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Gutnisky and Josic, 2010). There are also a variety of methods for 
capturing precise synchrony between neurons through explicit 
sharing of spikes (Kuhn et al., 2003; Galan et al., 2006; Niebur, 2007; 
Brette, 2009) and several models based on statistical frameworks 
such as maximum entropy (Schneidman et al., 2006; Shlens et al., 
2006; Roudi et al., 2009).

All of the approaches described above are designed to capture 
and/or control the total correlation between spike trains and, as 
such, are of limited utility in the context of early sensory systems 
where it is important to separate internal network correlations 
from those due to the external stimulus. In this paper, we propose a 
framework designed specifically to model spike trains in which the 
total correlation can be separated into signal and noise components. 
If responses to repeated trials of an identical sensory stimulus are 
observed, the signal correlation, which reflects both correlation 
in the stimulus itself and similarities in neurons’ preferred stimu-
lus features, will be evident in the fraction of the response that is 
repeatable from trial-to-trial. Noise correlation, which results from 
the activity of network and intrinsic cellular mechanisms, will be 
evident in the fraction of the response that is variable from trial-
to-trial (note that the term noise correlation is not meant to imply 
that the activity underlying this correlation is unimportant, but 
simply that is not directly dependent on the stimulus).

IntroductIon
Correlated spiking activity in neuronal populations has been a sub-
ject of intense theoretical and experimental research over the past 
several decades, and the importance of correlations has been dem-
onstrated in a number of contexts, including plasticity and infor-
mation processing (for a recent review, see Averbeck et al., 2006). 
Recent advances in experimental technology have finally made 
it possible to observe the activity of large neuronal populations 
simultaneously. In order to take full advantage of these advances, 
new methods for the analysis and modeling of population activity 
must also be developed.

A number of methods exist for modeling correlated popula-
tion spike trains in which some fraction of the input driving the 
activity of each neuron is shared with other neurons, including 
integrate-and-fire models and other spiking models with corre-
lated input currents or synaptic conductances (Destexhe and Pare, 
1999; Feng and Brown, 2000; Song and Abbott, 2001; Stroeve and 
Gilen, 2001; Salinas and Sejnowski, 2002; Dorn and Ringach, 2003; 
Gutig et al., 2003; Galan et al., 2006; De La Rocha et al., 2007; 
Shea-Brown et al., 2008; Tchumatchenko et al., 2008), stochastic 
spiking models with correlated rate functions (Galan et al., 2006; 
Brette, 2009; Krumin and Shoham, 2009), and models based on 
a dichotomized Gaussian (DG) framework (Macke et al., 2009; 

Modeling population spike trains with specified time-varying 
spike rates, trial-to-trial variability, and pairwise signal and 
noise correlations

Dmitry R. Lyamzin1†, Jakob H. Macke2,3† and Nicholas A. Lesica1*†

1 Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-University Munich, Martinsried, Germany
2 Computational Vision and Neuroscience Group, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
3 Werner Reichhardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany

As multi-electrode and imaging technology begin to provide us with simultaneous recordings 
of large neuronal populations, new methods for modeling such data must also be developed. 
Here, we present a model for the type of data commonly recorded in early sensory pathways: 
responses to repeated trials of a sensory stimulus in which each neuron has it own time-varying 
spike rate (as described by its PSTH) and the dependencies between cells are characterized by 
both signal and noise correlations. This model is an extension of previous attempts to model 
population spike trains designed to control only the total correlation between cells. In our model, 
the response of each cell is represented as a binary vector given by the dichotomized sum of 
a deterministic “signal” that is repeated on each trial and a Gaussian random “noise” that is 
different on each trial. This model allows the simulation of population spike trains with PSTHs, 
trial-to-trial variability, and pairwise correlations that match those measured experimentally. 
Furthermore, the model also allows the noise correlations in the spike trains to be manipulated 
independently of the signal correlations and single-cell properties. To demonstrate the utility of 
the model, we use it to simulate and manipulate experimental responses from the mammalian 
auditory and visual systems. We also present a general form of the model in which both the 
signal and noise are Gaussian random processes, allowing the mean spike rate, trial-to-trial 
variability, and pairwise signal and noise correlations to be specified independently. Together, 
these methods for modeling spike trains comprise a potentially powerful set of tools for both 
theorists and experimentalists studying population responses in sensory systems.

Keywords: population, correlation, noise correlation, simulation, model

Edited by:
Klaus R. Pawelzik, University of 
Bremen, Germany

Reviewed by:
Udo Ernst, University of Bremen, 
Germany
Kresimir Josic, University of Houston, 
USA

*Correspondence:
Nicholas A. Lesica, Ear Institute, 
University College London, 332 Gray’s 
Inn Rd., London WC1X 8EE, UK. 
e-mail: n.lesica@ucl.ac.uk
†Current address:
Dmitry R. Lyamzin and  
Nicholas A. Lesica, Ear Institute, 
University College London, London, 
UK.
Jakob H. Macke, Gatsby Computational 
Neuroscience Unit, University College 
London, London, UK.



Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 144 | 2

Lyamzin et al. Modeling correlated spike trains

For modeling the population spike trains of early sensory neu-
rons, another class of methods based on generalized linear models 
(GLMs) has been developed (Chornoboy et al., 1988; Paninski, 
2004; Kulkarni and Paninski, 2007; Paninski et al., 2007; Pillow 
et al., 2008). In its typical formulation, the GLM is parameterized 
by a series of filters that relate the time-varying spike rate in one 
neuron to the sensory stimulus and the responses of other neu-
rons. This formulation has the great strength that once the filter 
parameters have been estimated, the model can be used not only 
to simulate responses that match those measured experimentally, 
but also to simulate responses to novel stimuli. However, this gen-
erality comes at a cost: specifying the filters requires the estima-
tion of a large number of parameters and, thus, a large amount 
of experimental data – much more than is necessary for a model 
designed only to simulate responses to the same stimuli that have 
been tested experimentally. It is possible to formulate alternatives 
to the typical GLM that require less experimental data by forgoing 
the ability to predict responses to novel stimuli and parameterizing 
the time-varying firing rate in response to a particular stimulus 
directly. However, even in this formulation, the GLM lacks a criti-
cal property: it does not enable straightforward specification or 
manipulation of one response property independent of the others 
(Krumin and Shoham, 2009; Toyoizumi et al., 2009).

In the model we present below, the time-varying spike rate, 
trial-to-trial variability, and pairwise signal and noise correlations 
can be matched to those measured experimentally, and the noise 
correlations can be manipulated without changes in the signal cor-
relations or the single-cell properties. The model is an extension of 
previous attempts to model population spike trains as DGs (Emrich 
and Piedmonte, 1991; Cox and Wermuth, 2002; Macke et al., 2009; 
Gutnisky and Josic, 2010). In our model, the response of each cell is 
a binary vector determined by the thresholded sum of two inputs: 
a signal, which is the same for each trial of a given stimulus, and a 
noise, which is different for each trial, both of which can be cor-
related across neurons. In the first part of the paper, we show how 
the model parameters can be estimated from experimental data 
and used to simulate spike trains with properties that match those 
measured experimentally. We also demonstrate how the model 
parameters can be manipulated to obtain spike trains with arbitrary 
pairwise noise correlations without changes in single-cell proper-
ties. In the second part of the paper, we describe a general form 
of the model that can be used model spike trains with arbitrary 
single-cell properties and pairwise correlations.

All of the Matlab code required to perform the analyses described 
in this paper is available for download at http://www.ucl.ac.uk/ear/
research/lesicalab.

A model for sImulAtIng And mAnIpulAtIng 
experImentAlly recorded populAtIon spIke trAIns
sIngle-cell responses
To represent a set of spike times from a single cell on a single trial 
i ∈ {1, 2,…,I} of a particular stimulus, we discretize time into n ∈ {1, 
2,…,N} bins of length ∆ and set r

i
[n] = 1 if a spike occurs in bin 

n on trial i, and r
i
[n] = 0 otherwise. In general, we assume that ∆ 

is small enough that no more than one spike occurs in any given 
bin. Based on the responses to all trials r (an N × I binary matrix), 
we can define several quantities of interest:
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 to represent the expectation over 
all possible values of x followed by the expectation of all possible 
values of y, and 〈·〉

x≠y
 to represent the expectation over all possible 

combinations of x and y in which their values are not equal. We 
chose to use the above definition of SNR as the measure of trial-
to-trial variability because is it commonly used in early sensory 
systems (Borst and Theunissen, 1999). One important property of 
this measure that should be noted is that its value is dependent on the 
bin size ∆. Thus, all of the computations described below for fitting 
model parameters must be repeated if the bin size is changed.

We model the response as a dichotomized sum of a deterministic 
“signal” and Gaussian “noise”
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Where r
i
[n] is the response in time bin N on trial i, s (an 

N-dimensional vector) is the same on every trial and z ∼ N(0, 1) 
(an N-dimensional vector) is different on every trial [note that 
neither s nor z are intended to correspond directly to any intracel-
lular quantities]. Given the experimentally recorded responses of 
a cell, we wish to simulate responses with the same PSTH r . This 
can be done by solving

r n r n s ni i
[ ] [ ] ( [ ], )= = Φ 1

 
(2)

for s[n] in each bin, where Φ(x, σ2) is the CDF for a Gaussian 
with zero mean and variance σ2 evaluated at x. Equation 2 is easily 
solved numerically, as the function is monotonic and has unique 
level crossings. It is clear from Eq. 2 that the choice of one for the 
variance of z is somewhat arbitrary; for any finite value of the 
variance of z, an s[n] can be found to achieve any desired value of 
r n[ ]. Note that if r n[ ] ,= 0 1or  then s[n] must be either −∞ or +∞. 
If finite values of s[n] are desired, then r n[ ] can be constrained to 
the interval [1/I, 1 − 1/I] before solving Eq. 2.

Importantly, since this approach matches r  exactly, it will also 
match the mean spike probability r

0
 and the spike train signal to 

noise ratio SNR, as both can be uniquely defined in terms of the 
PSTH r :

r r

r r

r r

r

r r

n

i i i i

0 =

= ( ) =
−( )

=
+

SNR
var( )

var

var( )

var

var( )

var( ) var

ξ

ii i i i
r r( ) − ( )2 cov ,

where, because r
i
 is binary,

var ( ) cov , .r r r r r r ri i i i n
( ) = − ( ) = −0 0

2
0
21 and



Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 144 | 3

Lyamzin et al. Modeling correlated spike trains

for each cell, it will also match the signal correlation between cells. 
To match the noise correlation, it is necessary to find the appropriate 
covariance matrix Σ

z
. This can be done by solving the equation that 

relates ρz
pq to the spike train noise correlation ρnoise

pq  numerically for 
each pair of cells (again, the function is monotonic and, because z 
is Gaussian, each ρz

pq can be solved for independently).
Thus, ρnoise

pq  can be written as
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i
 is binary,
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where Φ Σ2( , )

x  is the CDF for a two-dimensional Gaussian with 

zero mean and covariance Σ evaluated at 

x.

To demonstrate the utility of this approach, we first attempted 
to reproduce the single-cell properties and pairwise correlations 
recorded experimentally from a population of 10 cells in the cat 
lateral geniculate nucleus in response to repeated presentations of a 
natural scene movie. Figure 2A shows the experimental and simu-
lated responses for two cells. As expected, the PSTH, r

0
, and SNR of 

the experimental and simulated responses are closely matched. As 
shown in Figure 2B, the measured and simulated pairwise noise 
correlations in the population are also closely matched.

In addition to matching the experimentally observed responses, 
this approach can also be used to manipulate pairwise correlations 
without disturbing single-cell properties by changing the value of 
ρnoise

pq  on the left side of Eq. 4 before solving for ρz
pq (note that there 

are a number of constraints on the realizable values of ρnoise
pq  – for 

example, because the covariance matrix Σ
z
 must be positive semi-

definite, it may be difficult to obtain strong negative correlations; 
see Macke et al., 2009 for a detailed discussion). As a demonstration, 
we attempted to simulate population spike trains in which the noise 
correlations were twice as large as those observed experimentally. 
As shown in Figure 2C, the noise correlations in the simulated data 
match those desired.

evAluAtIng goodness of fIt
Our model is not fit directly to observed spike trains, but rather to the 
PSTHs and pairwise noise correlations that are extracted from them. In 
our framework, any set of PSTHs and noise correlations can be fit with 
a unique set of model parameters, but that does not mean, of course, 
that the model is a good description of the original spike trains. The 
actual goodness of fit of the model is determined by two factors: the 
measurement noise in the PSTHs and noise correlations and the validity 
of the assumption that the spike trains can be described by our model 

Matching r  exactly will also match the mutual information 
transmitted by single spikes (Brenner et al., 2000). Note that if it 
is not necessary to match the bin to bin spike probabilities of the 
experimental response, but only the distribution of overall spike 
counts, a reduced model can be used (Macke et al., 2009).

To demonstrate the utility of this model, we first generated 
responses using Eq. 1 with a variety of different signals, and then 
attempted to reproduce the model responses after estimating s using 
Eq. 2. Typical results are shown in Figure 1A. For uniform random, 
sine wave, and square wave signals, the PSTH and, consequently, 
r

0
 and SNR of the responses simulated with the estimated s closely 

match those of the original model generated data.
Next, we tested the model’s ability to reproduce the single-cell 

properties of experimentally recorded responses. Figure 1B shows 
the responses of neurons in the gerbil inferior colliculus to repeated 
presentations of a variety of sounds. In each case, we estimated s 
from the experimental data using Eq. 2 and were able to simulate 
new responses with PSTH, r

0
, and SNR that match those measured 

experimentally.

populAtIon responses
As described in the Introduction, correlations between cells in early 
sensory systems can have both signal and noise components: signal 
correlations arise from correlations in the stimulus itself and/or 
similarity in preferred stimulus features (frequency, orientation, 
etc.), while noise correlations arise from shared inputs that con-
tribute to the trial-to-trial variability in responses. In our model, 
we adopt the most common definition of noise correlation, where 
ρnoise

pq , the noise correlation between cells p and q, is given by the 
difference between the total correlation and the signal correlation, 
ρ ρ ρnoise total signal

pq pq pq= − , and ρtotal
pq  and ρsignal

pq  are the correlation coef-
ficients between the responses of cells p and q before and after 
the trial order has been shuffled. The model described above for 
a single cell is easily extended to capture the pairwise signal and 
noise correlations in a population, where the response of cell p ∈ {1, 
2,…,P} is given by
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where each cell has its own sp that is the same on every trial and zp 
that is different on every trial. In this population model, z ∼ N(0, Σ

z
) 

is a multivariate (P-dimensional) Gaussian random process with 
covariance matrix
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where ρz
pq , which is assumed to be constant across time bins and 

trials, is the pairwise correlation coefficient between z p and z q 
and ρ ρz

pq
z
qp= . Assuming we have the responses of a population 

to repeated trials of a particular stimulus, we can estimate each s p 
separately to match the single-cell properties as described above. 
Because the response is binary and this approach matches r  exactly 
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Figure 1 | Simulated responses match the single-cell properties 
of model generated and experimental data. (A) The top row shows 
model generated responses to repeated trials with a variety of 
waveforms for s: a uniform random noise signal in the range [−0.5 to 0.5]; 
a sinusoidal signal 0.75 sin(n/5) − 1; a square wave signal with a 50% duty 
cycle, a period of 20 samples, and the same mean value and peak-to-peak 
amplitude as the sinusoid. The middle row shows simulated responses 
with s estimated from the responses in the top row. The bottom row 
shows the PSTHs of the original model generated (black) and simulated 
(gray) responses. (B) The top row shows experimental responses of a 
cell recorded in the inferior colliculus of an anesthetized gerbil to 

repeated trials of a variety of sounds (experimental methods are described 
in Lesica and Grothe, 2008a,b): a sinusoidally amplitude modulated (SAM) 
tone with a carrier frequency of 6 KHz, a modulation depth of 100%, an 
intensity of 70 dB, and a modulation frequency of 50 Hz; a square wave 
modulated tone with the same carrier frequency, modulation depth, and 
intensity, a 50% duty cycle, and a period of 25 ms; a tone with the same 
carrier frequency and intensity modulated by a signal with power spectra 
matched to that measured from a series of animal vocalizations. The bin 
size ∆ for these responses was 1 ms. The middle and bottom rows show 
the simulated responses simulated and PSTHs presented as 
 in (A).
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framework. The goodness of fit can be measured by separating the 
available spike trains into “training” and “testing” sets, fitting the model 
parameters on the training spike trains, and calculating the (log) likeli-
hood of the testing spike trains from the resulting model. The absolute 
likelihood may be difficult to interpret, but the ratio of the likelihoods 
from two different models can give be an informative measure.

To demonstrate the use of likelihood as a measure of goodness of 
fit, we simulated population spike trains from a known model (see 
figure legend for model parameters), split the spike trains into training 
and testing sets, and estimated the model parameters from the training 
spike trains. To determine whether including noise correlations in the 
estimated model improved the goodness of fit, we then compared the 
likelihood of the testing spike trains from the estimated model with 
and without noise correlations (i.e., with Σ

z
 estimated as described 

above or set to the identity matrix) for different numbers of training 
trials. The likelihood of a given testing spike train was computed as

L n ni P i z
n

N

r r s( ) = − + ⋅( )
=

∑ log ( [ ] ) [ ],Φ Σ2 1
1  

(5)

where r
i
 is the N × P binary matrix of the responses of a popula-

tion of P cells on a given trial i, r
i
[n] is the vector of the responses 

r ni
p[ ] for each cell, s[n] is the vector of the signals s p[n] for each cell, 

Φ ΣP x( , )


 is the CDF for a P-dimensional Gaussian with zero mean 
and covariance Σ evaluated at 


x , and · denotes a point-by-point 

vector product. To isolate the effects of the noise correlations on 
the goodness of fit, we set the PSTHs in the estimated model to be 

Figure 2 | Simulated responses match the single-cell properties and 
pairwise correlations in experimental data. (A) The top row shows the 
experimental responses of two cells recorded simultaneously in the lateral 
geniculate nucleus of an anesthetized cat to repeated trials of a natural scene 
movie (experimental methods are described in Lesica et al., 2007) with an RMS 
contrast of 0.4. The bin size ∆ for these responses was 4 ms. The middle and 
bottom rows show the simulated responses and PSTHs presented as in 

Figure 1. (B) The image shows the pairwise noise correlations in the 
experimental (lower triangular portion) and simulated (upper triangular portion) 
responses of a population of 10 neurons recorded in the cat LGN. The responses 
of all 10 cells were recorded simultaneously. (C) The image shows the desired 
pairwise noise correlations (lower triangular portion; values are double those 
measured in the original data) and the pairwise noise correlations realized in the 
simulated responses (upper triangular portion).

Figure 3 | Model goodness of fit increases with increasing trials. The 
gray circles show the log likelihood (per bin) for the estimated model as a 
function of the number of trials used for fitting Σz. The likelihood was 
computed for 100 trials not used for fitting the model. The likelihoods for the 
actual model with and without noise correlations are also shown. Spike trains 
were generated using the model described in Eq. 10 with the following 
parameters: N = 500, P = 10, σ2

s and θ were chosen so that r0 ∼ N(0.16, 0.04) 
and SNR ∼ N(0.5, 0.35), and ρs

pq and ρz
pq were chosen so that 

ρsignal
pq ∼ N ( . , . )0 12 0 03  and ρnoise

pq ∼ N ( . , . ).0 07 0 02

the same as those in the actual model and used only the estimated 
noise correlations. As shown in Figure 3, as the number of train-
ing trials increased, the measurement noise in noise correlations 
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where z ∼ N(0, 1) is again a Gaussian random process that is dif-
ferent on every trial, s is a Gaussian random process s s∼ N ( , )0 2σ  
that is the same on every trial, and the threshold θ is allowed to 
take on any value (note that in this case, θ cannot simply be set 
to an arbitrary value; in order to achieve any combination of r

0
 

and SNR, 2 degrees of freedom are required). Such a model could 
be used, for example, to simulate spike trains with any mean 
spike rate and trial-to-trial variability. Furthermore, because 
the model is based on Gaussian processes, it may enable certain 
population response properties to be investigated analytically 
or numerically directly from the model parameters, without the 
need for simulations.

decreased, and the likelihood from the estimated model with noise 
correlations approached that of the actual model, reaching the same 
value with I = 80 trials.

noIse wIth temporAl correlAtIons
The model as described above captures both the instantaneous and 
long-term signal correlations between cells by matching their individ-
ual PSTHs, but captures only instantaneous noise correlations because 
z is uncorrelated in time. While instantaneous noise correlations are 
likely to be sufficient to describe population spike trains in early sen-
sory systems, the model can also be extended to capture long-term 
noise correlations if necessary, for example, to capture the high level 
of trial-to-trial variability in higher cortical areas. Long-term noise 
correlations can be captured by adding temporal correlations to z via 
Gaussian conditioning (MacKay, 2003; Macke et al., 2009) so that z in 
each time bin is drawn from a distribution with mean and covariance 
dependent on the values of z in the preceding time bins:
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and K is the number of preceding time bins to condition on. An 
example of such conditioning is shown in Figure 4. We used a 
known model to generate population spike trains with the noise 
auto- and cross-correlation functions shown by the thick black lines 
(see figure legend for model parameters). We then estimated model 
parameters from those spike trains, including those required for 
conditioning z on the preceding K = 4 time bins. The noise auto- 
and cross-correlation functions for the spike trains simulated from 
the estimated model (shown by the gray circles) closely match those 
of the original spike trains.

A generAl model for populAtIon spIke trAIns
sIngle-cell responses
When modeling experimental spike trains as described above, the 
noise correlations can be chosen arbitrarily, but the mean spike 
rate, trial-to-trial variability, and signal correlations are depend-
ent on the PSTH. It may also be useful to have a general model 
for population spike trains in which all of the response properties 
can be specified independently. For a single cell, this is achieved 
by replacing the deterministic signal s in the model framework 
described above with a Gaussian random process:

r n
s n z n

s n z ni
i

i

[ ]
, [ ] [ ]

, [ ] [ ]
=

+( ) >
+( ) ≤







1

0

θ
θ

 

(7)

Figure 4 | gaussian conditioning captures long-term noise correlations. 
The gray circles show the noise auto- and cross-correlation functions for spike 
trains simulated from the estimated model. Error bars represent the standard 
deviation in the correlation values computed from independent realizations of 
the model. The model parameters were estimated from spike trains simulated 
by the model in Eq. 10, including Gaussian conditioning of z, with the following 
parameters: N = 500, P = 10, σ2

s and θ were chosen so that r0 ∼ N(0.16, 0.04) 
and SNR ∼ N(0.5, 0.35), ρs

pq = 0 5. , and ρz
pp k[ ] and ρz

pq k[ ] .= 0 12 for k ≤ 4 and 
zero thereafter. The noise auto- and cross-correlation functions of the original 
spike trains are shown by the thick black lines. Examples of the noise auto- 
and cross-correlation functions of the original spike trains after trial shuffling 
are shown by the thin black lines. The dashed lines indicate the mean ±2 
standard deviations of the distribution of the correlation values after shuffling.
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where both s and z are multivariate Gaussian random process 
s ∼ N(0, Σ

s
) and z ∼ N(0, Σ

z
) with covariance matrices 
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After determining σs
2 and θ for each cell based on the desired r

0
 

and SNR as described above, the pairwise correlation coefficients 
ρs

pq and ρz
pq required to obtain the desired spike train signal and noise 
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Again, the functions are monotonic and each ρs
pq and ρz

pq can be 
solved for independently.

To demonstrate this approach, we generated a random set of pair-
wise signal and noise correlation coefficients ρsignal

pq  and ρnoise
pq , estimated 

the corresponding values of ρs
pq and ρz

pq , and simulated population spike 
trains with these values. As shown in Figures 5B,C, the correlations in 
the simulated spike trains closely matched the desired values.

dIscussIon
We have described a model for simulating population spike trains 
typical of early sensory systems. The model has two forms: the 
first requires the specification of PSTHs and noise correlations and 

To specify the model parameters, the equations for r
0
 and SNR 

can be written in terms of σs
2 and θ and solved numerically to 

obtain the appropriate values:
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Note that in these equations, r ri⋅  and r
i
·r

j
 denotes point-by-

point vector products, and r 2 denotes point-by-point squaring. 
Thus, for any realizable combination of r

0
 and SNR, appropriate 

σs
2 and θ can be found (the minimum realizable SNR depends on 

the number of trials, see Appendix). To demonstrate this approach, 
we randomly chose a variety of values for r

0
 and SNR, estimated the 

corresponding values of σs
2 and θ, and generated responses using 

the estimated values. As shown in Figure 5A, r
0
 and SNR of the 

simulated responses closely match the desired values.

populAtIon responses
The model described above for a single cell is easily extended to a 
population, where the response of cell p ∈ {1, 2,…,P} is given by
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and without noise correlations. The model also provides the ability 
to manipulate noise correlations without affecting the signal cor-
relations or single-cell properties. In the brain, these properties are 
coupled to each other – for example, one can decrease the spike 
rate of visual neurons by decreasing the contrast of the stimulus, 
but this will also likely change the trial-to-trial variability and the 
correlations. Thus, a question such as whether or not changes in 
correlations with changes in contrast are detrimental or beneficial 
to a population code is impossible to answer experimentally. With 
our model, one could compare simulated populations with high 
contrast single-cell properties and correlations to simulated popu-
lations with high contrast single-cell properties and low contrast 
correlations to directly test whether or not the change in correla-
tions is important. A similar example can be used to illustrate the 
utility of the general form of the model: Because the general form of 
the model allows for spike trains with any mean spike rate, trial-to-
trial variability, and pairwise signal and noise correlations (within 
statistical constraints), it could be used to perform a systematic 
investigation of the effects of noise correlations on populations 
with different levels of signal correlations that would be impossible 
to conduct experimentally.

There are several ways in which the formulation of our model 
described here could potentially be improved. For example, the 
assumption that no more than one spike can occur in any time 

can be used to match and manipulate experimental data, and the 
second is more general and allows for population spike trains with 
any mean spike rates, trial-to-trial variabilities, signal correlations, 
and noise correlations. Both forms of the model are easily imple-
mented as parameter fitting requires simply finding the level cross-
ings of monotonic functions and correlations can be determined 
independently for each pair of cells. The Matlab code required to 
fit the model parameters is available for download at http://www.
ucl.ac.uk/ear/research/lesicalab.

Our model improves on the existing methods for generating 
population spike trains described in the Introduction in several 
important ways. First, the model framework is explicitly designed 
around the response properties that are important for early sensory 
neurons: time-varying spike rate (PSTH), trial-to-trial variability, 
and signal and noise correlations. Second, the model allows inde-
pendent and straightforward manipulation of one response prop-
erty without changes in the other properties. One can imagine a 
number of potential uses for a model with these properties. The fact 
that the model matches the single-cell properties and correlations 
observed experimentally is in itself of some utility, such as providing 
a simple framework for computing the likelihood of observed spike 
trains given only pairwise interactions. These likelihoods could be 
used to, for example, test how important noise correlations are in 
determining population spike patterns by comparing models with 

Figure 5 | Simulated population responses with specified single-cell 
properties and pairwise correlations. (A) The top row shows the 
simulated responses for two cells with specified r0 and SNR. (B) The 
image shows the desired pairwise signal correlations (lower triangular 

portion) and the pairwise signal correlations realized in the simulated 
responses (upper triangular portion) for a population of 10 cells. (C) The desired 
and realized pairwise noise correlations for a population of 10 cells presented as 
in (B).
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AppendIx
mInImum AchIevAble snr
For any binary response r with N time bins and I trials, the minimum 
realizable SNR depends only on the number of trials. Recalling the 
definition of SNR
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the minimum value within the context of our model framework is 
clearly achieved when the variance of the signal σs
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Simplifying the resulting expression gives the minimum realiz-
able SNR:
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