log ( )
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tion to a more general renewal process (Pillow, 2009). By adding 
only a few extra parameters to the model these extensions can 
be very effective in increasing the computational power of the 
neural response model. The downside of this approach is that 
most of these extensions do not yield a log-concave and hence 
unimodal posterior anymore. Another option for increasing the 
flexibility of the GLM which preserves the desirable property of 
concave log-posterior is to add more and more linearly inde-
pendent parameters for the description of the stimulus and spike 
history that are promising candidates for improving the predic-
tion of spike generation. For example, in addition to the original 
stimulus  components s(t)

i
 we can also include their quadratic 

interactions s(t)
i
s(t)

j
. In this way, we can obtain an estimate of 

the computations of nonlinear neurons such as complex cells. 
This is similar to the spike-triggered covariance method (Van 
Steveninck and Bialek, 1988; Rieke et al., 1997; Rust et al., 2005; 
Pillow and Simoncelli, 2006) but more general, as we can still 
include the effect of the spike history. In principle, one can add 
arbitrary features to the description of both the stimulus as well as 
the spiking history. As a consequence, it is possible to approximate 
any arbitrary point process under mild regularity assumptions 
(see Daley and Vere-Jones, 2008). Like in standard least squares 
regression the actual merit of the Bayesian fitting procedure 
described in this paper is to have mechanisms for finding linear 
combinations of these features that provide a good description 
of the data. Therefore, it often makes sense to use a set of basis 
functions whose span defines the space of candidate functions 
(Pillow et al., 2005). We should choose a sufficiently rich ensem-
ble of basis functions such that any plausible kind of stimulus 
or history dependence can be realized within this ensemble. We 
denote the feature space for the spiking history by ψ

h
 and the 

feature space for the stimulus by ψ
s
. The concatenation of both 

feature vectors is denoted by ψ
s,h

. Together we can write down 
the log-likelihood of observing a spike train { } :,t j

i
j i

log { } , log ( )
,

p t t s sj
i

s h
i

j
i i

T

ii j

| w w( ) = ( ) − ∫∑∑ λ λ d
0  

(6)

Although the likelihood factorizes over different neurons i, this 
does not imply that the neurons fire independently. In fact, every 
neuron can affect any other neuron i via the spiking history term 
ψ

h
(t). Thus, by fitting the weighting term wh

i  to the data we can 
also infer effective couplings between the neurons.

In order to evaluate Eq. 4 we have to calculate the integral 
∫ +0

T
s
i

h h
if ( ( ) ( ) )s w wτ ψ τ τ  d  numerically. In terms of computation 

time, this easily becomes a dominating factor when the record-
ing time T is large. Many artificial stimuli used for probing sen-
sory neurons such as white noise can be described as piecewise 
constant functions. For example, the stimulus used for the retinal 
ganglion cells in Section “Population of Retinal Ganglion Cells” 
had a refresh rate of 180 Hz. In this case, the stimulus s(t) only 
changes at particular points in time. Further, if we use the spike 
histogram vector mentioned above to describe the spiking history 
of the neurons, then also ψ

h
(τ) is a piecewise constant function. 

Thus, we can find time points τ
1
,…,τ

z
 between which neither the 

stimulus nor the vector describing the spiking history changes. 
We call the τ

i
 “discretization-points”. Also in cases in which the 

features are not piecewise constant such a discretization can be 
approximately obtained in a data-dependent manner, which we 
show in Section “Data-Dependent Discretization of the Time-Axis”. 
By decomposing the integral over (0, T) into a sum of integrals over 
the intervals [τ

k
, τ

k+1
) within which the integrand stays constant, 

the log-likelihood can be simplified to:

log { } , log
,

p t f t tj
i
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h
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Note that ψ
h
(τ

k
) and ψ

s
(τ

k
) are constant, since the features do 

not change in the interval [τ
k
, τ

k+1
).

extendInG the coMputatIonal power of GlMs
To increase the flexibility of a GLM, several extensions are pos-
sible. For example, one can add hidden variables (Kulkarni and 
Paninski, 2007; Nykamp, 2008) or weaken the Poisson assump-

FiGure 1 | illustration of the generative encoding model associated with a GLM: the stimulus s(t) as well as the spiking history ψh(t) are filtered with 
their corresponding receptive fields ws and wh. A nonlinearity f is applied to the sum of the outputs to produce an instantaneous rate, which then is used to 
generate new spikes.
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and the Laplace prior,

p w
n

k
k

n

( ) exp exp .w w= 



 −( ) = −( )

=
∏2 2

1
1τ

τ
τ

τ|| || | |
 

(10)

Given a prior distribution, one can write down the posterior 
distribution,

p D p p D( ) ( ) ( )w w w| |∝

which specifies how likely a set of weights w is, given the observed 
data D and the prior belief over the weights. The data D contains 
both, observed spike trains as well as stimuli.

To obtain a particular choice of parameter values a popular point 
estimate is MAP estimate, that is the point of maximal posterior 
density argmax

w
 p(w | D). The MAP estimate is equivalent to the 

maximum likelihood estimate regularized with the log-prior. As 
mentioned above, the use of Laplace priors can yield advantageous 
regularization properties (Tibshirani, 1996; Lewicki and Olshausen, 
1999; Ng, 2004; Steinke et al., 2007; Mineault et al., 2009). For a 
sparse prior, most of the features are likely to have zero weight, but 
if they have a non-zero weight, the amplitude is less constrained. 
In order to favor sparse solutions, the direct approach would be to 
penalize the number of non-zero parameter entries. The number 
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data-dependent dIScretIzatIon of the tIMe axIS
If we choose the features ψ

h
, ψ

s
 such that they do not change 

between distinct discretization-points τ
k
, i.e., ψ

s,h
 is constant in 

the interval [τ
k
, τ

k+1
) the likelihood can be simplified to:
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When approximating the features by describing the spike history 
dependence with a piecewise constant function, this yields a finite 
number of discretization-points in time between which, the result-
ing conditional rate, given the spiking history, does not change. 
In order to illustrate this process, consider the following simple 
scenario illustrated in Figure 2. Suppose there is only one neuron, 
which receives a constant input. Accordingly, the feature describing 
the stimulus is constant ψ

s
(t) ≡ 1, which appear as the last entry 

in the combined feature vectors ψ
h,s

(t) in the figure. The spiking 
history H

t
 up to time t is represented by two dimensions, which are 

approximated by piecewise constant functions, changing only at 
2 and 10 ms. Note, that the time axis, labeled with time-parameter 
s in Figure 2 is pointing into the past and centered at the current 
time point t. As long as we did not observe a spike, the feature 
values of the two basis functions are zero, i.e., ψ

h
(t)

1
 = ψ

h
(t)

2
 = 0 

for t < t
1
. Once we have observed a spike, this enters in both fea-

tures via the first constant value. Hence in this example ψ
h
(t)

1
 = 5, 

ψ
h
(t)

2
 = 1 for τ

1
 = t

1
 ≤ t < τ

2
 = τ

1
 + 2 ms. When the observed spike 

leaves the 2 ms window and enters the second time window of the 
basis functions the feature values change to ψ

h
(t)

1
 = 1, ψ

h
(t)

2
 = 2 

for τ
2
 ≤ t < τ

3
 = τ

2
 + 8 ms. In order to calculate the conditional 

rate, we have to evaluate f (ψ
h
(t)Tw

h
 + ψ

s
(t)Tw

s
). For the weights in 

Figure 2, this gives the qualitative time course of the conditional 
rate λ(t|H

t
, s(t)) as depicted in Figure 2.

uSInG laplace prIorS for better reGularIzatIon
The expansion of the stimulus and the spiking history in high-
dimensional feature spaces comes at the cost of having a large 
number of parameters to deal with. As we only have access to a 
limited amount of data, regularization is necessary to avoid over-
fitting. In the Bayesian framework, this can be done by choosing 
a prior distribution p(w) = p((w

s
, w

h
)) over the linear weights w

s
 

and w
h
. As these parameters enter the log-likelihood linearly, the 

prior distribution can be interpreted as specifying how likely we 
think that a particular feature is active, or necessary for explaining 
a typical data set. The prior distribution becomes more important 
as we increase the number of parameters.

Two commonly used priors are the Gaussian,

p( ) exp expw w w w= −



 = −





1

2

1

2

1

2

1

22 2
2

2 2πσ σ πσ σ
|| ||   (9)

FiGure 2 | illustration of the data-dependent time discretization. Two 
spikes from one neuron have been observed at time points t1 and t2. Since we 
assume a constant input (s(t ) ≡ 1) the last entry in the combined feature vector 
ψh,s(t ) is always 1. The spiking history up to time t, denoted with Ht is described 
with two basis functions, (ψh(t ))1, (ψh(t ))2. Each of these could have its own 
discretization, but here both have the same, namely at 0, 2 and 10 ms. That is, 
the basis functions are approximated with a piecewise constant function with 
jumps at 0, 2 and 10 ms. Each spiking history feature has its own weight, as 
has the stimulus. Thus, the feature vector describing both, the stimulus as 
well as the spiking history ψs,h(t) is a three-dimensional vector, changing its 
value at discretization-points τk. In each interval [τk,τk+1) the rate λ(τk | Ht, s(τk)) 
can be calculated. In this specific case, it only assumes three different values, 
exp(ψs,h(t )Twh,s) = exp( − 27), exp( − 2), exp(1), assuming that the weight for the 
stimulus is ws = 1.
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in log-likelihood of the different models measures how well the 
estimated model does at predicting spike times from the ground 
truth model.

Mean squared error reconstruction
A different way of quantifying the performance of an estimation 
algorithm for synthetic data would be to check how closely the 
estimated parameters ( )ŵ  match those that were put into the model 
as ground truth (w). In particular for judging the quality of the 
reconstructed filter shapes a popular choice is to look at the mean 
square error between the true and estimated parameters:

l j j
j

w  w w w, ˆ ˆ( ) = −∑ 2

 
(12)

approxIMatInG the poSterIor dIStrIbutIon uSInG ep
It has been shown that the MAP yield a good prediction perform-
ance (Pillow et al., 2008) but there are a couple of reasons why 
one would like to know more about the posterior than just its 
maximum. For example the posterior mean is known to be the 
optimal point estimate with respect to the mean squared error 
(Eq. 12). Furthermore, in many cases we are not only interested 
in a point estimate of the parameters, but we also want to know 
the dispersion of the posterior. In other words, we want to have 
confidence intervals indicating how strongly the parameters of a 
model are constrained by the observed data.

The resulting uncertainty estimate in turn can be used for opti-
mal design (Lewi et al., 2008; Seeger, 2008), that is we can decide 
which stimulus to present next, in order to maximally reduce our 
uncertainty about the parameters. Furthermore, a distribution 
of the full posterior distribution gives rise to the marginal likeli-
hood, which is the likelihood of the data under the model, with-
out assuming specific linear filters. The marginal likelihood can be 
used to optimize the parameters of the prior without performing 
a crossvalidation (Chib, 1995; Seeger, 2008). Mathematically, the 
uncertainty is encoded in the dispersion of the posterior distribu-
tion over parameters w given observed data D :

p D
Z

p D p( ) ( ) ( )w w w| |= 1

 
(13)

where

Z p D p= ∫ ( ) ( )| w w wd .

Taken together there are strong arguments why it is useful to 
investigate the information conveyed by the posterior other than 
just the location of its maximum. The posterior is really the sum-
mary of all we can learn from the data about the given model.

Unfortunately, exact Bayesian inference (calculation of the 
normalization constant Z) is intractable in our case. Therefore, 
we are interested in finding a good approximation to the full pos-
terior. If we can determine the posterior mean and covariance, 
this naturally leads to a Gaussian approximation of the posterior. 
Furthermore, we note that the true posterior in our case is unimo-
dal, as both likelihood and prior are log-concave (Paninski, 2004). 
We employ the Expectation Propagation (EP) algorithm in order 
to compute a Gaussian approximation to the full posterior (Opper 
and Winther, 2000, 2005; Minka, 2001; Seeger, 2005) (see Nickisch 

of non-zero entries is sometimes referred to as the “L0-norm” 
of the parameter vector (despite the fact that it is not a proper 
norm). Unfortunately, finding the L0-norm regularized weights is 
a hard problem. Using the L1-norm however, is a useful relaxation 
which in some cases even gives an equivalent solution (Donoho 
and Stodden, 2006). The log of the Laplace prior-probability (see 
Eq. 10) of a given parameter vector is proportional to the L1-norm 
of this vector. Therefore, using a Laplace prior is equivalent to 
penalizing the L1-norm of the parameters. Finally using a Gaussian 
prior is equivalent to penalizing the L2-norm of the parameter 
vector (see Eq. 9).

From a practical point of view, log-concavity is another desir-
able property of the prior distribution as it here ensures that the 
posterior p(w|D) ∝ p(w)p(D|w) is also log-concave and there-
fore finding the maximum of the posterior (i.e., computing the 
MAP estimator) is a convex optimization problem (Paninski 
et al., 2004). For the GLM, log-concavity and convexity of the 
link function f is also required to guarantee log-concavity of the 
posterior. Both priors, the Gaussian as well as the Laplacian are 
log-concave. Although the posterior is log-concave when a Laplace 
prior is used, calculating the MAP is still a non-trivial problem. 
As the Laplace prior is non-differentiable at zero, the gradient at 
any point containing a zero in at least one component cannot be 
calculated. Thus standard techniques like conjugate gradient or 
iterative reweighted least squares fail. For the case of a Gaussian 
likelihood and Laplace prior the LASSO algorithm (Tibshirani, 
1996) can be used. For the case of a likelihood originating from 
a GLM, the posterior is differentiable in each orthant, and hence 
subgradients can be calculated. In our implementation, we use the 
algorithm of Andrew and Gao (2007).

perforMance MeaSureS
After we have obtained an estimate of the parameters of a GLM, 
we would like to evaluate the quality of the estimate.

Prediction performance
To measure the performance of an estimate, we calculated the dif-
ference between the estimated model and the ground truth model 
with respect to the log-likelihoods on a test set. The test set was 
generated with the same weights for each trial. In this way we can 
assess how likely a previously unseen spike train sampled from the 
ground truth model is under the estimated model. The difference 
between the average log-likelihoods can be seen as an approxima-
tion to the Kullback–Leibler distance of the estimated model from 
ground truth.
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Here D
i
 is a spike train in the i-th of N trials generated with 

the true weights w whereas the estimated weights are ŵ. The 
more likely the spike trains are, the better is the weight estimate, 
which specifies the estimated model. Therefore, the difference 
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where D
KL

 denotes the Kullback–Leibler divergence or relative 
entropy. Q(u

i
) is the marginal Gaussian distribution in the direction 

of ψ
s,h

(τ
i
). It is the Gaussian distribution one obtains, when taking 

the complete approximation Q(w) and projects it on ψ
s,h

(τ
i
). In other 

words, we require the approximation to be consistent in the sense 
that, if we replace the approximating factor exp( / )− +1 2 2πi i i iu b u  
with the true factor f

i
(u

i
), the marginal moments in the direction 

of ψ
s,h

(τ
i
) should not change. To achieve this consistency, EP cycles 

through the factors and updates the parameters of each approximat-
ing factor such that Eq. 23 holds. For Eq. 23 to hold, only moments 
of a one-dimensional distributions have to be calculated. This can 
efficiently be done using numerical integration (Piessens et al., 
1983). We omit the details of this updating scheme here and refer 
to the Appendix. The interested reader is referred to our MATLAb 
code and to further literature (Heskes et al., 2002; Qi et al., 2004; 
Seeger et al., 2007). The computational cost of EP is quadratic in 
the number of parameters (as the posterior covariance has to be 
estimated) and linear in the number of factors (in the GLM setting 
this is the same as the number of discretization-points) per cycle 
through the factors. In our simulations 30 iterations through all 
factors were sufficient for convergence.

Another frequently used way of approximating the posterior dis-
tribution with a Gaussian, is the so called Laplace approximation or 
Laplace’s method (MacKay, 2003; Rasmussen and Williams, 2006; 
Lewi et al., 2008). A second-order Taylor expansion is calculated 
around the MAP. As the posterior is unimodal, the MAP can be 
found efficiently. Calculating the Hessian at a particular point can 
also be obtained analytically, given the posterior is differentiable at 
that point. The Laplace prior we use, however, is non- differentiable 
at zero. Therefore, the posterior is not differentiable at any point 
which contains at least one zero in one component. As we expect the 
MAP to assign many components zero weight, we cannot calculate 
the Hessian at that point. Furthermore, in a different setting it has 
been shown that the quality of the Laplace approximation is inferior 
to the one achieved by the EP approximation (Kuss and Rasmussen, 
2005; Koyama and Paninski, 2009). The Laplace approximation is 
only sensitive to the local curvature at the point of maximal posterior 
density. As the EP approximation is based on moment matching it 
is influenced by the shape of the full posterior distribution.

potentIal uSeS and lIMItatIonS
In the following, we systematically compare the different point 
estimates, posterior mean and MAP. We vary the assumed prior 
distribution as well as the loss function in terms of which the per-
formance is measured. In particular, we also investigate cases in 
which the assumed prior distribution differs from the “true” dis-
tribution used to generate the parameters. Finally, we also look at 
the possible effects of data discretization.

Map verSuS poSterIor Mean
Tibshirani (1996) showed that for Gaussian likelihood and Laplace 
priors, the MAP gives sparse solutions and performs best, given 
the true underlying weights are sparse. If the data is assumed to be 
distributed according to a logistic likelihood, a similar result has 
been found by Ng (2004). Here, for the case of data generated by a 
GLM, we would like to see whether the same holds true, and also 
compare the MAP to the posterior mean.

and Rasmussen, 2008 for alternative approximations schemes). The 
key observation is that the likelihood as well as the Laplace prior 
factorizes over simple terms, each of which is intrinsically one-
dimensional. We have three types of factors:

f u f u f u f u f ui i i i i i i1 ( ) = ( )( ) − ( )( ) = ( ) − ( )( )exp log exp∆ ∆τ τ
 

(14)

f u f ui i i2 ( ) = − ( )( )exp τ
 

(15)

f u ui i3 ( ) = −exp( )τ | |
 

(16)

where, u
i
 : = ψ

s,h
(τ

i
)Tw

s,h
 defines the one-dimensional direction for 

each of these factors. ψ
s,h

 and w
s,h

 denote the concatenation of the 
feature vectors describing the spiking history and the stimulus his-
tory respectively. Equation 14 corresponds to a factor or individual 
term in the sum of the log-likelihood (Chichilnisky, 2001) if there 
was a spike at τ

i+1
 and no spike in the interval (τ

i
, τ

i+1
) of length 

∆τ
i
 : = (τ

i+1
 − τ

i
). Equation 15 corresponds to a factor if there was 

no spike at time τ
i+1

. Finally, Eq. 16 represents the Laplace terms 
for the prior in the product for the posterior distribution. The 
Expectation Propagation algorithm approximates each of those 
factors with a Gaussian factor:
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Thus, if we multiply all of these approximating factors, we obtain 
a Gaussian distribution, which is straightforward to normalize:

p D
Z

u b ui i i i
i

( ) expw | ≈ − +



∏1 1

2
2π

 
(18)

               

= − ( ) ( )


+ ( ) 


=

∑

∑

1 1

2Z

b Q

i s h i s h i
i

i s h i
i

exp

(

, ,

,

w w

w

 




π ψ τ ψ τ

ψ τ ww)
 

(19)

               
= − − −





−1

2

1

22 1 2
1

( ) det
exp ( ) ( ) ,

/ /π
µ µ

n C
w C w

 
(20)

with

           

C = ( )



∑

−

π ψ τ ψ τi s h i s h i
i

, , ( )

1

 

(21)

            

µ ψ τ= ( )



∑C b i s h i

i
,

 

(22)

The task now is to update the parameters π
i
, b

i
 for the approxi-

mating factors such that the moments of the resulting approxi-
mation are as close to the true moments as possible. The crucial 
consistency equation which the EP algorithm tries to attain is given 
by Opper and Winther (2005):
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are sampled from a Gaussian distribution. Analogously, Figure 3B 
shows the results for the Laplace distribution and Figure 3C for the 
strongly sparse weights. We plot the average KL-divergence over 
5000 trials ± 1 SD. As can be seen, the EP estimate for the Laplace 
(L1) prior performs best, if the true underlying weights are sparse. 
If the weights are sampled from a Laplace or a Gaussian distribu-
tions, the parameter vector of the true model is non-sparse and the 
L2 regularized MAP performs best. Interestingly, even for the case 
in which the weights are sampled from a Laplace distribution, the 
MAP performs best when using an L2-penalty term. Since we know 
the prior variance that was used to generate the weights, we did 
not perform a crossvalidation to set the regularization parameter, 
neither for the MAP estimates, nor for the posterior mean estimates 
(EPL1, EPL2). (Note that, in cases where the true distribution of 
weights is different to the prior used, it is possible that the predic-
tion performance could be increased by picking a variance which 
is different to the “true” one).

In cases, in which the parameters are really drawn from the prior 
distribution, the posterior mean estimate can be shown to be the 
optimal parameter estimate, as it will minimize the mean squared 
error. Thus, in the two cases, in which we sampled the weights 
according to a Gaussian and a Laplacian distribution respectively, 
we expect the EP approximation to be superior to the MAP esti-
mate in terms of the mean squared error. In the situation where 
the weights are actually sparse the performance is less clear, as the 
EP estimates assume a prior which is different to the one used to 
generate the weights. Therefore, it is not guaranteed in this case, 
that the posterior mean will be the optimal parameter estimate 
with respect to the mean squared error.

In general, we expect the MAP estimate to give a sparser solution 
than the posterior mean. If we have not seen much data, we expect 
the prior to dominate the posterior. In this case the maximum of the 
posterior will be at zero, resulting in a zero weight for the MAP. 
However, as the likelihood factors are not symmetric, the posterior 
is also not symmetric in general. Thus, even for weights for which 
the MAP is at zero, the probability mass is not symmetrically dis-
tributed around that maximum. Hence, the posterior mean in this 

To illustrate the effect of a Laplace prior when increasing the 
number of features in the GLM of spiking neurons, we considered 
the following examples. We made a series of simulations with GLM 
neurons for which the space of possible features was successively 
increased from 10 to 230 dimensions. The stimulus was Gaussian 
white noise discretized into 10 ms bins. The stimulus history s(t) 
was set to contain the stimulus values of the last 20 bins describing 
the stimulus history for a period of 200 ms. From the 20 dimen-
sional stimulus history s(t) we constructed the full 230 dimensional 
quadratic feature space:

ψ s t s t s t
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with ∆ = 10 ms, similar as in Rust et al. (2005). From this basis of 
the 230 dimensional feature space a subset of increasing size was 
selected. That is, the dimensionality of the weight vector increased 
from 10 to 230, too. For all simulations, a GLM neuron was simu-
lated until the likelihood consisted of 400 factors, i.e., 400 τ

k
 in the 

sum in Eq. 8 (alternatively one could also fix the time-duration of 
a trial or the number of spikes per trial).

We compared three different choices of priors, and use models 
which either had matching priors, or different ones:

1. Gaussian weights: Each weight was sampled independently from 
a Gaussian distribution. The variance was set to 20/dim(ψ

s
).

2. Laplacian weights: Each weight was sampled independently from 
a Laplace distribution. The variance was set to 20/dim(ψ

s
).

3. Sparse weights: A subset of only 10 dimensions was assigned 
with non-zero weights. For the assignment of the 10 weights, 
we draw 10 samples from a Laplace distribution with variance 
2 and zero mean.

In Figure 3 the Kullback–Leibler distance is plotted as a function 
of the dimensionality of the feature space for each of the generating 
distributions. In Figure 3A the weights of the ground truth model 

FiGure 3 | Prediction performance in high-dimensional feature spaces of 
increasing size. The mean across 5000 trials of the differences in the 
log-likelihoods is plotted as a function of increasing stimulus dimension. The 
different point estimates are MAP with Laplace regularization (MAPL1, solid 
red), MAP with a Gaussian prior (MAPL2, dashed red) and the posterior mean 
approximated with EP for the Laplace (solid blue) as well as for the Gaussian 

prior (dashed blue). Confidence intervals indicate standard error of the mean 
difference. Panel (A) shows the performance when a Gaussian distribution is 
used for sampling the weights and (B) for a Laplace distribution. (C) Shows the 
prediction performance if the weights are actually sparse, that is the true 
dimensionality is constantly 10. The overall variance for the generation of 
weights in panels (A) and (B) were kept fix to the same value as in (C).
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means of a simple example. For some areas, for example in the 
auditory cortex, the precise timing of spikes is important (Carr 
and Konishi, 1990; Wightman and Kistler, 1992). By binning spikes 
into a discrete set of bins, one might lose this precise timing. If 
one discretizes the time axis directly and wants to keep the precise 
timing, one needs to specify very small time bins. This leads to a 
large number of discretization-points and hence very many factors 
for the likelihood. Alternatively, if one discretizes the features, the 
discretization is adapted to the spike times and thus could lead to 
possibly fewer discretization-points while still achieving a high tem-
poral resolution. However, if a lot of spike times have been observed, 
discretization of the basis functions for the features could lead to 
a time discretization which is too fine for optimization purposes. 
A compromise would be to adaptively add discretization-points 
when needed, but constrain the minimal inter discretization-point 
interval. In general, the discretization of the features allows one to 
specify the resolution and (given that resolution) produces then 
the minimal number of discretization-points.

To illustrate possible differences between a discretization of 
features versus a discretization of the time axis, we considered the 
following example: two GLM neurons were simulated. One of them 
had a stimulus filter, while the other one was only dependent on 
the spikes from the first neuron. The filters for the stimulus as well 

case will be non-zero and the solution less sparse. In Figure 4 we 
plotted the mean squared reconstruction error for the different 
estimators. As can be seen the EP approximation to the posterior 
mean performs better than the MAP. This is also true for the sparse 
setting, however the effect gets less prominent if the dimensionality 
of the parameter space is increased.

The quality of the different point estimates, quantified by the 
mean squared error and by the prediction performance are sum-
marized in Table 1. To obtain a single number for the overall per-
formance, we summed the errors for each individual dimension 
of parameter space (integral over each curve in Figures 3 and 4). 
The posterior mean gives a good estimate in all settings when a 
Laplacian prior is used. For the prediction performance the MAP 
with the L2 prior can lead to better results if the true prior is 
Gaussian or Laplacian.

bInnInG and IdentIfIabIlIty
In Section “Generalized Linear Modeling for Spiking Neurons” 
we specified the log-likelihood in terms of time-discretized fea-
tures. This results in a binning with not necessarily equidistant 
discretization-points τ

j
. Another popular way to simplify the log-

likelihood is to bin the time axis directly. In this section we would 
like to illustrate the possible effects of the two discretizations by 

FiGure 4 | Mean squared error as a function of increasing dimensionality 
of the parameter space. The same data as in Figure 3 is plotted, but instead 
the performance is measured in mean squared error between the estimated 
weights and the true underlying weights as opposed to the differences in 
log-likelihoods shown in Figure 3. (A) Shows the performance if the underlying 

weights are sparse, in panel (B) a Laplace distribution is used to sample the 
weights and in (C) a Gaussian distribution is used. In each panel the mean 
across 5000 trials is plotted ± standard error of mean. In solid black the prior 
variance is plotted, which is the expected mean squared error of the constant 
estimator.

Table 1 | Comparison of different quality measures and point estimates. In the left table integrated KL-divergence is shown for the MAP and the posterior 

mean point estimates when either a Laplace or a Gaussian prior is assumed. Each row corresponds to a ground truth prior which was used to sample the 

weights. Each number corresponds to an integral of a curve in Figure 3. The right table reports the same when the mean squared error is used as a loss 

function. Thus, each number is the integral over one curve in Figure 4 and therefore reports the overall performance of the different estimators. For each 

ground truth model and loss function the best overall estimator is colored in red.

 integrated KL-divergence integrated MSe

 MAP with eP-mean with MAP with eP-mean with

 Laplace Gauss Laplace Gauss Laplace Gauss Laplace Gauss

GrouNd TruTh

Gauss 3.93 × 10−3 3.39 × 10−3 3.532 × 10−3 3.5 × 10−3 195.996 186.095 186.248 185.992

Laplace 3.87 × 10−3 3.46 × 10−3 3.52 × 10−3 3.58 × 10−3 194.246 185.52 184.99 185.391

Sparse 3.66 × 10−3 3.83 × 10−3 3.41 × 10−3 3.96 × 10−3 188.698 183.685 180.536 183.542
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shift toward the second scenario. That is, the stimulus filter for the 
second neuron in that case is slightly elevated, whereas the strength 
of the coupling filter is diminished.

populatIon of retInal GanGlIon cellS
To compare the different methods for the analysis of real data, we 
applied the algorithms to multi-electrode recordings of seven sala-
mander retinal ganglion cells. Our goal was to describe the stimulus 
selectivity of the population by fitting a GLM with history terms and 
cross-neuron terms to the recorded data. We used multi-electrode 
recordings of salamander retinal ganglion cells generously provided 
by Michael J Berry II. The dataset has been published in Fairhall 
et al. (2006), where all recording details are described. We selected 
a recording of seven neurons, which had an average firing rate of 
1.1 spikes per second and a minimal interspike-interval of 2.8 ms. 
The stimulus used in the experiments consisted of 20 min white 
noise full-field flicker with a refresh rate of 180 Hz. To illustrate 
the ability of the model to also infer population models from small 
data sets, we fitted the population recording to the first 2 min of 
the recording.

For the features describing the spiking history, we used the den-
sity function of the Γ-distribution with different parameters as 
basis functions:

f t t ti i
i

i

i

i

( ) exp ,= −( ) ( )
−α

α

β β
α

1

Γ
 

(24)

as the spiking history filters are illustrated in Figure 5 (black lines). 
Because the second neuron was positively coupled to the first one 
with a small latency, we expect it to produce spikes which have a 
small temporal offset with respect to the spikes of the first neuron. 
Intuitively, the observed spikes trains could be explained by two 
different settings:

1. The weights are exactly as the ones used for simulating the 
spike trains.

2. The second neuron is not coupled to the first neuron at all, 
but has the same stimulus filter as the first one, however, with 
a small latency. Therefore it responds to the same stimulus but 
at later times.

If spikes were generated deterministically, these two setting can-
not be distinguished. In the noisy case, however, given a sufficient 
amount of data, one should be able to disentangle the two scenarios, 
as finding the maximum likelihood point is a convex problem. 
However, for finite amount of training data and in the presence of 
binning noise, the situation is less clear. Therefore, we sampled 3 s 
of spike trains and estimated the parameters from the data, once 
when the features are discretized and once when the time axis is 
discretized. The time bins were chosen such that at most one spike 
fell into a bin.

The estimate for the approximated posterior mean are plot-
ted in Figure 5. If the features are discretized the filter could be 
recovered. If we discretize the time directly, we see indeed a slight 

FiGure 5 | identifyability in the presence of binning noise. (A) Estimated 
filters, when the features are discretized (approximated with a piecewise 
constant function, see Figure 2). (B) Estimated filters when the spike times 
are binned. The binning was performed such that at most one spike fell into 
one bin. All spikes were aligned to the right hand side of their corresponding 

bins. When the time axis is binned directly and hence the precise timing of a 
spike is lost, the estimated filter for the spiking history are slightly weaker than 
the true ones (black), whereas the stimulus filters are slightly positive at a 
small latency. For the sake of readability we only plotted the approximated 
posterior mean (±2σ).
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where the means α
i
/β

i
 as well as the variances α βi i/ 2 were logarith-

mically spaced between 1 and 700 ms and 1 and 1000 respectively 
(A similar basis consisting of raised cosines was also used in Pillow 
et al. (2005, 2008). Due to the logarithmic spacing, we have a finer 
resolution for small time-lags and coarser resolution for long time-
lags. For example, we expect the first basis function, which has a 
sharp peak at zero to be mainly active or associated with the refrac-
tory period. As we discretize the basis functions rather than directly 
the time axis, each spike generates as many discretization-points τ

j
 

as there are discretization-points for the basis functions (see Section 
“Generalized Linear Modeling for Spiking Neurons”). For the stim-
ulus we used the same basis function set. As for the spike history 
dependence these functions were approximated with a piecewise 
constant function. The discretization for the basis- function time 
axis in this case was the same as for the original stimulus and there-
fore slightly coarser than the one for the spike history features. The 
basis functions are plotted in Figure 6.

For this setup we computed the different point estimates and 
posterior approximations for the weights corresponding to the fea-
tures describing the spike history dependence (Figure 7) as well 
as for the weights corresponding to the stimulus filters (Figure 8). 

FiGure 6 | Set of 23 basis functions to span the spiking history as well as 
the stimulus dependence. Each function is a density function of a Γ-distribution 
with different means and variances, see Eq. 24. The time axis for the features 
describing the spiking history was logarithmically discretized up to 1000 ms.

FiGure 7 | inferred connectivity in the network of seven retinal ganglion 
cells. Plotted are the induced dependencies by the weights, that is the 
superposition of basis functions, weighted by the inferred weights from two 
different estimators: maximum likelihood (MLE) and approximated posterior 
when a Laplace prior is used (EPL1). For the EP approximation the posterior 
mean together with 2 SD is plotted. Each row corresponds to one output neuron 
and each column corresponds to a input neuron. Thus, the entry (i, j ) describes 

the influence of a spike of neuron j on the firing rate of neuron i. For example on 
the diagonal a strong negative coupling on a short time-scale can be observed, 
representing the refractory period of a neuron. The maximum likelihood 
estimate as well as thee posterior mean agree on the self-feedback but exhibit a 
large difference on some couplings, e.g., neuron 1 → 4. In general, neuron 1 
seems to be less constrained than other neurons, which is also indicated by the 
large uncertainty intervals for the connections from and to neuron 1.
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both, stimulus and spike trains. To illustrate this, we also plotted 
confidence regions of 2 SD for the coupling parameters of the 
population. The confidence intervals for the Gaussian approxima-
tion are plotted in red when a Laplacian prior is used and in gray 
when a Gaussian prior is used. Based on the confidence intervals 
for the coupling filters, only a few of the connections are actually 
significant, as can be seen in Figure 7. This cannot be concluded 
from the couplings estimated via MAP or MLE. For example, we 
see that connections to neuron 1 (first column in Figure 7) as well 
as connections from neuron 1 to any other neuron (first row) are 
underconstrained by the data, indicated by the large uncertainty 
for those connections compared to those for others. Consequently, 
the connections are set to zero by the prior and hence effectively 
excluded from the model. The strong negative self-feedback cou-
pling, indicating the refractory period can be estimated with a 
much higher degree of certainty. We also find some significant 
couplings between neurons, both negatively coupled (e.g., neuron 

For training, only 2 min out of the 20 min of recording were used. 
Another 2 min were used for setting hyperparameters, i.e., prior 
variances. Given the posterior variances for each of the weights and 
the basis functions, we can calculate errorbars on the time course 
of the coupling and stimulus filters. The filters are defined as the 
weighted sum of the basis functions. For example, the gamma-
functions f

i
 in Eq. 24 are weighted by the weights, corresponding to 

the entry in the feature vector ψ
h
. Errorbars on the coupling filter 

f(t) can then be estimated using the marginal variances:
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where f(t) is a vector of the corresponding basis functions f
i
(t) and 

Cov[w|D] is part of the posterior covariance matrix correspond-
ing to the weights for the features described by f

i
(t). In the above 

equation D represents the dataset used for training, containing 

FiGure 8 | Statistical dependence of the neural activity of seven 
neurons on the stimulus specified by the superposition of the basis 
functions plotted in Figure 6 weighted by the estimated weights. The 
same colors for the different estimators as in Figure 7 are used. Additionally 
the posterior mean (±2σ confidence intervals) for the EP approximation with 

a Gaussian prior is plotted in red. Each plot corresponds to one neuron in the 
same order as in Figure 7. As can be seen, the maximum likelihood 
estimator is overfitting. One sees, that the posterior uncertainty for neuron 1 
and also for neuron 3 are much larger as for the other neurons analog to 
Figure 7.
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2 → 5) and positively coupled (e.g., 7 → 2). The maximum likeli-
hood estimator assigns a non-zero filter to almost every coupling 
between neurons. The EP-mean, however, forces most of the filters 
to be zero. To quantify the difference in the estimated filters, we 
calculated the squared difference between the maximum likeli-
hood and the EP-mean weights. This squared difference is 1.5 times 
larger than the average squared norm of the individual parameter 
vectors, which indicates that not only the absolute value of the 
maximum likelihood estimator is larger but also the qualitative 
shape is different. On the other hand the differences in prediction 
performance as measured by the likelihood is rather small (see 
Table 2). Thus, proximity in terms of one quality measure need 
not necessarily imply proximity in terms of the other as well. If the 
posterior uncertainty is small, the parameter vectors are much more 
constrained by the data and the filters estimated by the maximum 
likelihood estimator are closer w.r.t. the mean squared distance to 
the EP-mean. For example this is true for most of the stimulus filters 
(see Figure 8). In contrast, if the posterior uncertainty is rather 
large, for example for the stimulus filters of neuron 1 and neuron 
3, the estimated weights differ more. This suggests, that we do not 
have sufficient information to estimate all parameters, but we are 
able to extract some weights from the given data.

To compare the different estimators quantitatively, we used the 
same performance measure as for Figure 3, namely the negative 
log-likelihood on a test set. To obtain confidence intervals on the 
performance measure we split the part of the dataset, neither used 
for training nor for validation into 16 different test sets (10%, i.e., 
2 min for training, 10% for validation and 80% for testing, split 
into 16 sets of 1 min length). The performance values are sum-
marized in Table 2. By this performance measure the EP estimate 
with a Laplacian prior performs significantly better than the MAP 
estimate with the same prior. The performance difference to the 
maximum likelihood estimator is not huge, this indicates, that the 
weights are not sufficiently constrained by 1 min slices of the data. 
Especially the coupling terms not well constrained as can be seen 
by the difference in the estimated filter by the maximum likeli-
hood and the posterior mean, see Figure 7. By judging from the 
data, we do not know if the couplings are needed, hence excluding 
them from the model, i.e., setting the corresponding weights to 
zero, seems to be a safe choice. This can be achieved by using a 
strong prior distribution. The difference between a Gaussian and 
a Laplace prior is not large for the coupling terms (not shown), 
for the stimulus filters we see a small difference for the first three 

neurons, see Figure 8. Note, that in cases where there is a significant 
coupling between neurons, the EP and the maximum likelihood 
fit agree.

dIScuSSIon
Bayesian inference methods are particularly useful for system iden-
tification tasks where a large number of parameters need to be 
estimated. By specifying a prior over the parameters a full proba-
bilistic model is obtained that provides a principled framework for 
regularizing the model complexity. Furthermore, knowledge of the 
posterior distribution allows one both to derive point estimators 
that are optimized for loss functions that are suitable to the problem 
at hand and to quantify the uncertainty about such estimates.

A major hurdle for using a Bayesian approach is that computing 
the posterior distribution is often intractable. Even for numerical 
approximation techniques of the posterior distribution there is 
 usually – a priori – no guarantee how well they work. Therefore, it 
is important to perform careful quality control studies if such meth-
ods are to be applied to a new estimation problem. In this paper, we 
presented such control studies for approximate Bayesian inference in 
the GLMs of spiking neurons using Expectation Propagation (EP) 
and compared it to standard methods like maximum likelihood and 
MAP estimates. Expectation Propagation provides both a posterior 
mean and a posterior covariance approximation. These first and 
second-order moments are sufficient to obtain a rough sketch of the 
location and dispersion of the posterior distribution. The posterior 
mean, in particular, can be used as a point estimator which is known 
to minimize the mean squared error loss. This loss function is an 
expedient choice if one aims at reconstructing the filter shapes. As 
we have shown in this work, the posterior mean estimate obtained 
with EP yields a smaller mean squared reconstruction error of the 
parameters than maximum likelihood or MAP estimation.

It should be noted, however, that the filter shapes represent sta-
tistical couplings only. Clearly, the existence of a statistical coupling 
does not necessarily imply the existence of a physical coupling as well. 
Statistical dependence could, for example, also be a consequence of 
common input, or other indirect couplings. In fact, it is known that 
noise correlations between retinal ganglion cells are mainly due to 
common input, and not direct synaptic couplings (Trong and Rieke, 
2008). In the model an inferred coupling simply indicates that there 
is a dependence between the neurons which cannot be explained by 
the stimulus filters or the neural self-couplings.

Receptive field estimation aims at a functional characterization 
of neural response properties. Therefore, it is natural to compare 
different estimates by asking how well they can predict spike trains 
generated in response to new test data. Evaluating the performance 
of predicting a particular spike train is often based on the use of 
a spike train metric (Victor and Purpura, 1997), as the predicted 
spike trains have to be compared to the observed spike trains. In 
general, one wants to compare models, and not only particular spike 
trains, and therefore averages the prediction performance across 
very many samples from the two models one wants to compare.

The Bayesian framework offers a principled way to obtain an 
optimal point estimate which minimizes the loss function averaged 
across the posterior distribution. Although it is unlikely that this 
optimization problem can be solved analytically, one can sample 
weights from the posterior and then sample several spike trains 

Table 2 | Mean prediction performance of different point estimates 

averaged over 16 test sets of 1 min length. As we do not have access to 

the true underlying model, the prediction performance here is measured in 

negative log-likelihood score not in differences in likelihoods.

estimate Negative log likelihood ± 2σ

MLE 3.609 × 10−2 ± 3.665 × 10−4

MAPL1 3.521 × 10−2 ± 2.836 × 10−4

MAPL2 3.497 × 10−2 ± 2.592 × 10−4

EPL1 3.461 × 10−2 ± 2.459 × 10−4

EPL2 3.716 × 10−2 ± 2.973 × 10−4

p-value for EPL1< MAPL2: 0.0219.
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any control to what extent the result is actually constrained by the 
data. By also computing the posterior covariance rather than just 
a point estimator, we obtain confidence intervals which can serve 
exactly to this purpose. For the retinal ganglion cell data analyzed 
in Section “Population of Retinal Ganglion Cells”, for example, 
it allowed us to distinguish between neuronal couplings, that are 
significant and others which were not (see neuron 1 in Figure 7). 
One can also see that whenever the confidence intervals were large, 
the maximum likelihood estimator deviated substantially from the 
Bayesian point estimators.

appendIx
expectatIon propaGatIon wIth GauSSIanS
Finding the posterior moments
In the following we will explain the essentials for approximat-
ing posterior distributions with a Gaussian distribution via the 
Expectation Propagation algorithm.

Suppose the joint distribution of a parameter vector of interest 
w and n independent observations D = {x

1
,…,x

n
} factors as:

p D p p xi
i

n

( , ) ( ) ,w w w= ( )
=

∏ |
1  

(A1)

where p(w) is a chosen prior distribution. Further we assume, that 
each of the likelihood factors depends on a linear projection of the 
parameters w only. That is, a likelihood factor can be written as:

p x p xi i i| |w w( ) = ( )ψ .
 

(A2)

Hence, each likelihood factor is intrinsically one-dimensional. 
Next, we choose an (un-normalized) Gaussian t i  with which we 
would like to approximate each of those factors:
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Plugging this into Eq. A1, we obtain for the approximation 
Q(w|D) to the posterior:
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The prior distribution p(w) is allowed to have two different 
forms. It can either be a Gaussian in which case the inverse prior 
covariance has to be added to the outer products of the features 
ψ

i
. Another option is, that the prior distribution also factorizes 

into intrinsic one-dimensional terms. This would be the case for 
example, if a Laplace prior is used.

p
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for these given weights. In other words, we can generate samples 
from the predictive distribution. For the prediction performance 
measure specified by the loss in Eq. 11, for example, an optimal 
point estimate would be given by those weights which on average 
yield the largest likelihood for the ensemble of spike trains drawn 
from the predictive distribution. Neither the MAP nor the poste-
rior mean is optimal with respect to this criterion. Theoretically, 
the MAP is optimized for the zero-one-loss, whereas the posterior 
mean is optimized for the squared error loss (Lehmann and Casella, 
1998). In Appendix “Bayes-Optimal Point Estimate for Average Log-
Loss”, we demonstrate on a simple, concrete example (estimation 
of the probability of a coin flip and log-loss as loss function) that 
an optimized predictor will perform better (on average) than the 
MAP estimate, irrespective of what data was observed. Clearly, this 
approach is only possible if one has at least an approximate model 
of the posterior, as we have presented here.

For a single GLM this will yield a set of parameters which are 
guaranteed to be optimal on average. The optimality of course 
only holds if the model is correct (i.e., the observed spike trains 
are indeed samples from a GLM), the prior is appropriately cho-
sen, and the posterior distribution can be calculated precisely. In 
practice, it is not clear how justifiable each of the the three assump-
tions is going to be. Therefore, it is an interesting open question 
of how much better point estimates which are optimized using 
this approach will perform when compared to other optimization 
methods. Empirically, we observed that the posterior mean estimate 
obtained with EP is always better then the MAP with respect to 
squared error loss. With respect to the prediction error, the MAP 
performed slightly better than the EP posterior mean estimate if 
the weights were drawn from a Gaussian or Laplacian distribution, 
while the EP posterior mean was better than the MAP estimator 
if the weights were drawn from the truly sparse distribution. Of 
course, one could also directly use the predictive distribution as 
it will in general assign higher likelihood to unseen spikes than 
any point estimate. However, the predictive distribution cannot be 
described by a single GLM as it is an average over many models.

Our study also provides some insights about the effect of differ-
ent kinds of prior distributions on the estimation performance. The 
choice of prior in the Bayesian framework offers a principled way 
of regularization. Here, we compared specifically a Gaussian and a 
Laplacian prior. While there was almost no difference in performance 
between the EP posterior mean estimator for the Laplacian and the 
Gaussian prior if the true prior was Gaussian or Laplace, the assump-
tion of a Laplacian prior led to a substantial advantage when the true 
weight vectors had only a few non-zero components. This confirms 
the intuition that one can profit from using a Laplacian prior if one 
sets up a large number of candidate features of which only a few are 
likely to be useful in the end. Interestingly, for the MAP estimator, 
the use of a Laplacian prior almost always led to a substantial impair-
ment and resulted in a relatively small improvement only w.r.t. the 
prediction performance if the weights were sampled from a sparse 
distribution for which almost all coefficients are zero.

While the posterior mean, and even more so the MAP estimator 
can strongly depend on the particular choice of prior distribution, 
this indeterminacy is a problem only if the dispersion of the poste-
rior distribution is not taken into account appropriately. This is a 
strong case for the use of EP as the MAP estimator does not provide 
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tors. The idea of Expectation Propagation is not to stop after one 
such sweep over the factors. EP rather tries to fulfill the consistency 
(Opper and Winther, 2005):
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That is, we replace one of the approximating factors with the 
original one and require the moments not to change. To achieve 
this, one usually select an arbitrary factor i and divide it out of the 
current approximation. The resulting distribution is called the cavity 
distribution Q\i(w). If we call the current moments of the approxi-
mation μ, Σ, the moments in the direction of ψ

i
 are given by:

µ ψ µi i= 

 (A16)
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Thus, we have for the cavity distribution:
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Where we have abbreviated ui i = ψ w. By using the same algebra 
as before, we have for the moments of the cavity distribution:
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Now, we are in the same situation as before, because we want 
to update the parameters π

i
, b

i
 in order to match the moments of 

the approximation to the ones of the cavity distribution times the 
original factor. These moments have to be calculated numerically, 
which can efficiently be computed as the involved integrals are only 
one-dimensional. We call these numerical moments ′ ′µ σi i, :

              
E

Q u p x u i ii
i i i
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The moments have to match those of the complete approxima-
tion which gives:
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In order to obtain the desired Gaussian approximation to the 
true posterior, the problem is now to find the parameters π

i
, b

i
. 

Once these parameters are found, we get the desired  approximation 
via Eq. A1. If the posterior consists of a single factor, then the 
desired parameters π

1
, b

1
 are easily obtained via moment matching. 

The moments usually have to be calculated by a numerical one-
 dimensional integration along the direction ψ

1
. To  incorporate a 

new factor, we fix the parameters of the first one and try to find 
suitable b

2
,π

2
 for the second factor. More precisely, we want to mini-

mize the Kullback–Leibler distance:
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As both Q distributions are the same and all other factors vary 
only along one dimension ψ

2
, the only degree of freedom we have 

are the moments in that direction (see Seeger, 2005). Technical 
speaking, we can split the integration of the Kullback–Leibler dis-
tance into two parts. One over the direction ψ

2
 and one in the 

orthogonal direction. Now, for notational simplicity, we denote 
ψ2 2

 w = u . The moments of the Gaussian side in Eq. A8 can easily 
be computed by looking at the exponent. Let μ

1
, σ

1
 be the moments 

of the Q distribution in the direction of ψ
2
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Thus the moments μ
2
, σ

2
 are:
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Now, these moments have to be matched with the numerically 
obtained ones ′ ′µ σ2 2,  of Q(u

2
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In this fashion we can incorporate one likelihood factor after 
another. This procedure is known as assumed density filtering 
(see Minka, 2001). The obtained approximation to the posterior 
depends on the order in which we incorporate the likelihood fac-
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However, if we want to approximate the marginal likelihood we 
need the C

i
 explicitly:
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The idea is to not only match the moments but the 0th moments 
as well. We require the expectation of P(x

i
 | w) and t i ( )w  under 

Q\i(w) to be the same for all i, from which we obtain:
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For the Zi  we have:
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Therefore, we have for the marginal likelihood:
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One can also calculate gradients of the marginal likelihood with 
respect to hyperparameters (see Seeger, 2005).

MATLAB toolbox
Along with the paper we publish a MATLAB toolbox for inference 
in a generalized linear models http://www.kyb.tuebingen.
mpg.de/bethge/code/glmtoolbox/. The code provides rou-
tines for:

1. Sampling spike trains from a GLM
2. Calculation of different point estimators: maximum like-

lihood, MAP, posterior mean
3. Approximation of the posterior covariance via EP.

Either a Laplacian or a Gaussian prior can be specified. For the 
Gaussian prior an arbitrary covariance matrix is allowed.

         

′ = +






+






µ
σ

π µ
σi

i
i i

i
i

i
i ib!

\

\

\

1 new new

 

(A25)

⇒ =
′

−π
σ σi

i i
i

new 1 1
\

 
(A26)

      

bi i
i
i i

i
i

i
i

new new= ′ +






−µ
σ

π µ
σ

1
\

\

\

 

(A27)

Now we can plug in the definition of the moments of the cavity 
distribution to get an update for the parameters:

∆π π πi = −new old

 (A28)

∆b b bi = −new old

 (A29)

Together with Eq. A5 this results in a rank one update of the full 
distribution over the complete parameter vector w. More precisely 
we have a rank one update of the covariance matrix of the approxi-
mating Gaussian as well as an update of the mean:
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Where we have used the Woodbury identity to obtain Eq. A30. 
To implement these equations in a numerically stable manner, one 
usually represents the covariance by it Cholesky decomposition:

∑ = LL

 (A31)

where L is a lower triangular matrix. To calculate the moments 
for the Laplace factors, we used a technique by Seeger (2008) as 
numerical integration of Laplace factors can unstable.

Marginal likelihood
The marginal Likelihood for the hyperparameters θ is defined by:
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When considering only the parameters π
i
, b

i
, EP gives us an un-

normalized approximation to the likelihood factors t i ( ).w  As long as 
one is interested in the posterior only, this does not matter, because:
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