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Abstract

Pattern recognition methods have shown that functional magnetic resonance imaging (fMRI) data can reveal significant information
about brain activity. For example, in the debate of how object categories are represented in the brain, multivariate analysis has been used to
provide evidence of a distributed encoding scheme [Science 293:5539 (2001) 2425–2430]. Many follow-up studies have employed
different methods to analyze human fMRI data with varying degrees of success [Nature reviews 7:7 (2006) 523–534]. In this study, we
compare four popular pattern recognition methods: correlation analysis, support-vector machines (SVM), linear discriminant analysis
(LDA) and Gaussian naïve Bayes (GNB), using data collected at high field (7 Tesla) with higher resolution than usual fMRI studies. We
investigate prediction performance on single trials and for averages across varying numbers of stimulus presentations. The performance of
the various algorithms depends on the nature of the brain activity being categorized: for several tasks, many of the methods work well,
whereas for others, no method performs above chance level. An important factor in overall classification performance is careful
preprocessing of the data, including dimensionality reduction, voxel selection and outlier elimination.
© 2008 Elsevier Inc. All rights reserved.
Keywords: Multivariate analysis; Brain imaging; Functional MRI; Monkey; SVM; Naïve Bayes; Linear discriminant analysis; Correlation analysis; Feature
selection; High field; High resolution
1. Introduction

Traditional functional magnetic resonance imaging
(fMRI) studies focus on identifying which brain regions
are most active while a subject is performing a specific
cognitive task or perceiving a specific type of stimulus.
Other studies describe the effect of different stimuli on
activity or correlate responses across brain regions. These
approaches treat each voxel as an independent entity [1] and
perform averaging across multiple voxels or even subjects.
Conversely, a class of qualitatively different methods,
known collectively as multivariate analysis techniques, can
be used to recognize distributed activity patterns across
multiple voxels [2]. The latter statistical pattern recognition
algorithms are powerful because they project the activity of
multiple voxels to achieve a discriminative separation of the
activity patterns. It has been demonstrated that with an
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optimized algorithm, one can even classify activity patterns
instantaneously [3–5].

In the present study, we address the representation of
object categories in the brain. Using traditional analysis,
one could define category specific activity in the brain, as
found in the fusiform face area (FFA), which responds more
to faces than other object categories [6–8]. These results
support a domain-specific encoding scheme. In contrast, by
correlating the blood oxygenation level dependent (BOLD)
responses across multiple voxels, Haxby et al. [9] could
identify faces by the activity patterns in whole visual cortex,
even with FFA effectively excluded. The latter results
support a distributed information coding scheme. The
similarity method used in Haxby's study demonstrates how
category-related, distributed brain activity patterns can be
measured. Other researchers have since applied various
multivariate methods in analyzing distributed response
patterns in human fMRI data sets: approaches include linear
discriminant analysis (LDA) [2,10], support vector
machines (SVM) [5] and Gaussian naïve Bayes (GNB)
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[3,11]. In monkey fMRI, category-related activity has only
been investigated using a correlation method with data
acquired at low field (3 T) [12].

In the present study we acquired the data at high field
(7 T) in a monkey. The high-field magnet provides a higher
signal-to-noise ratio [13–15], which enables us to perform
high resolution imaging. We applied several pattern
recognition techniques and data preprocessing approaches
to compare their performance in classifying brain activity
patterns. We used four classification procedures — the
SVM, GNB, correlation analysis and linear discriminant
analysis. SVM and GNB have been demonstrated to be
efficient in classifying human fMRI data set in a trial-based
regime [3,5] but have not been compared directly.

The present study is intended to answer the following
questions: first, which multivariate analysis approach is
suitable for high-field, high-resolution fMRI data? Second,
how do different pre-processing procedures affect classifica-
tion performance? Third, how does single trial performance
compare with performance averaged over varying numbers
of stimulus presentations?
2. Material and methods

2.1. Subjects

Experiments were performed on one healthy monkey
(Macaca mulatta), weighing 14 kg. All experiments were
approved by local authorities (Regierungspräsidium) and were
in full compliance with the guidelines of the European
Community (EUVD 86/609/EEC) for the care and use of
laboratory animals. The scanner, primate setup and hardware
for the awake monkey experiments were described in detail in
Pfeuffer et al. [16] and Keliris et al. [17] Briefly, the monkey
was trained using standard operant conditioning techniques in
a mock environment that mimics the scanner. He was trained
to tolerate the scanner environment and gradient noise and to
remain motionless during the trials. Movements were tracked
using custom-made motion sensors. The animal learned to
fixate a central fixation spot, whereas his eye movements were
tracked using an infrared eye tracker.

For scanning, the monkey was positioned in a custom-
designed primate chair that has integrated equipment to
immobilize the monkey's head, monitor jaw and body
motion, track eye movements, present the stimulus and give
the reward. Earplugs and foam covering the ears were used to
decrease acoustical noise. Software to monitor motion, track
eye movements, present the stimulus and give the reward
was custom written, and ran on a real time quantum UNIX
system (QNX Software System, Canada) interfaced with
Microsoft Windows computers. Visual stimuli were pre-
sented binocularly using an SVGA fiber-optic system
(AVOTEC, Silent Vision) with a resolution of 800×640
pixels and a frame rate of 60 Hz. The stimuli were five-
degree (visual angle) gray-scaled images of faces, houses,
fractals and fruit, presented to both eyes. The trials were
initiated by the monkey, by not moving and fixating on a
central fixation spot for 6 s, after which six different images
randomly selected from the database of the same category
were presented. Each image lasted for 1 s, and the total
stimulation time in each trial was 6 s. The animals were
required to fixate within two-degree window during the
stimulation. To receive the reward, the monkey had to remain
motionless for another eight seconds. Trials were aborted
when the animal moved or broke fixation. The exact onset of
the trials was triggered by the scanner, and the timing of all
events was recorded. Only successful trials were analyzed.

2.2. MRI

All the imaging parameters were described in details else-
where [18], andwe provide only a short summary here. Images
were acquired using a vertical 7-T scanner (Bruker BIOSPEC)
with a 60-cm diameter bore (Bruker, Ettlingen, Germany),
running ParaVision (version 4) software. The scanner was
temporarily equipped with a 33-cm inner diameter (after
acoustic shielding) actively shielded gradient coil (Siemens
AC44) that could attain gradients up to 40 mT/m with rise
times of 140 μs. The radiofrequency (RF) coil used was a 16-
cm saddle coil that was optimized for the temporal lobes. In
addition to a global shim, local shimmingwas performed using
a 25-mm3 quadrant in the center of the brain, using the
Fastmap algorithm [19]. RF power was adjusted manually.

The field of view (FOV) was 12.8×12.8 cm, with a matrix
size of 72×64, resulting in a final resolution of 1.5 mm in the
read direction (L-R) and 2 mm in the phase direction (A-P).
Seventeen slices with a thickness of 2 mm were acquired to
cover the entire ventral pathway. Slices were acquired along
the temporal lobe (−20 degrees from the Frankfurt zero
plane) to reduce susceptibility artifacts.

Two-segment spin-echo echo planar imaging (SE-EPI)
sequence was used, BW 159 kHz, resulting in an acquisition
window of 14.58 ms. Because the sensitivity to susceptibility
gradients depends on the length of the acquisition window,
the readout window was minimized by using a segmented
EPI and by reducing the FOV and image matrix. TE was
40 ms, and repetition time (TR), 1000 ms.

For anatomical reference images, a high-resolution T1-
weighted 3D Modified Driven Equilibrium Fourier Trans-
form (3D-MDEFT) image of the entire brain was acquired
under general anesthesia at 4.7 T (for procedure, see Ref.
[20]). For each session, anatomical reference images were
acquired using a fast low-angle shot (FLASH) [21] sequence.

2.3. Data analysis

2.3.1. Functional activity and voxel selection
EPI images were reconstructed using Bruker ParaVision

software, including ramp sampling. Data were analyzed
using custom-written routines in MatLab (The MathWorks,
Natick, MA, USA, version 6.5), Statistic Parametric Map-
ping 2 (SPM2) (Wellcome Department of Cognitive
Neurology, London, UK) and FSL (FMRIB Software Library,
Analysis group, FMRIB, Oxford, UK). Details of the analysis



1 We also compared with an alternative voxel selection procedure,
wherewe selected the 80most active voxels per category, yielding 320 voxels
in total to feed to the classifiers. In a comparison of the voxels selected
according to overall responsiveness, we observe an overlap of only half of
the voxels. This comes as no surprise, since it indicates that visually
selective voxels are dominated by some of the categories. In other words,
the information about individual categories is not equally distributed over
the entire IT cortex. Classification results with this alternative selection
technique were almost the same, however; thus, we do not report these
results in detail.

1009S. Ku et al. / Magnetic Resonance Imaging 26 (2008) 1007–1014
procedure are described in Keliris et al. [17]. Briefly, volumes
that were contaminated by motion artifacts were removed,
based on information from the motion sensors. Images were
realigned to correct for motion and B0-changes. Statistical
analysis was done using SPM2 using general linear model
(GLM) analysis with the default hemodynamic response
function. Using SPM region of interest analysis toolbox
(Marsbar 0.38.2), the voxels were selected according to two
criteria: anatomy and functional activity. The inferotemporal
(IT) cortex was manually segmented on MDEFT (high-
resolution anatomy image). Activation was thresholded at six
significance levels [F test, Pb10−3–10−7 family-wise error rate
(FWE) corrected] in order to include different number of
significant responding voxels for further pattern recognition
analysis, yielding regions of size 139–550 voxels in the
inferotemporal cortex. This procedure is used to measure the
effect of dimensionality on classifier performance. The ratio
between peak amplitude (8–12 s after stimulus onset) of each
trial and its baseline (4–0 seconds before stimulus-onset) was
used as a feature for classification. Each category contains
about 80 trials.

2.3.2. Pattern recognition
In this section, we describe our data selection and

classification procedures. Varying numbers of voxels were
extracted from the IT cortex, to measure the resulting gain in
classification accuracy. A variety of preprocessing steps were
also employed to reduce noise and enhance classifier
performance. Four classifiers were used: a linear SVM,
LDA, GNB and correlation analysis.

We determine the ability of each classifier to predict the
stimulus from both single trials and the averaged activity of
several presentations of the stimulus. As this averaging reduces
the trial-to-trial variations in the signal, prediction from
averaged activity is an easier task for linear algorithms than
single trial prediction. On the other hand, averaging increases
the dependence between test points in the data, which can
result in a loss of statistical power. To investigate the effect of
averaging on prediction performance, we varied the number of
presentations that were averaged from one (single trial
prediction) to 25. To estimate the generalization ability of the
classifiers, we split each data set into two nonoverlapping
subsets, trained each classifier on one subset (the training set)
and tested on the second (the test set). The procedure was
repeated 100 times for different random partitions of the data,
and results were averaged across these 100 results. Statistical
significance of the resulting performance scores was assessed
by a permutation test, as described in [22].

2.3.2.1. Voxel selection. Before performing pattern recog-
nition, we selected a subset of voxels for further analysis. The
procedure of selecting relevant features (in this case, particular
voxels) can greatly enhance classification performance
[23,24], by reducing the dimension of the space of patterns
to be labeled (avoiding the “curse of dimensionality”) and
removing “noise” features that can only degrade performance.
This effect has been widely observed when classifying
microarray data in bioinformatics, where the number of
features greatly exceeds the number of observations [25].

Likewise, most classification of fMRI data depends on an
effective feature selection procedure being applied beforehand
[23]. In a typical fMRI study, time courses of more than
90,000 voxels are simultaneously acquired. Many of these are
uninformative and could severely damage the performance of
the algorithm. In order to perform pattern recognition more
efficiently, one should use a priori knowledge to find a
reasonable subset of voxels to feed the classifiers. For our
voxel selection procedure, we simply chose those voxels with
highest overall responsiveness, as measured by a GLM with
respect to the stimulus convolved with the haemodynamic
response.1 We used different significance levels yielding six
distinct voxel counts from 139 to 550.

2.3.2.2. Data preprocessing. Data were normalized by
subtracting themean value across conditions and presentations
from each voxel and dividing by the overall standard deviation.
Thus, each voxel had mean activity of zero and unit standard
deviation. Means and standard deviations were estimated on
the training set only and assumed to be of the same value on the
test set. Removal of outliers consisted of setting all values that
were beyond 3 standard deviations from the mean to a fixed
value of 3 or −3, depending on the sign of the original value.
Denoising of the data consisted of computing a singular value
decomposition of the training set and only keeping as many
principal components as were needed to preserve 90% of the
total variance. The singular vector decomposition (SVD) was
always done after outlier removal, since outliers would
otherwise explain too great a proportion of the observed
variance. The test set was denoised by projecting it onto
components obtained by this SVD. We further discuss the
effect of these procedures in our Results section.

2.3.2.3. Linear discriminant analysis. Linear discriminant
analysis (LDA) is an algorithm which is used to separate two
classes of data points by a linear hyperplane. In other words,
it aims to find a linear combination of features (voxels) that
discriminate between the two classes. In LDA, the weights of
this linear combination are given by

x ¼ R�1 A1 � A2ð Þ;
where μ1 and μ2 denote the respective means of the first and
second classes and Σ is the aggregate covariance of data



Fig. 1. Classifier accuracy as a function of dimensionality (number of
voxels). Both the correlation analysis and SVM show a performance
increase from 139 to 420 voxels. The performance of all classifiers saturates
at around 400 voxels and remains at that level for higher voxel counts. SVM
performs better than other methods after outlier removal, whereas correlation
analysis and LDA perform better than GNB after outlier removal and SVD.
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points within each class. It is assumed that the covariance is
the same for each of the two classes.

It can be shown that LDA yields the optimal decision
boundary if the data in each class is well described by a
normal distribution with equal covariances. It can be seen
that the optimal weighting ω depends both on the means of
each of the two classes and also on the covariance of the
points within each class. In this respect, LDA is a more
sophisticated classification technique than correlation ana-
lysis or GNB (see below), which do not take the covariance
structure into account. On the other hand, estimation of the
covariance Σ requires more data, and for this reason, LDA
could perform suboptimally on small data sets.

2.3.2.4. Support vector machine. Like LDA, the support
vector machine is a linear classification algorithm [26].
However, the SVM does not assume a specific model of the
data points but rather seeks to find the hyperplane that
separates the two classes with maximum margin. This
hyperplane is constructed entirely in terms of inner products
between the labeled training data (in this case, the BOLD
response over a set of voxels). While we used a linear inner
product, one can also define inner products between high-
dimensional features of the data using a kernel function (see
Ref. [26], Chapter 2, for more details). We also investigated a
nonlinear variant with a Gaussian kernel, which yielded
similar results to the linear SVM, but was much more
sensitive to parameter settings (results not shown).

We used a Matlab implementation of the SVM classifier
provided by the Spider toolbox (http://www.kyb.tuebingen.
mpg.de/bs/people/spider/). Unlike other methods, the sup-
port vector machine requires careful parameter tuning if it is
to perform satisfactorily. Thus, it is necessary to choose C, a
scalar that controls the tradeoff between regularization and
classification error). Within each training data set, the
parameters were cross-validated on 10 folds in order to
obtain the best value of the parameter C. The search space of
linear SVM was C=2 to the power of −5 to 5.

2.3.2.5. Gaussian naïve Bayes. The algorithm and soft-
ware released by Mitchell's lab were used (Machine
Learning Department, School of Computer Science, Carne-
gie Mellon University, http://www.cs.cmu.edu/afs/cs.cmu.
edu/project/theo-81/www/) [3]. In short, the learning method
was a GNB classifier [11]. The responses conditioned on the
stimuli were modeled as Gaussians, where it was assumed
that each voxel was independent of the others (i.e., no
between-voxel correlations once we conditioned on the
stimuli). The means and variances of the Gaussians were
computed from the within-class training data. A reweighting
was also made for differences in the ratio of stimuli in each
class, although in our case, this ratio was close to 1 and the
correction was not very relevant. The decision boundary for
classification was then the optimal boundary given the
model, and the predicted class on test data was the most
probable class under this model.
2.3.2.6. Correlation analysis. The responses in the training
set were averaged to compute the mean responses for each
category as templates. For prediction, we obtained the
correlation coefficients between each test point (which,
depending on the task, could be a single trial or the averaged
activity of multiple trials) and each of the templates. Then,
each test point was predicted to belong to class one if the
correlation coefficient for Class one was bigger than for
Class two, and to Class two otherwise. Correlation analysis,
GNB and LDA are equivalent if the within-class covariance
is an identity matrix for each class.

3. Results

The functional activity obtained with the current study
will be published elsewhere. A short description is given
here. Consistent with the previous literature [12], the objects
evoke strong, widespread activity in early visual areas and
the IT cortex, which is known to be a higher-order visual
processing area in primates [27,28]. Since we are interested
in how well the brain can identify object categories by their
higher order properties instead of low-level features, we
restricted our analysis to IT cortex. The IT cortex was
segmented according to anatomical criteria. The functional
activity was detected by performing an F test on the visually
responsiveness regardless of category. Despite the fact that
we used an event-related paradigm, the stimuli we used were
able to significantly activate more than 800 voxels in the IT
cortex (Pb.05, FWE corrected).

We first report the performance of the classifiers with
optimized preprocessing and on average across all tasks. Fig. 1
shows the performance of each classifier for different numbers
of voxels. Performance for individual pairs of categories was

http://www.kyb.tuebingen.mpg.de/bs/people/spider/
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measured by repeatedly splitting the data into training and test
sets and averaging classification performance on each test set.
In our experiments, 100 such splits were used, and the data was
split in a 70/30 training/test proportion.

Performance is best for the SVM, which achieves an
accuracy of 85% (550 voxels, averaged across 25 trials,
after outlier removal). A comparison of performance with
chance level, as a function of the classification task, is given
below. Both LDA and correlation analysis have an overall
accuracy of 79%. GNB had lower performance scores, only
achieving 62%.

The number of voxels used has a weak effect on the
performance of the classifiers, at least across the range of
voxels tested in this study (Fig. 1). While both the
correlation analysis and SVM show a performance increase
from 139 to 420 voxels, the performance of all classifiers
saturates at around 400 voxels and remains at that level for
higher voxel counts.

Fig. 2 shows the effect of multiple trial averaging on
performance of individual pairwise classification tasks.
Performance was again averaged over 100 random splits of
the data into training and test sets but, this time, retaining
25 points of each class in the test set. When more than one
trial was averaged, 25 points were generated in each category
by drawing with replacement from this test pool. Note that
the effective test sample size therefore decreases as the
number of averaged trials increases.

Performance in the single-trial prediction tasks varies
from 53% (GNB) to 55% (LDA) in the average across all
tasks. To determine whether classifiers performed signifi-
cantly higher than chance, we followed the shuffling
Fig. 2. The effect of multiple trial averaging on performance for individual p
classifier for different stimulus pair combinations, as a function of number of av
house trials; (D) fruit vs. house trials; (E) fruit vs. fractal trials; (F) house vs.
Asterisks indicate where performance is significantly above chance level, with P v
statistical significance).
procedure described in [22]. Specifically, we repeatedly
permuted the labels relative to the classes, then obtained an
empirical distribution of test errors as described above, and
finally used the 95% quantile of this distribution as a
significance threshold. The number of necessary permuta-
tions can be obtained by plotting the stability of the resulting
threshold as a function of permutation number; we found
250 permutations to be sufficient.

Single trial performance was significantly above chance
level (Pb.05 permutation test [22]) on three of the six
classification tasks (e.g., face vs. house, Fig. 2C). Raw
classification rates improved markedly even after averaging
across as few as three presentations and could be as high as
100% when averaging across 25 trials. However, this
averaging reduces the number of independent test points in
the data set, and results obtained from averaging were never
significant if the single trial analysis was not.

The two different preprocessing steps (outlier removal and
denoising by SVD) had a substantial impact on prediction
accuracy (Table 1). Removal of outliers (even without SVD)
greatly enhanced performance for most classifiers: for
example, the mean accuracy of SVM across data sets (using
550 voxels and averaging across 25 trials) was enhanced by
12%, and the accuracy of correlation analysis increased from
69% to 78%.Denoising the data by SVDhelped all algorithms
besides SVM (and actually decreased SVM performance
by 10%). For instance, the accuracy of GNB was enhanced
by 10% when we used SVD and outlier removal.

It is not possible to discriminate houses and fractals in our
experiments, since no method is significantly different from
chance level. Curiously, both the correlation coefficient and
airwise classification tasks. Each plot indicates the performance of each
erage trials. (A) Face vs. fractal trials; (B) face vs. fruit trials; (C) face vs
fractal trials. In most of the cases trial averaging improves performance
alue less than .05 (see results section for details of the permutation test for
.

.



Table 1
Mean discrimination performances of different classifiers with different preprocessing procedures (comparison of effects of preprocessing)

Outlier removal No No

SVD No Yes

SVM LDA GNB Corr SVM LDA GNB Corr

Face fractal 0,8100 0,5331 0,7300 0,9000 0,9700 0,6100 0,7550
Face fruit 0,7550 0,5167 0,6400 0,7150 0,6850 0,5600 0,7050
Face house 0,9000 0,5743 0,8400 0,9750 1,0000 0,6850 0,9500
Fruit house 0,7250 0,5575 0,8300 0,8600 0,8700 0,6750 0,9500
Fruit fractal 0,5500 0,5209 0,7000 0,6400 0,5600 0,5600 0,7100
House fractal 0,6600 0,4729 0,4300 0,3750 0,3650 0,4350 0,3950
Mean 0,7333 0,5292 0,6950 0,7442 0,7417 0,5875 0,7442

Outlier removal Yes Yes

SVD No Yes

SVM LDA GNB Corr SVM LDA GNB Corr

Face fractal 0,9650 0,5550 0,8400 0,9400 0,9650 0,6100 0,9200
Face fruit 0,7900 0,5300 0,7100 0,7100 0,7750 0,5400 0,8300
Face house 1,0000 0,5250 0,9900 0,9750 1,0000 0,8500 0,9900
Fruit house 0,9350 0,5150 0,9700 0,9100 0,9500 0,7700 0,9900
Fruit fractal 0,7100 0,5450 0,8500 0,5800 0,6600 0,5450 0,8000
House fractal 0,7150 0,5150 0,3500 0,4150 0,3200 0,4100 0,2800
Mean 0,8525 0,5308 0,7850 0,7550 0,7783 0,6208 0,8017

LDAwas not performed without SVD.
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LDA perform below chance (50%) for the house-vs.-fractal
task, although the difference is not statistically significant.
We return to this point in the Discussion.
4. Discussion

We have provided the first systematic study of the most
commonly employed multivariate classification methodolo-
gies in an awake monkey imaging setting at high field. We
have demonstrated that it is possible to infer which category
the subject was viewing by classifying single trials or mean
patterns in imaging data acquired with an event-related
paradigm. After selecting visually responsive voxels in the IT
cortex, linear SVM, correlation analysis and LDA can classify
the patterns. GNB can separate the categories to some extent
but performs much worse than reported in other studies [3].

Since GNB performs so much worse than the other
methods, we first provide a more detailed breakdown of our
observations for SVM, correlation and LDA for individual
tasks, and then return to GNB in subsequent paragraphs. We
see from Fig. 2 that, in all tasks requiring the discrimination
of faces from other categories, LDA and SVM perform
equivalently and better than other approaches (although in
the face-vs.-fruit category, the performance not good enough
to be statistically significant, and no conclusions should be
drawn). Correlation does well when distinguishing fruit from
house, being both significantly above chance and performing
better at high-average trial counts. That said, when
distinguishing fruit vs. fractal, performance is almost never
significantly above chance: thus, even though correlation
performance is highest, we cannot conclude from our data
that any classifier is satisfactory. If the LDA modeling
assumptions are correct, we would always expect LDA to
outperform correlation, since the former takes into account
the covariance structure of the data. Correlation can be more
accurate, however, if the data do not conform to the Gaussian
assumptions made in LDA, or if one does not have sufficient
data to obtain a good estimate of the covariance. In both
cases, normalization by the covariance matrices can be
misleading and detrimental to classification performance.
We emphasize that this is not the case when faces are to be
distinguished from fractals: in this case, it is clear that LDA
and SVM are more resistant to noise, since they require
averaging over fewer test images than correlation to obtain a
given level of performance.

We now address the problem of distinguishing houses
from fractals (Fig. 2F). In this case, the performance of
correlation and LDA actually decreases when the test images
are averaged over more instances, while linear SVM
performance improves; that said, the performance difference
from chance is never statistically significant for any method.
The assumptions made in both correlation and LDA appear
to have failed, which can occur when a relatively small
number of unusual points cause the means and/or covar-
iances to be unrepresentative of the data at large. As SVM
does not assume a specific model of the data, but rather
directly maximizes the margin between the classes, it may be
more robust to these unrepresentative points. Generally
speaking, SVMs are able to make use of information
distributed across a large number of voxels, each of which
is only weakly informative. To confirm whether this
advantage truly holds for the house-vs.-fractal task, more
data would be needed to verify above-chance performance.
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We now return to the performance of GNB relative to the
other methods. To our surprise, GNB did not perform as well
as reported in the previous study [3] (although a previous
comparison of GNB and SVM (in [29], Table 1, last two rows)
also reported relatively poor performance forGNB, albeit for a
whole-brain study in humans without feature selection).
Besides the fact that our data were acquired with an event-
related paradigm, while most other data were obtained with
block design, there may be additional reasons for the poor
performance of GNB. Although GNB also performs implicit
feature selection (as does SVM), the estimation procedure
suffers from a suboptimal assumption. The learning pro-
cess of GNB assumes that the features (voxels, in our case)
are independent conditioned on the stimulus, which is not
true of fMRI data. Fig. 3 shows an example scatterplot
(Fig. 3A) of the activation of two voxels individually for
two classes (face and house) and a histogram of the within-
class correlation coefficient of all pairs of voxels (Fig. 3B).
Over 35% of the voxel pairs show significant positive
correlation within stimulus classes, and 15% show signi-
ficant negative correlation (Fig. 3B, Pb.05, obtained using
repeated shuffling of all individual voxel activations across
trials). It is known that the neighboring voxels are not
independent due to the intrinsic point spread function of the
Fig. 3. Correlation between voxel-pairs. To examine why GNB did no
perform well with our data set, we plotted the amplitudes of face and house
trials extracted from two neighboring voxels selected at random (A) and the
distribution of the within class correlation coefficients of all pairs of voxels
averaged across all four classes (B). We computed the correlation coefficien
between all pairs out of 550 voxels, yielding 150,975 pairs in the plot. The
red vertical dashed lines indicate the significant positive and negative
correlation coefficient levels at P=.05, obtained using repeated shuffling of
all individual voxel activations across trials. Thirty-five percent of the pairs
are significantly positively correlated and 15% are significantly negatively
correlated. (C) The amplitudes of face and house trials extracted from the
most face-selective voxel (x-axis) and house-selective voxel (y-axis). The
two voxels are not significantly correlated (r=−0.02).
t

,
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imaging device, and the correlation between voxels due to
physiological effects (such as blood supply of brain tissue
from a common capillary bed), even without spatial
smoothing. Therefore, it is important to take the covariance
between features into account when constructing a
Gaussian classifier.

Even in the absence of such correlation, however, we have
found that the linear SVM can outperform GNB on our data.
To illustrate this, we chose the two voxels that show greatest
activation for faces and houses, respectively, and performed
face vs. house classification using these voxels alone. Linear
SVM was able to discriminate faces from houses with 70%
accuracy (on test points averaged over 27trials), whereas the
performance of GNB was 62%. In this case, the two voxels
were not significantly correlated (r=−0.02, P=.43, Fig. 3C).

Classification performance in the single-trial prediction
task was poor (although due to the greater effective data set
size, performance nonetheless exceeded chance level in
many cases). The noisy fMRI data makes it difficult to
perform trial-by-trial analysis. It is possible, however, to
improve the performance by selecting more discriminative
voxels. In the present study, only the overall responsiveness
was taken into account in voxel selection. The reliability of
the response of a voxel to visual stimulus does not
necessarily imply category-selective information.

It is known that classifiers will perform better as more
informative dimensions (i.e., voxels) are added [5,23,30]. In
most of the previous human imaging studies, classifier
performance reaches a maximum at about 100 voxels. In our
study, performance leveled off at around 400 voxels. This
could simply be due to the fact that with higher resolution (as
in the present study), the same brain volume corresponds to
more voxels. Voxel size at lower field (such as 3 T) is
typically 3×3×3 mm, which corresponds to four to five
voxels in the present study. In addition, smaller voxels have a
higher chance of containing a more homogeneous neural
population; therefore, the individual voxels could contain
more discriminative information. However, high-resolution
fMRI without sufficient signal-to-noise ratio could decrease
the discrimination ability of each voxel. Since reliability is
also one of the most important concerns to obtain high
classification performance, we acquired the data at high field
(7 T). It would be useful to perform a systematic study of
classification vs. field strength in the future.

We conclude with a suggestion for a general-purpose
classification strategy in future fMRI studies, based on our
observations. This strategy is also informed by considera-
tions of computing time, since both correlation and LDA
have a substantially lower cost than SVM (this is to a great
extent due to the cross-validation needed to select the
parameter C). First, denoise the data by outlier removal and
SVD. Second, classify the data using both LDA and
correlation and retain the classifier with highest perfor-
mance, as long as the performance is significantly better than
chance. In cases where such a classification does not yield
values significantly above chance level, try an SVM with
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outlier removal alone (i.e., without SVD denoising) to
classify the data.

Further work could include extending the analysis to other
brain regions with different paradigms. For example, voxel
selection is limited to the ITcortex in the present study. Using
a similar analysis, we could determine the predictability of
visual categories in other brain areas. Further classification
algorithms should also be added to the comparison, for
instance (kernel) logistic regression. It is also of interest to
examine whether even more information could be extracted
from fMRI data through more sophisticated feature selection,
including kernel approaches [23,25], and to expand the
classifier comparison to a greater number of algorithms. SVD
might not be optimal for dimensionality reduction, since it
only accounts for second order moments. Higher-order
methods such as independent component analysis could
also be compared. In general, we expect that tools from
machine learning will yield insight into neural representa-
tions of information that are not accessible via more classical
statistical methodologies.
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