
Flexible statistical inference for mechanistic models of
neural dynamics

Jan-Matthis Lueckmann∗1, Pedro J. Gonçalves∗1, Giacomo Bassetto1,
Kaan Öcal1,2, Marcel Nonnenmacher1, Jakob H. Macke†1

1 research center caesar, an associate of the Max Planck Society, Bonn, Germany
2 Mathematical Institute, University of Bonn, Bonn, Germany

{jan-matthis.lueckmann, pedro.goncalves, giacomo.bassetto,
kaan.oecal, marcel.nonnenmacher, jakob.macke}@caesar.de

Abstract

Mechanistic models of single-neuron dynamics have been extensively studied in
computational neuroscience. However, identifying which models can quantitatively
reproduce empirically measured data has been challenging. We propose to over-
come this limitation by using likelihood-free inference approaches (also known
as Approximate Bayesian Computation, ABC) to perform full Bayesian inference
on single-neuron models. Our approach builds on recent advances in ABC by
learning a neural network which maps features of the observed data to the poste-
rior distribution over parameters. We learn a Bayesian mixture-density network
approximating the posterior over multiple rounds of adaptively chosen simulations.
Furthermore, we propose an efficient approach for handling missing features and
parameter settings for which the simulator fails, as well as a strategy for automati-
cally learning relevant features using recurrent neural networks. On synthetic data,
our approach efficiently estimates posterior distributions and recovers ground-truth
parameters. On in-vitro recordings of membrane voltages, we recover multivariate
posteriors over biophysical parameters, which yield model-predicted voltage traces
that accurately match empirical data. Our approach will enable neuroscientists to
perform Bayesian inference on complex neuron models without having to design
model-specific algorithms, closing the gap between mechanistic and statistical
approaches to single-neuron modelling.

1 Introduction
Biophysical models of neuronal dynamics are of central importance for understanding the mechanisms
by which neural circuits process information and control behaviour. However, identifying which
models of neural dynamics can (or cannot) reproduce electrophysiological or imaging measurements
of neural activity has been a major challenge [1]. In particular, many models of interest – such as
multi-compartment biophysical models [2], networks of spiking neurons [3] or detailed simulations
of brain activity [4] – have intractable or computationally expensive likelihoods, and statistical
inference has only been possible in selected cases and using model-specific algorithms [5, 6, 7]. Many
models are defined implicitly through simulators, i.e. a set of dynamical equations and possibly a
description of sources of stochasticity [1]. In addition, it is often of interest to identify models which
can reproduce particular features in the data, e.g. a firing rate or response latency, rather than the full
temporal structure of a neural recording.

∗Equal contribution
†Current primary affiliation: Centre for Cognitive Science, Technical University Darmstadt

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

mailto:jan-matthis.lueckmann@caesar.de
mailto:pedro.goncalves@caesar.de
mailto:giacomo.bassetto@caesar.de
mailto:kaan.oecal@caesar.de
mailto:marcel.nonnenmacher@caesar.de
mailto:jakob.macke@caesar.de

θ

proposal prior

prior

true posterior

posterior

xo
x

α1

αK

…

μ1

μK

…

λ1

λK

…

f1(s)

f2(s)

fI(s)

…

h2

h3

hH

…

h1
Mixture
weights

Means

Precision
factors

forward pass
feature 1

…

A B C

Figure 1: Flexible likelihood-free inference for models of neural dynamics. A. We want to
flexibly and efficiently infer the posterior over model parameters given observed data, on a wide
range of models of neural dynamics. B. Our method approximates the true posterior on θ around the
observed data xo by performing density estimation on data simulated using a proposal prior. C. We
train a Bayesian mixture-density network (MDN) for posterior density estimation.

In the absence of likelihoods, the standard approach in neuroscience has been to use heuristic
parameter-fitting methods [2, 8, 9]: distance measures are defined on multiple features of interest,
and brute-force search [10, 11] or evolutionary algorithms [2, 9, 12, 13] (neither of which scales to
high-dimensional parameter spaces) are used to minimise the distances between observed and model-
derived features. As it is difficult to trade off distances between different features, the state-of-the-art
methods optimise multiple objectives and leave the final choice of a model to the user [2, 9]. As
this approach is not based on statistical inference, it does not provide estimates of the full posterior
distribution – thus, while this approach has been of great importance for identifying ‘best fitting’
parameters, it does not allow one to identify the full space of parameters that are consistent with data
and prior knowledge, or to incrementally refine and reject models.

Bayesian inference for likelihood-free simulator models, also known as Approximate Bayesian
Computation [14, 15, 16], provides an attractive framework for overcoming these limitations: like
parameter-fitting approaches in neuroscience [2, 8, 9], it is based on comparing summary features
between simulated and empirical data. However, unlike them, it provides a principled framework for
full Bayesian inference and can be used to determine how to trade off goodness-of-fit across summary
statistics. However, to the best of our knowledge, this potential has not been realised yet, and ABC
approaches are not used for linking mechanistic models of neural dynamics with experimental data
(for an exception, see [17]). Here, we propose to use ABC methods for statistical inference of
mechanistic models of single neurons. We argue that ABC approaches based on conditional density
estimation [18, 19] are particularly suited for neuroscience applications.

We present a novel method (Sequential Neural Posterior Estimation, SNPE) in which we sequentially
train a mixture-density network across multiple rounds of adaptively chosen simulations1. Our
approach is directly inspired by prior work [18, 19], but overcomes critical limitations: first, a
flexible mixture-density network trained with an importance-weighted loss function enables us to
use complex proposal distributions and approximate complex posteriors. Second, we represent a full
posterior over network parameters of the density estimator (i.e. a “posterior on posterior-parameters”)
which allows us to take uncertainty into account when adjusting weights. This enables us to perform
‘continual learning’, i.e. to effectively utilise all simulations without explicitly having to store them.
Third, we introduce an approach for efficiently dealing with simulations that return missing values,
or which break altogether – a common situation in neuroscience and many other applications of
simulator-based models – by learning a model that predicts which parameters are likely to lead to
breaking simulations, and using this knowledge to modify the proposal distribution. We demonstrate
the practical effectiveness and importance of these innovations on biophysical models of single
neurons, on simulated and neurophysiological data. Finally, we show how recurrent neural networks
can be used to directly learn relevant features from time-series data.

1Code available at https://github.com/mackelab/delfi

2

https://github.com/mackelab/delfi

1.1 Related work using likelihood-free inference for simulator models

Given experimental data xo (e.g. intracellular voltage measurements of a single neuron, or extra-
cellular recordings from a neural population), a model p(x|θ) parameterised by θ (e.g. biophysical
parameters, or connectivity strengths in a network simulation) and a prior distribution p(θ), our goal
is to perform statistical inference, i.e. to find the posterior distribution p̂(θ|x = xo). We assume that
the model p(x|θ) is only defined through a simulator [14, 15]: we can generate samples xn ∼ x|θ
from it, but not evaluate p(x|θ) (or its gradients) explicitly. In neural modelling, many models are
defined through specification of a dynamical system with external or intrinsic noise sources or even
through a black-box simulator (e.g. using the NEURON software [20]).

In addition, and in line with parameter-fitting approaches in neuroscience and most ABC techniques
[14, 15, 21], we are often interested in capturing summary statistics of the experimental data (e.g.
firing rate, spike-latency, resting potential of a neuron). Therefore, we can think of x as resulting
from applying a feature function f to the raw simulator output s, x = f(s), with dim(x)� dim(s).

Classical ABC algorithms simulate from multiple parameters, and reject parameter sets which yield
data that are not within a specified distance from the empirically observed features. In their basic
form, proposals are drawn from the prior (‘rejection-ABC’ [22]). More efficient variants make
use of a Markov-Chain Monte-Carlo [23, 24] or Sequential Monte-Carlo (SMC) samplers [25, 26].
Sampling-based ABC approaches require the design of a distance metric on summary features, as
well as a rejection criterion (ε), and are exact only in the limit of small ε (i.e. many rejections) [27],
implying strong trade-offs between accuracy and scalability. In SMC-ABC, importance sampling is
used to sequentially sample from more accurate posteriors while ε is gradually decreased.

Synthetic-likelihood methods [28, 21, 29] approximate the likelihood p(x|θ) using multivariate
Gaussians fitted to repeated simulations given θ (see [30, 31] for generalisations). While the
Gaussianity assumption is often motivated by the central limit theorem, distributions over features can
in practice be complex and highly non-Gaussian [32]. For example, neural simulations sometimes
result in systematically missing features (e.g. spike latency is undefined if there are no spikes), or
diverging firing rates.

Finally, methods originating from regression correction [33, 18, 19] simulate multiple data xn from
different θn sampled from a proposal distribution p̃(θ), and construct a conditional density estimate
q(θ|x) by performing a regression from simulated data xn to θn. Evaluating this density model at
the observed data xo, q(θ|xo) yields an estimate of the posterior distribution. These approaches do
not require parametric assumptions on likelihoods or the choice of a distance function and a tolerance
(ε) on features. Two approaches are used for correcting the mismatch between prior and proposal
distributions: Blum and François [18] proposed the importance weights p(θ)/p̃(θ), but restricted
themselves to proposals which were truncated priors (i.e. all importance weights were 0 or 1), and did
not sequentially optimise proposals over multiple rounds. Papamakarios and Murray [19] recently
used stochastic variational inference to optimise the parameters of a mixture-density network, and a
post-hoc division step to correct for the effect of the proposal distribution. While highly effective in
some cases, this closed-form correction step can be numerically unstable and is restricted to Gaussian
and uniform proposals, limiting both the robustness and flexibility of this approach. SNPE builds on
these approaches, but overcomes their limitations by introducing four innovations: a highly flexible
proposal distribution parameterised as a mixture-density network, a Bayesian approach for continual
learning from multiple rounds of simulations, and a classifier for predicting which parameters will
result in aborted simulations or missing features. Fourth, we show how this approach, when applied
to time-series data of single-neuron activity, can automatically learn summary features from data.

2 Methods
2.1 Sequential Neural Posterior Estimation for likelihood-free inference

In SNPE, our goal is to learn the parameters φ of a posterior model qφ(θ|x = f(s)) which, when
evaluated at xo, approximates the true posterior p(θ|xo) ≈ qφ(θ|x = xo). Given a prior p(θ), a
proposal prior p̃(θ), pairs of samples (θn,xn) generated from the proposal prior and the simulator,
and a calibration kernel Kτ , the posterior model can be trained by minimising the importance-
weighted log-loss

L(φ) = − 1

N

∑
n

p(θn)

p̃(θn)
Kτ (xn,xo) log qφ(θn|xn), (1)

3

as is shown by extending the argument in [19] with importance-weights p(θn)/p̃(θn) and a kernel
Kτ in Appendix A.

Sampling from a proposal prior can be much more effective than sampling from the prior. By
including the importance weights in the loss, the analytical correction step of [19] (i.e. division by
the proposal prior) becomes unnecessary: SNPE directly estimates the posterior density rather than
a conditional density that is reweighted post-hoc. The analytical step of [19] has the advantage of
side-stepping the additional variance brought about by importance-weights, but has the disadvantages
of (1) being restricted to Gaussian proposals, and (2) the division being unstable if the proposal prior
has higher precision than the estimated conditional density.

The calibration kernelKτ (x,xo) can be used to calibrate the loss function by focusing it on simulated
data points x which are close to xo [18]. Calibration kernels Kτ (x,xo) are to be chosen such that
Kτ (xo,xo) = 1 and that Kτ decreases with increasing distance ‖x − xo‖, given a bandwidth τ 2.
Here, we only used calibration kernels to exclude bad simulations by assigning them kernel value
zero. An additional use of calibration kernels would be to limit the accuracy of the posterior density
estimation to a region near xo. Choice of the bandwidth implies a bias-variance trade-off [18]. For
the problems we consider here, we assumed our posterior model qφ(θ|x) based on a multi-layer
neural network to be sufficiently flexible, such that limiting bandwidth was not necessary.

We sequentially optimise the density estimator qφ(θ|x) =
∑
k αkN (θ|µk,Σk) by training a mixture-

density network (MDN) [19] with parameters φ over multiple ‘rounds’ r with adaptively chosen
proposal priors p̃(r)(θ) (see Fig. 1). We initialise the proposal prior at the prior, p̃(1)(θ) = p(θ),
and subsequently take the posterior of the previous round as the next proposal prior (Appendix B).
Our approach is not limited to Gaussian proposals, and in particular can utilise multi-modal and
heavy-tailed proposal distributions.

2.2 Training the posterior model with stochastic variational inference

To make efficient use of simulation time, we want the posterior network qφ(θ|x) to use all simulations,
including ones from previous rounds. For computational and memory efficiency, it is desirable to
avoid having to store all old samples, or having to train a new model at each round. To achieve this
goal, we perform Bayesian inference on the weights w of the MDN across rounds. We approximate
the distribution over weights as independent Gaussians [34, 35]. Note that the parameters φ of this
Bayesian MDN are are means and standard deviations per each weight, i.e., φ = {φm,φs}. As an
extension to the approach of [19], rather than assuming a zero-centred prior over weights, we use
the posterior over weights of the previous round, πφ(r−1)(w), as a prior for the next round. Using
stochastic variational inference, in each round, we optimise the modified loss

L(φ(r)) =− 1

N

∑
n

p(θn)

p̃(r)(θn)
Kτ (xn,xo)

〈
log qw(θn|xn)

〉
π
φ(r) (w)

+
1

N
DKL

(
πφ(r)(w)||πφ(r−1)(w)

)
.

(2)

Here, the distributions π(w) are approximated by multivariate normals with diagonal covariance. The
continuity penalty ensures that MDN parameters that are already well constrained by previous rounds
are less likely to be updated than parameters with large uncertainty (see Appendix C). In practice,
gradients of the expectation over networks are approximated using the local reparameterisation trick
[36].

2.3 Dealing with bad simulations and bad features, and learning features from time series

Bad simulations: Simulator-based models, and single-neuron models in particular, frequently
generate nonsensical data (which we name ‘bad simulations’), especially in early rounds in which the
relevant region of parameter space has not yet been found. For example, models of neural dynamics
can easily run into self-excitation loops with diverging firing rates [37] (Fig. 4A). We introduce
a feature b(s) = 1 to indicate that s and x correspond to a bad simulation. We set K(xn,xo) = 0

2While we did not investigate this here, an attractive idea would be to base the kernel of the dis-
tance between xn and xo on the divergence between the associated posteriors, e.g. Kτ (xn,xo) =

exp(−1/τDKL(q
(r−1)(θ|xn)||q(r−1)(θ|xo))) – in this case, two data would be regarded as similar if the

current estimation of the density network assigns similar posterior distributions to them, which is a natural
measure of similarity in this context.

4

whenever b(xn) = 1 since the density estimator should not spend resources on approximating the
posterior for bad data. With this choice of calibration kernel, bad simulations are ignored when
updating the posterior model – however, this results in inefficient use of simulations.

We propose to learn a model ĝ : θ → [0, 1] to predict the probability that a simulation from θ will
break. While any probabilistic classifier could be used, we train a binary-output neural network with
log-loss on (θn, b(sn)). For each proposed θ, we reject θ with probability ĝ(θ), and do not carry out
the expensive simulation3. The rejections could be incorporated into the importance weights (which
would require estimating the corresponding partition function, or assuming it to be constant across
rounds), but as these rejections do not depend on the data xo, we interpret them as modifying the
prior: from an initially specified prior p(θ), we obtain a modified prior excluding those parameters
which likely will lead to nonsensical simulations. Therefore, the predictive model ĝ(θ) does not only
lead to more efficient inference (especially in strongly under-constrained scenarios), but is also useful
in identifying an effective prior – the space of parameters deemed plausible a priori intersected with
the space of parameters for which the simulator is well-behaved.

Bad features: It is frequently observed that individual features of interest for fitting single-neuron
models cannot be evaluated: for example, the spike latency cannot be evaluated if a simulation
does not generate spikes, but the fact that this feature is missing might provide valuable information
(Fig. 4C). SNPE can be extended to handle ‘bad features’ by using a carefully designed posterior
network. For each feature fi(s), we introduce a binary feature mi(s) which indicates whether fi
is missing. We parameterise the input layer of the posterior network with multiplicative terms of
the form hi(s) = fi(s) · (1−mi(s)) + ci ·mi(s) where the term ci is to be learned. This approach
effectively learns an imputation value ci for each missing feature. For a more expressive model, one
could also include terms which learn interactions across different missing-feature indicators and/or
features, but we did not explore this here.

Learning features: Finally, we point out that using a neural network for posterior estimation yields
a straightforward way of learning relevant features from data [38, 39, 40]. Rather than feeding
summary features f(s) into the network, we directly feed time-series recordings of neural activity
into the network. The first layer of the MDN becomes a recurrent layer instead of a fully-connected
one. By minimising the variational objective (Eq.2), the network learns informative summary features
about posterior densities.

3 Results
While SNPE is in principle applicable to any simulator-based model, we designed it for performing
inference on models of neural dynamics. In our applications, we concentrate on single-neuron models.
We demonstrate the ability of SNPE to recover ground-truth posteriors in Gaussian Mixtures and
Generalised Linear Models (GLMs) [41], and apply SNPE to a Hodgkin-Huxley neuron model and
an autapse model, which can have parameter regimes of unstable behaviour and missing features.

3.1 Statistical inference on simple models

Gaussian mixtures: We first demonstrate the effectiveness of SNPE for inferring the posterior of
mixtures of two Gaussians, for which we can analytically compute true posteriors. We are interested
in the numerical stability of the method (‘robustness’) and the ‘flexibility’ to approximate multi-modal
posteriors. To illustrate the robustness of SNPE, we apply SNPE and the method proposed by [19]
(which we refer to by Conditional Density Estimation for Likelihood-free Inference, CDE-LFI) to
infer the common mean of a mixture of two Gaussians, given samples from the mixture distribution
(Fig. 2A; details in Appendix D.1). Whereas SNPE works robustly across multiple algorithmic
rounds, CDE-LFI can become unstable: its analytical correction requires a division by a Gaussian
which becomes unstable if the precision of the Gaussian does not increase monotonically across
rounds (see 2.1). Constraining the precision-matrix to be non-decreasing fixes the numerical issue,
but leads to biased estimates of the posterior. Second, we apply both SNPE and CDE-LFI to infer
the two means of a mixture of two Gaussians, given samples x from the mixture distribution (Fig.
2B; Appendix D.1). While SNPE can use bi-modal proposals, CDE-LFI cannot, implying reduced
efficiency of proposals on strongly non-Gaussian or multi-modal problems.

3An alternative approach would be to first learn p(θ|b(s) = 0) by applying SNPE to a single feature,
f1(s) = b(s), and to subsequently run SNPE on the full feature-set, but using p(θ|b(s) = 0) as prior – however,
this would ‘waste’ simulations for learning p(θ|b(s) = 1).

5

−2 0 2
θ

0

1

2

p
θ
x

x
* (

|
=

)
o

2 3 4 5 6
of rounds

0

50

100

%
 c

om
pl

et
ed

 r
un

s

SNPE

CDE-LFI

−2 0 2
θ

de
ns

ity

p θ()(2)~

p θ()(6)~

0 xo 8
x

-10

0

10

θ

−10 0 10
θ

de
ns

ity

CDE-LFI

−10 0 10
θ

de
ns

ity

SNPE

1 5 10
parameter

−2

0

2

va
lu

e

true value

SNPE

PG-MCMC

-0.0

0.1

P
G

-M
C

M
C

 covariance

-0.0

0.1

S
N

P
E

 covaria
nce

-3.0 -0.5
b0

...

-0.7 1.5
h1

...

-0.3 2.4
h2

...

...

1 5 10
parameter

−2

0

2

va
lu

e

true value

CDE-LFI

PG-MCMC

A B

C D E

F

Figure 2: Inference on simple statistical models. A. Robustness of posterior inference on 1-D
Gaussian Mixtures (GMs). Left: true posterior given observation at xo = 0. Middle: percentage
of completed runs as a function of number of rounds; SNPE is robust. Right: Gaussian proposal
priors tend to underestimate tails of posterior (red). B. Flexibility of posterior inference. Left: True
posterior for 1-D bimodal GM and observation xo. Middle and right: First round proposal priors
(dotted), second round proposal priors (dashed) and estimated posteriors (solid) for CDE-LFI and
SNPE respectively (true posterior red). SNPE allows multi-modal proposals. C, F. Application to
GLM. Posterior means and variances are recovered well by both CDE-LFI and SNPE. For reference,
we approximate the posterior using likelihood-based PG-MCMC. D. Covariance matrices for SNPE
and PG-MCMC. E. Partial view of the posterior for 3 out of 10 parameters (all 10 parameters in
Appendix G). Ground-truth parameters in red. 2-D marginals for SNPE (lines) and PG-MCMC
(histograms). White and yellow contour lines correspond to 68% and 95% of the mass, respectively.

Generalised linear models: Generalised linear models (GLM) are commonly used to model
neural responses to sensory stimuli. For these models, several techniques are available to estimate the
posterior distribution over parameters, making them ideally suited to test SNPE in a single-neuron
model. We evaluated the posterior distribution over the parameters of a GLM using a Pólya-Gamma
sampler (PG-MCMC, [42, 43]) and compared it to the posterior distributions estimated by SNPE
(Appendix D.2 for details). We found a good agreement of the posterior means and variances (Fig.
2C), covariances (Fig. 2D), as well as pairwise marginals (Fig. 2E). We note that, since GLMs have
close-to-Gaussian posteriors, the CDE-LFI method works extremely well on this problem (Fig. 2F).

In summary, SNPE leads to accurate and robust estimation of the posterior in simple models. It works
effectively even on multi-modal posteriors on which CDE-LFI exhibits worse performance. On a
GLM-example with an (almost) Gaussian posterior, the CDE-LFI method works extremely well,
but SNPE yields very similar posterior estimates (see Appendix F for additional comparison with
SMC-ABC).

3.2 Statistical inference on Hodgkin-Huxley neuron models

Simulated data: The Hodgkin-Huxley equations [44] describe the dynamics of a neuron’s mem-
brane potential and ion channels given biophysical parameters (e.g. concentration of sodium and
potassium channels) and an injected input current (Fig. 3A, see Appendix D.3). We applied SNPE
to a Hodgkin-Huxley model with channel kinetics as in [45] and inferred the posterior over 12
biophysical parameters, given 20 voltage features of the simulated data. The true parameter values are
close to the mode of the inferred posterior (Fig. 3B, D), and in a region of high posterior probability.
Samples from the posterior lead to voltage traces that are similar to the original data, supporting the
correctness of the approach (Fig. 3C).

6

−80

−20

40

vo
lta

ge
 (

m
V

)

0 60 120
time (ms)

0.00

0.55

in
pu

t (
nA

)

3.2 4.3

ln g()Na

...

0.9 2.0

ln g()K

...

-3.0 -1.9

ln g()l

...

... 0 60 120
time (ms)

−80

−20

40

vo
lta

ge
 (

m
V

)

gNa gK ENa kbn1 VT noise gM −El tmax gl kbn2 −EK
0.0

1.2

2.3

||
 -

||

/
θ

θ
σ

*
θ

SNPE mean

best IBEA

−80

−20

40

vo
lta

ge
 (

m
V

)

0 625 1250
time (ms)

0.00

0.19

in
pu

t (
nA

)

3.2 4.3

ln g()Na

...

0.9 2.0

ln g()K

...

-3.0 -1.9

ln g()l

...

... 0 625 1250
time (ms)

−80

−20

40

vo
lta

ge
 (

m
V

)

A B C

D

E F G

Figure 3: Application to Hodgkin-Huxley model: A. Simulation of Hodgkin-Huxley model with
current injection. B. Posterior over 3 out of 12 parameters inferred with SNPE (12 parameters in
Appendix G). True parameters have high posterior probabilities (red). C. Traces for the mode (cyan)
of and samples (orange) from the inferred posterior match the original data (blue). D. Comparison
between SNPE and a standard parameter-fitting procedure based on a genetic algorithm, IBEA:
difference between the mode of SNPE or IBEA best parameter set, and the ground-truth parameters,
normalised by the standard deviations obtained by SNPE. E-G. Application to real data from Allen
Cell Type Database. Inference over 12 parameters for cell 464212183. Results presented as in A-C.

Biophysical neuron models are typically fit to data with genetic algorithms applied to the distance
between simulated and measured data-features [2, 8, 9, 46]. We compared the performance of SNPE
with a commonly used genetic algorithm (Indicator Based Evolutionary Algorithm, IBEA, from the
BluePyOpt package [9]), given the same number of model simulations (Fig. 3D). SNPE is comparable
to IBEA in approximating the ground-truth parameters – note that defining an objective measure to
compare the two approaches is difficult, as they both minimise different criteria. However, unlike
IBEA, SNPE also returns a full posterior distribution, i.e. the space of all parameters consistent with
the data, rather than just a ‘best fit’.

In-vitro recordings: We also applied the approach to in vitro recordings from the mouse visual
cortex (see Appendix D.4, Fig. 3E-G). The posterior mode over 12 parameters of a Hodgkin-Huxley
model leads to a voltage trace which is similar to the data, and the posterior distribution shows the
space of parameters for which the output of the model is preserved. These posteriors could be used to
motivate further experiments for constraining parameters, or to study invariances in the model.

3.3 Dealing with bad simulations and features

Bad simulations: We demonstrate our approach (see Section 2.3) for dealing with ‘bad simulations’
(e.g. for which firing rates diverge) using a simple, two-parameter ‘autapse’ model for which the region
of stability is known. During SNPE, we concurrently train a classifier to predict ‘bad simulations’ and
update the prior accordingly. This approach does not only lead to a more efficient use of simulations,
but also identifies the parameter space for which the simulator is well-defined, information that could
be used for further model analysis (Fig. 4A, B).

Bad features: Many features of interest in neural models, e.g. the latency to first spike after the
injection of a current input, are only well defined in the presence of other features, e.g. the presence
of spikes (Fig. 4C). Given that large parts of the parameter space can lead to non-spiking behaviour,
missing features occur frequently and cannot simply be ignored. We enriched our MDN with an extra
layer which imputes values to the absent features, values which are optimised alongside the rest of
the parameters of the network (Fig. 4D; Appendix E). Such imputation has marginal computational

7

0 50 100
time (ms)

10−1

100

101

102

103

104

ra
te

 (
H

z)

observed data

bad simulation

0.0 1 2.0
J

-1

0

2.5

τ g θ()^

1.0

0.0

−80

−20

40

vo
lta

ge
 (

m
V

)

0 60 120
time (ms)

0.0

3.6

in
pu

t (
m

A
)

…

…

…

…

h2

h3

hH

…

h1

m1(s)

…

c1

1-m1(s)

…

m2(s)

f1(s)

f2(s)

+

A B C D

Figure 4: Inference on neural dynamics has to deal with diverging simulations and missing
features. A. Firing rate of a model neuron connected to itself (autapse). If the strength of the self-
connection (parameter J) is bigger than 1, the dynamics are unstable (orange line - bad simulation).
B. Portion of parameter space leading to diverging simulations learned by the classifier (yellow: low
probability of bad simulation, blue: high probability), and comparison with analytically computed
boundaries (white, see Appendix D.5). C. Illustration of a model neuron in two parameter regimes,
spiking (grey trace) and non-spiking (blue). When the neuron does not spike, features that depend on
the presence of spiking, such as the latency to first spike, are not defined. D. Our MDN is augmented
with a multiplicative layer which imputes values for missing features.

cost and grants us the convenience of not having to hand-tune imputation values, or to reject all
simulations for which any individual feature might be missing.

Learning features with recurrent neural networks (RNNs): In neural modelling, it is often
of interest to work with hand-designed features that are thought to be particularly important or
informative for particular analysis questions [2]. For instance, the shape of the action potential is
intimately related to the dynamics of sodium and potassium channels in the Hodgkin-Huxley model.
However, the space of possible features is immense, and given the highly non-linear nature of many of
the neural models in question, it can sometimes be of interest to simply perform statistical inference
without having to hand-design features. Our approach provides a straightforward means of doing that:
we augment the MDN with a RNN which runs along the recorded voltage trace (and stimulus, here a
coloured-noise input) to learn appropriate features to constrain the model parameters. As illustrated in
figure 5B, the first layer of the network, which previously received pre-computed summary statistics
as inputs, is replaced by a recurrent layer that receives full voltage and current traces as inputs. In
order to capture long-term dependencies in the sequence input, we use gated-recurrent units (GRUs)
for the RNN [47]. Since we are using 25 GRU units and only keep the final output of the unrolled
RNN (many-to-one), we introduce a bottleneck. The RNN thus transforms the voltage trace and
stimulus into a set of 25 features, which allow SNPE to recover the posterior over the 12 parameters
(Fig. 5C). As expected, the presence of spikes in the observed data leads to a tighter posterior for
parameters associated to the main ion channels involved in spike generation, ENa, EK, gNa and gK.

4 Discussion
Quantitatively linking models of neural dynamics to data is a central problem in computational
neuroscience. We showed that likelihood-free inference is at least as general and efficient as ‘black-
box’ parameter fitting approaches in neuroscience, but provides full statistical inference, suggesting
it to be the method of choice for inference on single-neuron models. We argued that ABC approaches
based on density estimation are particularly useful for neuroscience, and introduced a novel algorithm
(SNPE) for estimating posterior distributions. We can flexibly and robustly estimate posterior
distributions, even when large regions of the parameter space correspond to unstable model behaviour,
or when features of choice are missing. Furthermore, we have extended our approach with RNNs to
automatically define features, thus increasing the potential for better capturing salient aspects of the
data with highly non-linear models. SNPE is therefore equipped to estimate posterior distributions
under common constraints in neural models.

Our approach directly builds on a recent approach for density estimation ABC (CDE-LFI, [19]).
While we found CDE-LFI to work well on problems with unimodal, close-to-Gaussian posteriors and
stable simulators, our approach extends the range of possible applications, and these extensions are
critical for the application to neuron models. A key component of SNPE is the proposal prior, which
guides the sampling on each round of the algorithm. Here, we used the posterior on the previous
round as the proposal for the next one, as in CDE-LFI and in many Sequential-MC approaches. Our

8

−80

−20

40

vo
lta

ge
 (

m
V

)

60

240

0 120 240
time (ms)

0.00
2.55

in
pu

t (
nA

)

v1

GRUs

i1

GRUs GRUs GRUs…

v2
i2

v3
i3

vT
iT

…

f1 f2 fN…

…

Features

Mixture Density Network

gNa gK gl ENa

60

240

−EK −El gM tmax

kbn1 kbn2 VT noise

A B C

Figure 5: We can learn informative features using a recurrent mixture-density network (R-
MDN). A. We consider a neuron driven by a colored-noise input current. B. Rather than engineering
summary features to reduce the dimensionality of observations, we provide the complete voltage
trace and input current as input to an R-MDN. The unrolled forward pass is illustrated, where a
many-to-one recurrent network reduces the dimensionality of the inputs (T time steps long) to a
feature vector of dimensionality N . C. Our goal is to infer the posterior density for two different
observations: (1) the full 240ms trace shown in panel A; and (2) the initial 60ms of its duration, which
do not show any spike. We show the obtained marginal posterior densities for the two observations,
using a 25-dimensional feature vector learned by the RNN. In the presence of spikes, the posterior
uncertainty gets tighter around the true parameters related to spiking.

method could be extended by alternative approaches to designing proposal priors [48, 49], e.g. by
exploiting the fact that we also represent a posterior over MDN parameters: for example, one could
design proposals that guide sampling towards regions of the parameter space where the uncertainty
about the parameters of the posterior model is highest. We note that, while here we concentrated
on models of single neurons, ABC methods and our approach will also be applicable to models of
populations of neurons. Our approach will enable neuroscientists to perform Bayesian inference on
complex neuron models without having to design model-specific algorithms, closing the gap between
mechanistic and statistical models, and enabling theory-driven data-analysis [50].

Acknowledgements

We thank Maneesh Sahani, David Greenberg and Balaji Lakshminarayanan for useful comments
on the manuscript. This work was supported by SFB 1089 (University of Bonn) and SFB 1233
(University of Tübingen) of the German Research Foundation (DFG) to JHM and by the caesar
foundation.

References

[1] W Gerstner, W M Kistler, R Naud, and L Paninski. Neuronal dynamics: From single neurons to networks
and models of cognition. Cambridge University Press, 2014.

[2] S Druckmann, Y Banitt, A Gidon, F Schürmann, H Markram, and I Segev. A novel multiple objective
optimization framework for constraining conductance-based neuron models by experimental data. Front
Neurosci, 1, 2007.

[3] C van Vreeswijk and H Sompolinsky. Chaos in neuronal networks with balanced excitatory and inhibitory
activity. Science, 274(5293), 1996.

[4] H Markram et al. Reconstruction and Simulation of Neocortical Microcircuitry. Cell, 163(2), 2015.
[5] Q J M Huys and L Paninski. Smoothing of, and parameter estimation from, noisy biophysical recordings.

PLoS Comput Biol, 5(5), 2009.
[6] L Meng, M A Kramer, and U T Eden. A sequential monte carlo approach to estimate biophysical neural

models from spikes. J Neural Eng, 8(6), 2011.
[7] C D Meliza, M Kostuk, H Huang, A Nogaret, D Margoliash, and H D I Abarbanel. Estimating parameters

and predicting membrane voltages with conductance-based neuron models. Biol Cybern, 108(4), 2014.
[8] C Rossant, D F M Goodman, B Fontaine, J Platkiewicz, A K Magnusson, and R Brette. Fitting neuron

models to spike trains. Front Neurosci, 5:9, 2011.
[9] W Van Geit, M Gevaert, G Chindemi, C Rössert, J Courcol, E B Muller, F Schürmann, I Segev, and

H Markram. Bluepyopt: Leveraging open source software and cloud infrastructure to optimise model
parameters in neuroscience. Front Neuroinform, 10:17, 2016.

[10] A A Prinz, C P Billimoria, and E Marder. Alternative to hand-tuning conductance-based models: Con-
struction and analysis of databases of model neurons. J Neurophysiol, 90(6), 2003.

9

[11] C Stringer, M Pachitariu, N A Steinmetz, M Okun, P Bartho, K D Harris, M Sahani, and N A Lesica.
Inhibitory control of correlated intrinsic variability in cortical networks. Elife, 5, 2016.

[12] Kristofor D Carlson, Jayram Moorkanikara Nageswaran, Nikil Dutt, and Jeffrey L Krichmar. An effi-
cient automated parameter tuning framework for spiking neural networks. Front Neurosci, 8:10, 2014.
doi:10.3389/fnins.2014.00010.

[13] P Friedrich, M Vella, A I Gulyás, T F Freund, and S Káli. A flexible, interactive software tool for fitting
the parameters of neuronal models. Frontiers in neuroinformatics, 8, 2014.

[14] P J Diggle and R J Gratton. Monte carlo methods of inference for implicit statistical models. J R Stat Soc
B Met, 1984.

[15] F Hartig, J M Calabrese, B Reineking, T Wiegand, and A Huth. Statistical inference for stochastic
simulation models–theory and application. Ecol Lett, 14(8), 2011.

[16] J Lintusaari, M U Gutmann, R Dutta, S Kaski, and J Corander. Fundamentals and recent developments in
approximate bayesian computation. Syst Biol, 2016.

[17] Aidan C Daly, David J Gavaghan, Chris Holmes, and Jonathan Cooper. Hodgkin–huxley revisited:
reparametrization and identifiability analysis of the classic action potential model with approximate
bayesian methods. Royal Society open science, 2(12):150499, 2015.

[18] M G B Blum and O François. Non-linear regression models for approximate bayesian computation. Stat
Comput, 20(1), 2010.

[19] G Papamakarios and I Murray. Fast epsilon-free inference of simulation models with bayesian conditional
density estimation. In Adv in Neur In, 2017.

[20] N T Carnevale and M L Hines. The NEURON Book. Cambridge University Press, 2009.
[21] E Meeds, M Welling, et al. Gps-abc: Gaussian process surrogate approximate bayesian computation. UAI,

2014.
[22] J K Pritchard, M T Seielstad, A Perez-Lezaun, and M W Feldman. Population growth of human y

chromosomes: a study of y chromosome microsatellites. Mol Biol Evol, 16(12), 1999.
[23] P Marjoram, J Molitor, V Plagnol, and S Tavare. Markov chain monte carlo without likelihoods. Proc

Natl Acad Sci U S A, 100(26), 2003.
[24] E Meeds, R Leenders, and M Welling. Hamiltonian abc. arXiv preprint arXiv:1503.01916, 2015.
[25] M A Beaumont, J Cornuet, J Marin, and C P Robert. Adaptive approximate bayesian computation.

Biometrika, 2009.
[26] F V Bonassi, M West, et al. Sequential monte carlo with adaptive weights for approximate bayesian

computation. Bayesian Anal, 10(1), 2015.
[27] R Wilkinson. Accelerating abc methods using gaussian processes. In AISTATS, 2014.
[28] S N Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature, 466(7310), 2010.
[29] V M H Ong, D J Nott, M Tran, S A Sisson, and C C Drovandi. Variational bayes with synthetic likelihood.

arXiv:1608.03069, 2016.
[30] Y Fan, D J Nott, and S A Sisson. Approximate bayesian computation via regression density estimation.

Stat, 2(1), 2013.
[31] B M Turner and P B Sederberg. A generalized, likelihood-free method for posterior estimation. Psycho-

nomic Bulletin & Review, 21(2), 2014.
[32] L F Price, C C Drovandi, A Lee, and David J N. Bayesian synthetic likelihood. J Comput Graph Stat,

(just-accepted), 2017.
[33] M Beaumont, W Zhang, and D J Balding. Approximate bayesian computation in population genetics.

Genetics, 162(4), 2002.
[34] G E Hinton and D Van Camp. Keeping the neural networks simple by minimizing the description length

of the weights. In Proceedings of the sixth annual conference on Computational learning theory, 1993.
[35] A Graves. Practical variational inference for neural networks. In Adv Neur In, 2011.
[36] D P Kingma, T Salimans, and M Welling. Neural adaptive sequential monte carlo. In Variational Dropout

and the Local Reparameterization Trick, pages 2575–2583, 2015.
[37] F Gerhard, M Deger, and W Truccolo. On the stability and dynamics of stochastic spiking neuron models:

Nonlinear hawkes process and point process glms. PLoS Comput Biol, 13(2), 2017.
[38] K Cho, B Van Merriënboer, C Gulcehre, D Bahdanau, F Bougares, H Schwenk, and Y Bengio. Learning

phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[39] M G B Blum, M A Nunes, Ds Prangle, S A Sisson, et al. A comparative review of dimension reduction
methods in approximate bayesian computation. Statistical Science, 28(2), 2013.

[40] B Jiang, T Wu, Cs Zheng, and W H Wong. Learning summary statistic for approximate bayesian
computation via deep neural network. arXiv preprint arXiv:1510.02175, 2015.

[41] J W Pillow, J Shlens, L Paninski, A Sher, A M Litke, E J Chichilnisky, and E P Simoncelli. Spatio-temporal
correlations and visual signalling in a complete neuronal population. Nature, 454(7207), 2008.

[42] N G Polson, J G Scott, and J Windle. Bayesian inference for logistic models using pólya–gamma latent
variables. J Am Stat Assoc, 108(504), 2013.

10

http://dx.doi.org/10.3389/fnins.2014.00010

[43] S Linderman, R P Adams, and J W Pillow. Bayesian latent structure discovery from multi-neuron
recordings. In Advances in Neural Information Processing Systems, 2016.

[44] A L Hodgkin and A F Huxley. A quantitative description of membrane current and its application to
conduction and excitation in nerve. J Physiol, 117(4), 1952.

[45] M Pospischil, M Toledo-Rodriguez, C Monier, Z Piwkowska, T Bal, Y Frégnac, H Markram, and
A Destexhe. Minimal hodgkin-huxley type models for different classes of cortical and thalamic neurons.
Biol Cybern, 99(4-5), 2008.

[46] E Hay, S Hill, F Schürmann, H Markram, and I Segev. Models of neocortical layer 5b pyramidal cells
capturing a wide range of dendritic and perisomatic active properties. PLoS Comput Biol, 7(7), 2011.

[47] J Chung, C Gulcehre, K H Cho, and Y Bengio. Empirical evaluation of gated recurrent neural networks
on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[48] Marko Järvenpää, Michael U Gutmann, Aki Vehtari, and Pekka Marttinen. Efficient acquisition rules for
model-based approximate bayesian computation. arXiv preprint arXiv:1704.00520, 2017.

[49] S Gu, Z Ghahramani, and R E Turner. Neural adaptive sequential monte carlo. In Advances in Neural
Information Processing Systems, pages 2629–2637, 2015.

[50] S W Linderman and S J Gershman. Using computational theory to constrain statistical models of neural
data. bioRxiv, 2017.

[51] G De Nicolao, G Sparacino, and C Cobelli. Nonparametric input estimation in physiological systems:
problems, methods, and case studies. Automatica, 33(5), 1997.

11

Appendix
A Convergence of the log-loss function
Let K(x,xo) be a kernel. We assume that K ≥ 0 and that K(xo,xo) > 0. Starting from the
marginal

p(x) =

∫
p(θ)p(x|θ)dθ

we define a weighted version as follows:

pK(x) :=
p(x)K(x,xo)∫
p(x′)K(x′,xo)dx′

=
1

ZK
p(x)K(x,xo),

where we assume that the denominator is nonzero and finite. By the law of large numbers:

− 1

N

∑
n

p(θn)

p̃(θn)
K(x,xo) log qφ(θn|xn)

a.s.−−→〈−p(θ)

p̃(θ)
K(x,xo) log qφ(θ|x)〉p̃(θ)p(x|θ)

=〈−K(x,xo) log qφ(θ|x)〉p(θ)p(x|θ)
=〈−K(x,xo) log qφ(θ|x)〉p(x)p(θ|x)
=ZK〈− log qφ(θ|x)〉pK(x)p(θ|x)

This expression equals

ZKDKL (pK(x)p(θ|x)||pK(x)qφ(θ|x)) + const.,

where the constant does not depend on φ. Assuming that the family qφ is sufficiently flexible to
model the posterior distribution p(θ|x), the above quantity is minimised iff the two distributions
agree, ie. iff

p(θ|x) = qφ(θ|x)

almost everywhere, where p(x)K(x,xo) 6= 0.

B Details on algorithm and optimisation

Algorithm 1: Training SNPE

initialise Bayesian MDN with parameters φ = {φm,φs} and K components
initialise proposal prior p̃(θ)(1) with prior p(θ)
initialise prior over network weights π(0) as N (w|0, λ−1I)

repeat
for n = 1 . . . N do

sample θn ∼ p̃(θ)(r)

sample xn ∼ p(x|θn)

optional: add components to neural network

(re)train Bayesian MDN using Eq.2

set p̂(θ|x = xo)
(r) := qw(θ|xo) where w = φm

p̃(θ)(r+1) ← p̂(θ|x = xo)
(r)

until p̂(θ|x = xo) has converged

The precision of the prior on w is fixed to λ = 0.01. We normalise importance weights per round.
For optimisation, we use Adam with proposed default settings [1]. We rescale gradients such that
their combined norm does not exceed a threshold of 0.1 [2].

[1] D Kingma and Ba J. Adam: A Method for Stochastic Optimization. In ICLR, 2015.

[2] I Sutskever, O Vinyals, and Q V Le. Sequence to sequence learning with neural networks. In Adv
in Neur In, 2014.

12

C Continual learning through the DKL-term
TheDKL-term in Eq. 2 implements continual learning. In Bayesian inference calculating the posterior
given r rounds is equivalent to taking the posterior after r − 1 rounds as the prior for round r.
Translating this to variational inference formulation gives Eq. 2.

The DKL-term is between two Gaussian distributions over weights w:

DKL(q̃
(r)
φ (w)||q̃(r−1)φ (w)) =

1

2

[
log
|Σ1|
|Σ2|

+ tr(Σ−11 Σ2)− d+ (µ1 − µ2)TΣ−11 (µ1 − µ2)

]
,

where d is the dimension of the space (the number of weights) and the parameters of q̃(r−1) are Σ1

and µ1.

A central term in the DKL above is a quadratic penalty on the change in posterior mean (of MDN
weights) which is weighted by the posterior precision of round r − 1. Thus, given that the posterior
precision Σ−11 increases with r, the penalty on the change in means also increases with rounds.

D Details of simulated and neurophysiological data
D.1 Mixture-models

Models SNPE is applied to two distinct mixture-models. The first is a mixture of two Gaussians
with a common mean:

p(x|θ) = αN (x|θ, σ2
1) + (1− α)N (x|θ, σ2

2)

The second model is a mixture of two Gaussians, such that

p(x|θ) = αN (x|θ, σ2
1) + (1− α)N (x| − θ, σ2

1).

Inference We set α = 0.5, σ1 = 1, σ2 = 0.1. The prior is chosen as p(θ) ∼ U (−10, 10).

For the first model, we run 6 rounds of SNPE and CDE-LFI with 1000 samples per round. We
initialise our SNPE with 2 components.

For the second model we draw 250 samples per round, use 3 rounds, and add a second component to
SNPE after the second round.

D.2 Generalised linear model

Model We simulate the activity of a neuron depending on a single set of covariates. Neural activity
is subdivided in bins and, within each bin i, spikes are generated according to a Bernoulli observation
model:

yi ∼ Bern(η(v>i β)),

where v>i β is the convolution of the white-noise input (represented by vi) and a linear filter with
coefficients β, and η(·) = exp(·)/(1 + exp(·)) is the canonical link function for a Bernoulli GLM.

Inference We apply SNPE to a GLM with a 10-dimensional parameter vector β. As summary
statistics, we use the cross-correlation between input and response, i.e., the sufficient statistics for the
generative model.

A Gaussian prior with mean 0 and covariance Σβ = σ2(F>F)−1 is used, where F encourages
smoothness, by penalizing the second-order differences in the vector of parameters [51]. SNPE is run
for 5 rounds with 5000 GLM simulations each. We only enforce continuity in MDN weights after
round 3, when the proposal distribution converged.

To perform PG-MCMC, the generative model is augmented with latent Pólya-Gamma distributed
random variables ω, and samples from ω and β are drawn according to the iterative scheme described
by Polson and Scott [42]. The set of samples for β represents a draw from the posterior distribution of
β given the data. PG-MCMC procedure uses the same prior as in the SNPE to estimate the posterior.

D.3 Single-compartment Hodgkin-Huxley neuron

Model The single-compartment Hodgkin-Huxley neuron uses channel kinetics as in [45]:

Cm
dV

dt
= gleak(Eleak − V) + ḡNam

3h(ENa − V) + ḡKn
4(EK − V) + ḡMp(EK − V) + Iinj + σ(t),

13

where Cm is membrane capacitance, V membrane potential, ḡc density of channels of type c (m, h,
n, p) of the channel gating kinetic variables, Ec reversal potential of c, and σ(t) intrinsic neural noise.
The right hand side is composed of a leak current, a Na-current, a K-current, a slow voltage-dependent
K-current responsible for spike-frequency adaptation, and an injected current Iinj. Channel gating
variables have dynamics fully characterised by the neuron membrane potential, once the kinetic
parameters are known.

Inference We illustrate SNPE in a model with 12 parameters (gleak, ḡNa,
ḡK, ḡM, Eleak, ENa, EK, VT , σ, kβn1, kβn2, τmax) (where kβn1 and kβn2 control the kinetics of
K channel activation, and σ is the magnitude of the injected Gaussian noise), and 20 voltage features
(number of spikes, resting potential, 10 lagged auto-correlations, and the first 8 voltage moments).
SNPE is applied to the log absolute value of the parameters (log |gleak|, log |ḡNa|...).

The prior distribution over the parameters is uniform, and centred around the true parameter values:

θ ∼ U
(

1

2
θ∗,

3

2
θ∗
)

SNPE is run for 5 rounds with 5000 Hodgkin-Huxley simulations each, and we fix the posterior to be
a mixture of two Gaussians.

D.4 Inference in in-vitro recordings from Allen Cell-type database

We apply the approach to in vitro recordings from mouse visual cortex (Allen Cell Type Database),
(illustration on cell 464212183 in Fig. 3E-G), and inferred the posterior over 12 parameters, as for
the application to the simulated data from the Hodgkin-Huxley neuron. We choose the same prior
as in the Hodgkin-Huxley simulated data. SNPE is run for 5 rounds with 5000 Hodgkin-Huxley
simulations each, and we fix the posterior to be a mixture of two Gaussians.

D.5 Autapse

Model The autapse model corresponds to a neuron synapsing onto itself with connection strength
J , time constant τ , injected current Iinj and external white noise source ηt ∼ N (0, 1) with 〈ηs, ηt〉 =
δt,s:

τ
dr

dt
= −r + Jr + Iinj + σηt,

Using this formula it can be straightforwardly shown that the system has unstable dynamics if J > 1.

Inference We apply SNPE to infer two parameters of the autapse model (J, τ), where the feature
of interest is the mean across time of the trace. The prior distribution over the parameters is uniform:

J ∼ U(0, 2)

τ ∼ U(−1, 2.5),

where the true parameters are (0.75, 1). We note that the prior allows for the time constant τ to take
negative values: while negative time constants do not make physical sense, we note that these are
mathematically equivalent to positive time constants where the autapse equation has flipped signs.
We draw 1000 samples for each one of 5 rounds.

14

E Bad features
When sampling from the prior, many parameters sets can lead the Hodgkin-Huxley model to non-
spiking behaviour, and therefore features that depend on the presence of spiking, such as latency to
first spike, are not defined (Fig. E.1A). In the absence of spiking, the algorithm imputes values to the
undefined features, values which are learned during the MDN training. In Fig. E.1B, the imputed
value for the latency is close to the mean latency, although we have observed this not to be generally
the case.

−80

−20

40

vo
lta

ge
 (

m
V

)

0 60 120
time (ms)

0.00

0.55

in
pu

t (
nA

)

0 40 80 120
firing rate (Hz)

15

25

35

A
P

 (
m

s)
la
te
n
cy

mean

imputation value

posterior samples

A B

Figure E.1: We can impute values to missing features. A. Hodgkin-Huxley simulations with
parameters sampled from the prior, with several parameters sets leading to non-spiking behaviour. B.
Latency to first spike as a function of firing rate, for samples from the posterior distribution. In this
case, the imputed value for the latency (in orange) is close to the mean latency (in green).

F Comparison with Sequential Monte-Carlo ABC
SNPE has been tested on problems with 10 or more parameters, whereas most ABC methods (such
as SMC-ABC [25]) have addressed problems with fewer parameters, since sampling-based methods
require large numbers of simulations. In a GLM with 10 parameters, we observe that our method
consistently performs better than SMC-ABC, even when SMC is given orders of magnitude more
simulations (Fig. F.1).

1 5 10
θi

−3

0

3

va
lu

e

true value

SNPE

PG-MCMC

1 5 10
θi

−3

0

3

va
lu

e

true value

SMC-ABC

PG-MCMC

-0.0

0.1

P
G

-M
C

M
C

 covariance

-0.0

0.1

S
N

P
E

 covaria
nce

-0.1

0.9

S
M

C
-A

B
C

 covarian
ce

A

B

Figure F.1: Comparison between SNPE and SMC-ABC in a GLM with 10 parameters. The
reference (PG-MCMC) posterior means and variances A. and covariance B. are recovered well by
SNPE after 25000 simulations, whereas sequential Monte-Carlo ABC performs worse with over
4× 106 simulations. For the application of the SMC-ABC algorithm, we used 1000 particles and a
sequence of tolerances {εi}ni=0, εi = 15× 0.9i.

15

G Supplementary Figures

-3.0 -0.5

b0

-0.7 1.5

h1

-0.3 2.4

h2

-0.0 2.9

h3

-0.7 1.8

h4

-0.8 1.4

h5

-1.0 1.3

h6

-0.7 1.2

h7

-0.9 1.3

h8

-1.3 1.2

h9

Figure G.1: Full posterior inferred for GLM by SNPE. In red, ground-truth parameter values. 2-D
marginals for SNPE (lines) and PG-MCMC (histograms). White and yellow contour lines correspond
respectively to 68% and 95% of the mass for SNPE.

16

3.2 4.3

ln g()Na

0.9 2.0

ln g()K

-3.0 -1.9

ln g()l

3.2 4.3

ln E()Na

3.8 4.9

ln E(−)K

3.6 4.7

ln E(−)l

-3.4 -2.3

ln g()M

5.7 6.8

ln t()max

-1.4 -0.3

ln k()bn1

3.0 4.1

ln k()bn2

3.4 4.5

ln V()T

-1.4 -0.3

ln noise()

Figure G.2: Full posterior inferred for HH synthetic data

17

3.2 4.3

ln g()Na

0.9 2.0

ln g()K

-3.0 -1.9

ln g()l

3.2 4.3

ln E()Na

3.8 4.9

ln E(−)K

3.6 4.7

ln E(−)l

-3.4 -2.3

ln g()M

5.7 6.8

ln t()max

-1.4 -0.3

ln k()bn1

3.0 4.1

ln k()bn2

3.4 4.5

ln V()T

-1.4 -0.3

ln noise()

Figure G.3: Full posterior inferred for HH real data

18

	Introduction
	Related work using likelihood-free inference for simulator models

	Methods
	Sequential Neural Posterior Estimation for likelihood-free inference
	Training the posterior model with stochastic variational inference
	Dealing with bad simulations and bad features, and learning features from time series

	Results
	Statistical inference on simple models
	Statistical inference on Hodgkin-Huxley neuron models
	Dealing with bad simulations and features

	Discussion
	Convergence of the log-loss function
	Details on algorithm and optimisation
	Continual learning through the DKL-term
	Details of simulated and neurophysiological data
	Mixture-models
	Generalised linear model
	Single-compartment Hodgkin-Huxley neuron
	Inference in in-vitro recordings from Allen Cell-type database
	Autapse

	Bad features
	Comparison with Sequential Monte-Carlo ABC
	Supplementary Figures

