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Spike trains recorded from populations of neurons can exhibit substan-
tial pairwise correlations between neurons and rich temporal structure.
Thus, for the realistic simulation and analysis of neural systems, it is
essential to have efficient methods for generating artificial spike trains
with specified correlation structure. Here we show how correlated binary
spike trains can be simulated by means of a latent multivariate gaussian
model. Sampling from the model is computationally very efficient and,
in particular, feasible even for large populations of neurons. The entropy
of the model is close to the theoretical maximum for a wide range of
parameters. In addition, this framework naturally extends to correlations
over time and offers an elegant way to model correlated neural spike
counts with arbitrary marginal distributions.

1 Introduction

Neurons primarily communicate with each other by generating sequences
of action potentials. In order to understand how neural systems perform
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computations and process sensory information, we need to understand the
structure of firing patterns in large populations of neurons. These spike
trains can exhibit substantial correlations both in time and across different
neurons. In the visual pathway, for example, various types of correlations
have been observed at many stages, including the retina (Mastronarde,
1983; Meister, Lagnado, & Baylor, 1995), lateral geniculate cortex (Alonso,
Usrey, & Reid, 1996), striate (Reich, Mechler, & Victor, 2001; Kohn & Smith,
2005; Montani, Kohn, Smith, & Schultz, 2007), and extrastriate cortical
areas (Gawne & Richmond, 1993; Zohary, Shadlen, & Newsome, 1994; Bair,
Zohary, & Newsome, 2001).

Assessment of their functional implications has been complicated by the
fact that correlations in neural recordings can occur for very different rea-
sons. For instance, if a cell has a tendency to fire bursts of multiple spikes,
this can be due to an intrinsic mechanism that makes the cell more sensi-
tive for a brief period of time after the generation of an action potential.
Alternatively, bursts can be caused by temporal correlations in the input to
the cell. Without our knowing all the inputs, these two different possibili-
ties cannot be distinguished. It is even more difficult to determine whether
correlated firing between two neurons is caused by common input to the
population or direct synaptic couplings. Here, we seek to provide a flexible
framework for efficient simulation and modeling of correlated spike trains
with specified pairwise correlations even if their origin and source are un-
known. Our framework can be used to study the impact of correlations on
various timescales. In particular, it can be used to test and extend insights
of previous analytical work (Abbott & Dayan, 1999), derived under sim-
plifying assumptions, to parameter regimes much closer to experimentally
measured data (Ecker, Berens, Bethge, Logothetis, & Tolias, 2007).

On short timescales up to several milliseconds, neurons can either fire a
spike or not, and thus the activity of a group of neurons can be described
as a binary pattern (see Figure 1, top). Apart from the mean activity of
each cell, correlations between neurons influence the frequency of each of
the possible patterns occurring. Maximum entropy modeling can be used
to investigate whether the knowledge of the means and pairwise correla-
tions is sufficient to capture the statistical structure of population activity.
Schneidman, Berry, Segev, and Bialek (2006) and Shlens et al. (2006) showed
that the maximum entropy distribution for given pairwise interactions, the
Ising model, can accurately predict the frequency of many spike patterns
in a population. However, the Ising model is limited by its poor scalability
to high dimensions (Schneidman et al., 2006; Shlens et al., 2006; Tang et al.,
2008) and thus is of limited use when dealing with large populations of neu-
rons. We model binary neural population patterns using the dichotomized
gaussian (DG) distribution (Pearson, 1909; Emrich & Piedmonte, 1991; Cox
& Wermuth, 2002), which is fully specified by the mean and covariance of
the data. This makes it possible to model binary neural population patterns
even for previously intractably large populations. While the DG does not
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Figure 1: At any given point in time, neurons can either fire a spike or not.
Thus, spiking patterns across neurons (dark gray, vertical) can be described as
binary vectors (top), and their statistics can be captured by multivariate binary
probability distributions. Spiking patterns of one neuron across time (light gray,
horizontal) can also exhibit substantial structure. For example, spikes of the
lower highlighted neurons seem to occur more often in short bursts of three
or four spikes. Correlations between the spikes of two neurons can lead to
correlations in the total number of spikes emitted in a given time interval, the
spike count (right). We describe a flexible binary population model, which can
be used to capture correlations between spikes across both time and neurons,
as well as correlations in their spike counts.

have maximum entropy, its entropy is close to the theoretical maximum for
a wide range of parameters (Bethge & Berens, 2008).

We also show that essentially the same model can be used to study effects
of temporal correlations in spike trains as they arise as a consequence of
bursting activity or refractory periods (Sherman, 2001). To this end, we
demonstrate that taking temporal correlations into account improves the
similarity between simulated spike trains and spike trains recorded from a
neuron in the primary visual cortex of a macaque.

Alternative algorithms for generating correlated binary random vari-
ables can be applied only to low-dimensional problems (Bahadur, 1961;
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Gange, 1995; Lee, 1993) or to correlation matrices that have a specific struc-
ture (Lunn & Davies, 1998; Park, Park, & Shin, 1996; Giitig, Aharonov, Rotter,
& Sompolinsky, 2003), such as constant correlation between all pairs of neu-
rons. Qagqish (2003) presents a systematic review of these techniques and
suggests an alternative method based on conditional linear distributions.
Niebur (2007) has proposed a method for the generation of spike trains
by specifically assuming common input, that is, inserting spikes from a la-
tent process into independent spike trains. Given the means and pairwise
correlations, this algorithm requires the specification of additional parame-
ters that influence the higher-order properties of the distribution. In section
2.2, we include a comparison of the Ising model, the DG, and Niebur’s
algorithm.

Frequently the activity of neurons is not investigated with fine temporal
precision but summarized as the number of spikes in a trial of a given length
(see Figure 1, right). In modeling studies, these spike counts have often been
assumed to be Poisson distributed and neurons to be independent. How-
ever, correlations between spike counts have been reported in various visual
areas (Bair et al., 2001; Kohn & Smith, 2005). In this situation, it is desirable
to have models that can be fit to both the measured interneuron correla-
tions and the observed single cell spike count histograms. Unfortunately,
fitting maximum entropy models with these constraints is computationally
difficult.

Starting with a binary model, we describe a technique to sample spike
counts from a correlated neural population by summing over binary spike
trains. In this way, we gain insight into how correlations in spike counts
arise from correlations in the underlying binary processes and how the
Fano factor of the spike count is related to temporal correlations. Because
experimentally measured spike counts are often not Poisson distributed, we
extend this technique to arbitrary marginal statistics with specified correla-
tions. We demonstrate its capabilities by modeling a population of simulta-
neously recorded neurons from the primary visual cortex of a macaque and
show how a model with correlations accounts for the data far better than a
model assuming independence.

Implementations of our algorithms for generating spike trains using
the dichotomized gaussian distribution and generating correlated Poisson
samples in Matlab are available from our Web site: www.kyb.mpg.de/
bethgegroup/code/efficientsampling.

2 Generating Spike Trains with Defined Pairwise
Correlation Structure

2.1 Sampling from a Multivariate Binary Distribution. A population
of N neurons, each of which either does or does not spike at any given time,
can be in any of 2V different states. Estimating the full joint distribution
over these 2V patterns becomes quickly infeasible for increasing numbers
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of neurons N. However, it is often possible to measure the firing rates
and pairwise correlations—the first and second moments. Our goal is to
generate spike trains X;(t) from a population of N neurons where first and
second moments have been specified.

We assume the spike trains to be discretized into sufficiently small time
bins, such that each time bin contains at most one spike, and set X;(t) =1
if neuron i fires a spike in bin ¢t and X;(t) = 0 otherwise. Thus, we want to
draw samples from the joint distribution of a set of N correlated Bernoulli
random variables with mean r; = (X;(t)); and pairwise covariances ¥;; =
(Xi ()X () — (Xi(1))(X;(t)):. For the moment, we assume that there are no
correlations across time (i.e., that X(t) and X(s) are independent for s # t),
but we will generalize our method to incorporate these in section 2.3.

We now describe the dichotomized gaussian distribution (DG) that is
well suited for this task of generating binary random vectors with specified
correlations. A sample from the DG distribution is obtained by first drawing
a sample from a N-dimensional gaussian random variable U and then
thresholding it into 0 and 1:

Xi=1 iff ; >0 where U~ N(y,A) (2.1)

The thresholding operation will change the moments, so X will, in gen-
eral, not have the same mean and covariance as U. However, the effect of
the truncation can be calculated (Block & Fang, 1988) and corrected for: we
can choose the mean y and covariance A of U such that after truncation, X
has the desired moments r and X.

Assuming (without loss of generality) unit variances for U, thatis, A;; =
1, the mean spiking probabilities » and covariance X of X are given by

i =®(y;)
i =O(yi)P(—yi) (2.2)
i =Yy, vy, Aij),

where i # j and W(x, y, 1) = $a(x, y, 1) — ©(x)P(y). Here, ® is the cumu-
lative distribution of a univariate gaussian with mean 0 and variance 1, and
dy(x, y, A) is its bivariate counterpart with correlation .

The mean values y; can be found by inverting equation 2.2: y; = &~ (r;).
Determining A;; generally requires finding a suitable value such that %;; —
W(y;, vj, Aij) = 0. This equation can be solved for any X;;, which is the
covariance between two binary random variables, as shown in appendix B.
The inversion can be efficiently done by numerical computations, since the
function is monotonic in A;; and has a unique zero crossing, and we know
that the solution is in the interval [-1, 1]. For example, if one wants to model
two neurons with firing rates r; = 0.5, r, = 0.25 and covariance ¥, = 0.1,
the parameters of the DG are given by y; =0, y, = —0.67, and A1» = 0.39.
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Figure 2: Raster plots of synthetically sampled multineuron firing patterns.
The neurons depicted in panels A-C all have the same constant firing rate of
0.1 spike per bin and vary only in their correlation structure. (A) All neurons
are independent. (B, C) The pairwise correlation between any pair of neurons is
0.05 and 0.1, respectively. Patterns in which many neurons fire simultaneously
occur more frequently with increasing correlation strength. (D) Shows how the
probability of observing k out of the 250 neurons to spike simultaneously varies
with correlation.

The parameter A;; can be interpreted as an alternative characterization
of the strength of correlation of neurons i and j. It is —1 if the correlation
is as negative as possible and 1 if the correlation is maximal. The (Pearson)
correlation coefficient between two neurons modeled as binary random
variables does not have this property, as its range is constrained by their
mean firing probabilities (see below).

Once y and A are determined, sampling from the DG distribution is
as efficient as sampling from a multivariate normal. Importantly, the DG
has no free parameters for a given mean and covariance. As the latent
variable is a multivariate normal, conditioning and marginalizing on the
latent variable can be performed conveniently.

To demonstrate the effect of increasing the correlation strength, we gener-
ated synthetic spike trains from a population of 250 neurons (see Figure 2).
We simulated a segment of length 250 bins and mean firing rate 0.1 spike
per bin. We simulated populations with independent neurons and with
pairwise correlations p = 0.05 and p = 0.1. With increasing correlation
strength, we visually find more patterns where many neurons are active
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in any given bin (compare Figure 2A to 2C). This is also true quantitatively:
patterns with many synchronously active neurons are found dramatically
more often in strongly correlated populations than in the independent,
for which only patterns with about 15 to 35 spikes occur frequently (see
Figure 2D).

Care is needed when simulating random variables with covariance ma-
trices that are not directly estimated from experimental data but constructed
by other considerations: not every positive definite symmetric matrix can
be used as the covariance matrix of a multivariate binary distribution. For
example, for two binary random variables X and Y with means p and g,
the covariance is bounded by

max {—pg, —(1 — p)(1 — )} < Cov(X,Y) <min {(1 —q)p, (1 — p)g}.

Furthermore, in three or more dimensions, this condition is only neces-
sary, not sufficient. It is not hard to find symmetric, positive definite matrices
that satisfy it (for any pair of dimensions) but for which no suitable binary
random variable exists (see appendix B). This is a general property of binary
distributions, not a shortcoming of specific models. In general, no easy rule
for determining the feasibility of a covariance matrix is known.

However, the DG model provides a convenient sufficient condition; it
can be used to show that a given matrix ¥ is a valid binary covariance
matrix. We can calculate the covariance matrix A of the underlying gaussian
forr and X using equation 2.2, and if A is positive definite, we have shown
the existence of a suitable binary random variable by explicitly constructing
it. A limitation of the DG model is that it does not exist for all feasible co-
variance matrices X. While equation 2.2 always has a solution, the resulting
A might not be positive definite and thus cannot be the covariance matrix
of the latent gaussian (Chaganty & Joe, 2006). This can occur when there are
strong negative correlations. However, the correlations found in studies of
binary activation patterns so far are mostly weak and positive (Schneidman
etal., 2006; Shlens et al., 2006), such that they can often be modeled by a DG
without further effort. If a desired correlation structure results in a matrix
A that is nonpositive definite, it is possible to find the closest valid corre-
lation matrix A using an efficient iterative procedure described by Higham
(2002).

2.2 Higher-Order Correlations and Maximum Entropy. In the previ-
ous section, we introduced a model with given first and second moments. In
order to specify a multivariate binary distribution of more than two dimen-
sions uniquely, however, the information provided by the first and second
moments is not sufficent. The degrees of freedom of an N-dimensional
distribution grow exponentially like 2V — 1, whereas the first and sec-
ond moments can constrain only N(N + 1)/2 of them. As measuring all
higher-order correlations becomes rapidly prohibitive with increasing N, it
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is important to address the question of what model should be chosen if the
higher-order correlations are unknown.

The fundamental strategy to cope with this problem is regularization
(Chen & Haykin, 2002), which can ultimately be traced back to Occam’s ra-
zor. The maximum entropy principle (Jaynes, 1978) provides an elegant way
of regularizing the estimate of a distribution, as it minimizes the worst-case
risk with respect to the log loss (Griinwald & Dawid, 2004). To what extent
risk minimization of the log loss can be seen as the most favorable strategy
is often not clear, and other regularization properties might be preferable
in specific cases. For instance, the DG model has the nice regularization
property that the marginal statistics of any subspace can be estimated inde-
pendent of the complementary subspace. This is not the case for the Ising
model. Nevertheless, good regularization methods usually yield solutions
with large entropy.

Recently, the maximum entropy approach has gained much interest in
descriptive spike train analysis (Schneidman et al., 2006; Shlens et al., 2006;
Nirenberg & Victor, 2007; Tang et al., 2008). However, use of the second-
order maximum entropy (MaxEnt) distribution, the Ising model, is compu-
tationally challenging in large populations. Exact parameter fitting is pos-
sible only for very small populations of neurons. For larger populations,
approximate algorithms are computationally costly or even infeasible when
big populations of neurons are investigated (for algorithmic advances, see
Broderick, Dudik, Tkacik, Schapire, & Bialek, 2007). Even after the param-
eters are identified, one has to use Markov chain Monte Carlo (MCMC)
techniques to draw samples from an Ising model. MCMC sampling is exact
in the limit of infinitely many samples, but only approximate for chains
of practical sample size. If the sample size is not big enough, samples in
the chain are correlated with each other, and the entropy of the obtained
samples is smaller than it should be. This makes sampling computation-
ally costly in situations where specialized algorithms (Swendsen & Wang,
1987; Wolff, 1989) are not applicable. In contrast, the parameters of a DG
model are easy to fit using equation 2.2, and exact samples can be directly
generated by thresholding a multivariate gaussian.

To study the higher-order correlations of the DG distribution, we com-
pare it in this section against the maximum entropy distribution with
the same second-order moments and an algorithm proposed by Niebur
(2007) for generating correlated spike trains (which we refer to as the la-
tent spike train algorithm). While the maximum entropy distribution ef-
fectively minimizes the magnitude of higher-order correlations (Watanabe,
1960; Amari, 2001), the latent spike train algorithm is designed to explicitly
model common input between groups of neurons. Therefore, it tends to
generate samples with higher-order correlations, for example, with syn-
chronous events of concerted firing across many neurons. Correlations
between binary spike trains are induced by generating additional hid-
den spike trains and randomly inserting their spikes into the actual spike
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trains. In this sense, it can be seen as complementary to maximum entropy
approaches.

Figure 3 shows a comparison of the maximum entropy distribution, the
DG, and Niebur’s latent spike train algorithm with parameter p = 0.022
(the firing probability of the latent spike train). We considered a popu-
lation of 10 neurons with firing rates equally spaced on [0.15, 0.20] and
constant pairwise covariance 0.01 between each pair of neurons. We cal-
culated the probabilities of each of the possible 2!° binary words of spikes
and no spikes that the population could exhibit. While the probabilities of
the MaxEnt model and the DG model are very similar, as quantified by the
Jensen-Shannon divergence (Schneidman et al., 2006), which is 3.3 x 10~
(see Figure 3A), there are noticeable differences between the MaxEnt dis-
tribution and the distribution induced by the algorithm with latent spike
trains (Jensen-Shannon divergence 2.0 x 10~2) in the population considered
here. For example, the probability of all neurons being silent simultaneously
is 0.222 under the MaxEnt model and 0.230 in the DG model but 0.171 in
the latent spike train algorithm (with this choice of parameters). If neurons
were independent, the probability of silence would be 0.146.

We explored how these differences change with the free parameter p in
the latent spike model and found that for some choices of p, the entropy of
the distribution of patterns generated by the latent spike algorithm is close
to that of the DG model, while it is substantially smaller for others (see
Figure 3C). Thus, even a model that explicitly models common input can
lead to data with close to maximal entropy. However, the algorithm is not
merely consistent with correlations arising from common input; it actually
requires the user to choose a specific form of common input by specifying
up to & parameters. The choice of parameters can substantially change the
entropy of the generated data. In the case considered here (constant pair-
wise covariance), it might be argued that one could identify values of the
parameter p for which the entropy is reasonably big (see Figure 3C). In
the general case, however, p will be high-dimensional and identification of
suitable parameters nontrivial. In contrast, the DG model is fully specified
by the mean and covariance, provides an efficient alternative to the Ising
model, and allows one to generate spike trains that have close to maxi-
mum entropy. As the normal distribution is the MaxEnt distribution for a
given mean and covariance on the real numbers, this might come as no
surprise.

To see whether the close match between the DG and the Ising model
also persists in high-dimensional cases, we compared the Ising model and
the DG in a simple example of a population of 100 neurons with constant
firing rate r and pairwise correlation coefficient p between any pair of
neurons. In this simple model, all firing patterns with the same number of
spikes are equally probable, so entropies can be calculated without having
to sum over all binary patterns. We varied r and p from 0 to 0.5 and
compared the entropies of the resulting models. For this population, the
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entropy of the two models is very similar across a wide range of moments
(see Figures 3D-3G), and the difference in entropy never exceeds 0.05 bits
per dimension. It is most pronounced for models with very small firing rates
but extremely strong correlations. The difference in entropy is also equal to
the Kullback-Leibler divergence K L(Ppg, Pising) between the DG and the
Ising model (Grinwald & Dawid, 2004). However, it is not guaranteed that
the probabilities that the two models assign to each of the different patterns
are very similar. The exact relationship between the Ising model and the
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DG is beyond the scope of this letter. For further comparisons, see Bethge
and Berens, 2008.

The DG, the Ising model, and the latent spike train algorithm can be seen
as three complementary means of modeling multineuron firing patterns that
differ in both their higher-order statistics and their practical usability. The
question of which model provides the best description of neural activity is
ultimately an empirical one.

2.3 Spike Trains with Temporal Correlations. Until now, we have as-
sumed there are no correlations across time. Thus, the population activities
X(s) and X(t) at different time points s and t are independent random
variables. Here we extend our algorithm to capture temporal correlations,
such as induced by the refractory period, bursting behavior, or other firing
patterns of neurons. This can be done in a straightforward manner. Rather
than basing our model on temporally independent gaussians U(t), we ob-
tain binary samples X(t) by thresholding elements of a gaussian time series
V(t) that has temporal correlations:

X;=1 iff V, >0 where V() ~N(y(t), A(s, t)),

where y (t) is the mean function and A (s, f) the covariance function. It should
be noted that if temporal correlations are strongly negative, A might not
be positive definite, in which case an approximation technique might be
necessary (Higham, 2002; Ghosh & Henderson, 2003).

Figure 3: (A-C) Empirical comparison of three binary distributions with iden-
tical second-order structure. We considered the responses of 10 neurons with
firing rates on the interval [0.15, 0.20] and pairwise covariance 0.01. (A) A scatter
plot of the log probabilities of each of the 2!° binary words when drawn from a
MaxEnt distribution, DG, and Niebur’s latent spike train algorithm with param-
eter p = 0.022. In this population, the DG is very similar to the MaxEnt model,
as can be seen from the fact that all of its values are on or near the diagonal.
(B) The probability of observing n simultaneous spikes in each of the three mod-
els from A. The MaxEnt and the DG models are almost indistinguishable. (C) The
entropy of the MaxEnt model (H = 6.568), the DG model (H = 6.567), and the
latent spike train algorithm for p ranging from 0.16 to 0.70 (H in [6.443, 6.564]).
The entropy of the latent spike model depends strongly on the choice of pa-
rameters. (D-G) Comparison of two population models with 100 neurons and
identical second-order structure. Each population has constant firing rates r and
constant pairwise correlation p. We varied r and p from 0 to 0.5 and calculated
the entropy (per neuron) of both a DG and an Ising model with these moments
(D, E). We also calculated the dlfference in entropy (Hising — Hpg, F) and the

relative difference in entropy ( ‘S‘I‘fmg s G).
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In the general case, modeling temporal correlations over M time bins
and N neurons requires estimation of about ; M*>N? parameters. Since this
becomes intractable relatively quickly on limited data, we here consider a
special case and assume V(t) to be stationary. Therefore, the mean firing rate
y(t) = y is assumed to be constant, and the temporal covariances A(s, t) =
A(s —t) are only a function of the distance v between two time bins (the
auto- and cross-covariance functions of the N neurons). For a given 7, this is
an N x N matrix. We assume that there are no correlations beyond a delay
of tx_1, in which case temporal covariances need only to be estimated at K
different time lags 7o = 0, . . ., tx_1. In this special case, there are only about
KN? parameters to be estimated.

We demonstrate the benefit of taking temporal correlations into account
by modeling the spike trains of a neuron recorded from the primary vi-
sual cortex of an awake behaving monkey using tetrodes (see Figure 4A
and appendix A). The neuron was repeatedly stimulated with an oriented
grating at eight different orientations in random order, and 15 trials at the
neuron’s preferred orientation are shown. Spikes were binned at 6 ms reso-
lution, and the autocovariance was computed for up to 750 = 60 ms. While
the independent model (see Figure 4B) fails to reproduce the regular spik-
ing patterns of this neuron, taking into account temporal correlations makes
the sampled data (see Figure 4C) and the real data nearly indistinguishable.
This is also illustrated by the close match between the interspike interval
distributions shown in Figure 4D.

Sometimes it is useful to generate spike trains with a given temporal
correlation structure on the fly, for example, for online simulations or if the
dimensionality MN is too large to sample directly. Since the conditional dis-
tribution of the latent variable P(V(t) | V(t — 71), ..., V(t — tx-1)) is again
a gaussian distribution that can be derived in closed form, samples can be
generated iteratively one at a time by conditioning on the last K samples
drawn from the hidden gaussian:

Vi) ~N(y +CB7V(Et —1),..., V(t—1x_1)] — y), A— CB~ICT),

where A= A(0), B is a block Toeplitz matrix of size (K — 1)N formed
by A(0),..., A(tk—2) with A(0) along the main diagonal, and C =
[A(t1), ..., A(tk-1)], obtained by concatenating K — 1 covariance matrices
of size N x N. Since the matrices A, B, and C are constant and can be pre-
computed, each step in this iterative sampling procedure has a complexity
of O(N?K), eliminating superlinear terms in the desired number of time
bins. Note that we obtain an especially simple case when only one neuron
is modeled. Then A(t;) is no longer a matrix but a scalar, and the previous
equation reduces to a very simple form.
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Figure4: Spike train rasters and interspike interval distributions. (A) Sustained
response of a single neuron during 15 trials of visual stimulation with an ori-
ented bar. (B) Simulated spike trains using a constant firing rate matching that
in Aand no temporal correlations between time bins. (C) Simulated spike train
matching both firing rate and autocorrelation of the real neuron. Note how this
reproduces the cell’s regular firing pattern quite well compared to B. (D) Inter-
spike interval distribution for real and sampled data. While the independent
model (B) overestimates the spike doublets in successive bins, the model taking
into account temporal correlations is able to reproduce the correct interspike
interval distribution.

3 Generation of Correlated Spike Counts

3.1 Poisson Spike Counts. Often the exact timing of individual spikes
is not of interest, and only the total number of spikes in a given interval,
the spike count, is analyzed. For example, classical studies have described
the response properties of neurons in primary visual cortex and area MT
by plotting the average number of spikes emitted during stimulation as
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a function of a single variable, such as orientation or direction of motion
(Hubel & Wiesel, 1968). Accordingly, many theoretical studies on popula-
tion coding take only spike counts into account (Pouget, Dayan, & Zemel,
2003, for review), and any information about the exact timing of spikes is
discarded. Correlations in spike counts can, for example, arise when the
firing activity of multiple neurons is modulated by internal states of the
system, such as up and down states. In this case, there will be trials on
which the firing rates of many neurons are enhanced. Once responses are
averaged over trials, such a modulation will manifest itself in (positive)
trial-by-trial correlations across neurons (Kass & Ventura, 2006).

Spike count statistics can be modeled by splitting up a time interval
[0, T] into several small intervals, where their length At = % is chosen so
small that each of these intervals contains at most one spike. We set Xj; to
1 if the ith neuron fired a spike in bin k. Then the spike count vector Y in
the window [0, T] is calculated by summing up the M random variables:

Yi(M) ="M, Xi. If there are no temporal correlations and each X;; has the

same firing probability p; = u;At, then Yi(M) has a multivariate binomial
distribution with parameters p; and M. It is convenient to consider the
limit of infinitesimally small bins. Then Y = lim;_, o, Y™ has a multivari-
ate Poisson distribution with mean u; T (Kawamura, 1979). Thus, we can
obtain (approximate) samples from a multivariate Poisson distribution by
simulating the underlying binary process using the DG distribution (see
section 2.1) and summing over it. In the absence of temporal correlations,
the covariance of two Poisson random variables can be computed from the
covariance of the binary processes from which they are constructed:

M M
Cov(Y™, Y™) =Cov (Z X, ) Xjk)
k=1

=1

M
= Cov(Xi. Xjx)-
k=1

Interestingly, this view of spike counts implies that the resulting Pois-
son random variables have pairwise correlations that are nonnegative.
The covariance of two Bernoulli random variables with means g and w
is bounded below by —gw. In the limit, the firing probability of each in-
dividual Bernoulli goes to zero, and the lower bound on the covariance
between the sums approaches zero:

M
Cov(¥™ Y™) > 3 (—pipnj AP)
k:l
_ _MTZMiMj _ T2 i .
M2 M
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For large M, this lower bound converges to 0 from below, implying
that negative correlations between Poisson spike counts are inconsistent
with a construction that assumes underlying spike trains with no tempo-
ral structure. We will provide an alternative method for sampling from a
distribution with Poisson marginal statistics in section 3.3 that also allows
specification of negative correlations.

3.2 The Effect of Temporal Correlations. Experimentally observed
spike counts can deviate markedly from a Poisson distribution. For Poisson
random variables, the ratio between mean and variance (the Fano factor)
is 1, while for cortical neurons, it is often different from 1 (Gur, Beylin, &
Snodderly, 1997). Clearly the model of an underlying binary process is valid
for spike trains, so these deviations have to originate from our assumption
that the binary random variables X;j; and X;; are independent for different
time bins k and . By relaxing this assumption, we can use the underlying
binary spike process to sample spike counts with specified Fano factors.

Suppose that the covariance between any two time bins of the same
neuron is given by v At?>—that there is some nonzero correlation across time.
In this case, the variance of the spike count for single neurons is given by

Var(Y;)= ;T + T?v.

The Fano factor is F(Y;) =1+ .= Thus, positive temporal correlations
between single spikes lead to spike counts that are overdispersed in
comparison to Poisson distributions.

The assumption that the covariance between any two time bins is the
same for each pair of bins is somewhat unrealistic. For example, points
that are nearby in time will show stronger correlations than ones that are
farther apart. Similarly, it is conceivable that the structure of correlations
changes over the time interval, for example, the responses to the onset of
the stimulus could be less correlated than the sustained response. In this
case, equation 3.1 has to be modified. The firing rate u; is replaced by the
average of the time-varying rate u;(t) and the covariance v by the temporal
average of the covariance function v(s, t):!

Var(l@):/jm(t)dt—i—//sa&t v(s, t)dsdt.

In this case, the Fano factor of the spike count is determined by the
average covariance across time, that is, by the integral of the covariance
v(s, t) across all pairs of time points s and t (Ventura, Cai, & Kass, 2005). If
the value of the integral is positive, the Fano factor is larger than 1.

1 As before, the rate and covariance functions have to be chosen such that a binary
process with these moments exists.
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In summary, we can use binary spike trains to simulate spike counts with
specified means and covariances, both with Poisson marginal statistics and
variants with different Fano factors. In the next section, we generalize this
further and show how spike counts with arbitrary marginal distributions
can be obtained. In this case, it is easier not to model the underlying spike
process explicitly, but rather to draw samples directly from the spike count
distribution.

3.3 Spike Counts with Arbitrary Marginal Distributions. In exper-
iments with many trials, it is possible to estimate not only the mean firing
rate of each neuron but the complete histogram of its spike counts. In other
words, it will be possible to estimate the probability that each neuron fires
exactly 1,2, 3, ... spikes up to a maximal firing rate of M; spikes. These
histograms will not necessarily be well described by a Poisson distribution
or some other functional form of a probability distribution. In addition,
one can estimate correlations by measuring the covariance of the spike
counts, %;;. Here, we show how one can simulate synthetic spike counts
consistent with the empirical histograms p;x and covariance ¥ without any
assumptions about the histograms.

We generalize the construction from section 2 (Nelsen, 1987) by first
generating samples from a normal random variable with covariance A.
Whereas in section 2, the gaussian random variable was thresholded to
yield binary spike events of 0 or 1, they will now be discretized into M;
different states to yield spike counts of 0,1, 2,... M;. Therefore, we re-
fer to this model as the discretized gaussian (DG) distribution of which
the dichotomized gaussian is a special case. As before, each entry of A
is determined by finding the unique zero crossing of a nonlinear func-
tion. Importantly, each A;; depends on only the marginal distributions
along dimensions i and j and the corresponding entry of the covari-
ance matrix, ¥;;, and is independent of all the other random variables.
Therefore, one can efficiently calculate A even for populations with many
neurons.

Concretely, we want to generate spike counts Y; for a set of N neurons
that have spike count probabilities P(Y; = k) = pix. We suppose that neuron
Y; will fire no more than M; spikes. Samples are generated by discretizing
an N-dimensional normal random variable U by setting

Y; =kexactly if y;x < Ui < Vikt1.

We say that neuron i fired k spikes if the ith coordinate of U is between the
two limits y; x and y; 41. The limits y are such that P(U; < yix) = P(Y; <
k), that is, y;x = ®~Y(P(Y; < k)), for each k € 1,2, ..., M. Then the second
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moments of Y are given by

EQY;-Y;ia)= > kIPXi=kY;=I) (3.1)
k<M;,I=M;
= Z k1 ®2(Yiks Vjts Viks1s Vids1s A), (3.2)
J<M; <M,

where ®5(x1, 1, X2, 12, 1) denotes the probability mass of a standard bivari-
ate gaussian with correlation A in the rectangle with corners (x1, y1) and
(x2, 12). To ensure that Y has the desired second-order statistics, we have to
choose A;; such that Cov(Y;, Yj; A;j) = %;;. This equation determines A;;
uniquely and can be solved by standard numerical procedures. In prin-
ciple, the optimization is not harder than in the binary case but requires
roughly M; M; evaluations of gaussian cumulative distribution functions at
each iteration. Thus, the complexity of fitting the DG in this setting is only
(MN)?, whereas the state space grows as MY. As before, the construction
can be used only if the resulting matrix A;; is indeed positive definite. This
approach is related to work based on copulas (Jenison & Reale, 2004) in that
we specify the marginal distributions and their desired second-order cor-
relation coefficients. Inference for copula parameters is not straightforward
in the case of discrete random variables (Genest & Neslehova, 2007).

Once the initial computations are performed, sampling from the DG is
very efficient. Therefore, if a large number of samples is desired or spike
counts with many spikes should be simulated, this approach is attractive
even for the generation of Poisson random variables. In addition, one can
use it to obtain spike counts with Poisson marginals and negative correla-
tions, as well as spike counts with arbitrary marginals.

Figure 5 shows thejoint distribution of a pair of Poisson random variables
with mean p = 10 spikes and correlation coefficients p = —0.5, 0, and 0.5.
One can see how the correlations influence the total number of spikes
emitted by a population (see Figures 5D and 5F). With positive correlations,
the distribution has a wider peak, as firing patterns consisting of many
spikes across the population are more likely than in the independent case
(see Figure 5E). In extracellular recordings, it is often the case that a single
electrode picks up spikes from several nearby neurons. If these neurons are
positively correlated, the total spike count (i. e., the multiunit activity) will
have a higher variability than would be the case for independent neurons.
With negative correlations, the distribution of the total number of spikes is
more peaked compared to the independent case (see Figure 5F).

To demonstrate the ability of our algorithm to generate artificial spike
counts with realistic, possibly non-Poisson distributions, we used a simul-
taneous recording of 16 well-isolated neurons in primary visual cortex of
an awake, behaving macaque monkey (see appendix A). The number of
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Figure 5: (A-C) Marginals (i) and joint distributions (ii) of a pair of Poisson-
distributed random variables with means » =5 and correlation coefficients
p =0, —0.5,and 0.5, respectively. Although all marginal distributions look iden-
tical, the joint distributions are clearly shaped by the correlation. (Ai—Ci) Black
bars are used to show the empirical histograms of the marginal distributions.
Overlaid, the probability mass function of a Poisson distribution with mean 5
is shown with gray circles. (Aii-Cii) The joint probability mass of the two ran-
dom variables is shown. The size of the circles indicates the probability mass.
(D-F) Distribution of the sum of the two random variables as in Ato C. Again,
we overlay the Poisson distribution with mean 10 indicated by the gray circles.
While the sum of the two independent variables is again Poisson, positive cor-

relations lead to overdispersion and negative correlations to underdispersion
(E, F).

spikes fired by each neuron in the population during each fixation (1306
fixations) was recorded while the monkey was viewing natural images.
We estimated the spike count distributions of each neuron, which were far
away from Poisson distributions in all cases (as demonstrated in Figure 6A),
and the pairwise correlations between neurons. It should be noted that both
correlations in the stimulus and variations in fixation time contributed to
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Figure 6: Spike counts in a population of 16 cells in V1. (A) Histograms of the
number of spikes fired by six representative cells in each fixation period. Most
cells have spike count distributions that are far from a Poisson distribution
(best-fitting Poisson plotted in gray). All Fano factors are larger than 1 (mean
3.7, SD 1.3). Therefore, we need to be able to generate synthetic spike counts
with non-Poisson marginals to closely match the statistics of the recorded data.
(B) Histogram of the total number of spikes fired by the population in each fix-
ation period (black line), bin size 5 spikes. Destroying correlations by shuffling
trials leads to a histogram that is substantially different, indicating that correla-
tions have a strong influence on the total spike count statistics (gray line). The
histogram of samples from a DG with matching marginals and correlations is
very similar to the real data (black dotted line). (C) Same plot as B but on a log
scale. Here, the “independent” histogram underestimates spike counts with a
very low or very large number of the spikes and overestimates spike counts
near the mean (mean spike count = 26.06). The standard deviations are 13.54
for real data, 10.14 for the independent model, and 13.6 for the DG.

the correlations (mean correlation 0.050, SD 0.0523). Although pairwise
correlations were nevertheless weak, ignoring the correlations leads to mis-
estimation of the total number of spikes fired across the population during
a fixation (see Figures 6B and 6C). The histogram of spike counts is substan-
tially different if correlations are destroyed by shuffling trials. For example,
the probability of the total spike count being between 15 and 30 is 0.43 in
the data set, but it would be 0.55 if neurons were independent. In contrast,
if spike counts are sampled from a discretized gaussian distribution with
matching marginal distributions and matching correlations, the histogram
can be reproduced well. In this case, the probability of spike counts being
between 15 and 30 is 0.45.

4 Discussion

Whether a neuron does or does not fire a spike at any given point in time
depends in many cases on not only the stimulus but also the activity of other
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neurons in the system and its own activity in the recent past. Even if pair-
wise correlations are seemingly small, ignoring them can lead to dramatic
errors in estimating the occurrence of firing patterns across many neurons.
Therefore, to model the activity of populations of neurons in a realistic
way, correlations across neurons and across time have to be taken into
account. However, the functional role and implications of different types
of neural correlations are still subject to debate (Nirenberg & Latham, 2003;
Schneidman, Bialek, & Berry, 2003; Averbeck, Latham, & Pouget, 2006).

We have presented a flexible and conceptually simple framework for
generating synthetic spike trains with a wide range of different firing rates
and covariance structures. Generation of spike trains by binarizing (or dis-
cretizing) a multivariate gaussian random variable is possible even for large
populations of neurons and for spike count statistics with arbitrary marginal
distributions. In these situations, exact maximum entropy methods are not
feasible, and techniques based on MCMC sampling are cumbersome and
of limited accuracy. Our algorithms offer a practical and efficient alterna-
tive and make it possible to generate spike trains with specified correlation
structure with little additional effort compared to independent ones.

Recently Tang et al. (2008) showed that maximum entropy models that
do not take into account the correlations across time fail to predict the evo-
lution of correlated states in a variety of cortical cultures. The sequences
of active states in the data were substantially longer than in data sampled
from their model. As there were sizable temporal correlations, they hy-
pothesize that this could be resolved by a model that incorporates temporal
correlations but did not propose a concrete model. The DG is a promising
candidate, as it can be built entirely from pairwise correlations but can eas-
ily be fit to high-dimensional data. Also, the point-process framework can
be used to model spike trains with spatial and temporal correlations (see,
e.g., Gerwinn, Macke, Seeger, & Bethge, 2008) if spikes are considered to
be events in continuous time. It is an interesting question how the discrete
time models discussed in this letter can be related to these point-process
models.

An experimental application of our technique could include naturalistic
microstimulation of populations of neurons. These techniques allow the
direct manipulation of neural population activity in various brain areas
(e.g., Salzman, Britten, & Newsome, 1990). Advances in electrical (Brecht
et al., 2004; Pezaris & Reid, 2007) and optical (Boyden, Zhang, Bamberg,
Nagel, & Deisseroth, 2005; Huber et al., 2008) techniques make it possible to
probe neural ensembles with increased temporal and spatial precision. This
opens up the possibility of stimulations with different correlation structures
to study their effect in driving neural responses.

In summary, the techniques introduced in this letter allow one to study
correlated neural systems under more naturalistic assumptions about
their statistics. While analytical insights in the role of correlations in
neural systems (Abbott & Dayan, 1999) often require making simplifying
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assumptions, the efficient simulation of correlated spike trains can help us
to understand and verify to what extent these insights can be extrapolated
to the regimes we encounter in experimental recordings (Ecker et al.,
2007). In this way, our techniques provide an important link between
computational studies of neural population coding and the fast-growing
body of experimental work in this field where simultaneous recordings
from dozens of neurons in parallel are becoming increasingly available
(Buzsaki, 2004, for review).

Appendix A: Experimental Methods

Neural data were recorded from one awake, behaving monkey (Macaca mu-
latta) weighing 16 kg. The studies were approved by the local authorities
(Regierungsprasidium) and were in full compliance with the guidelines of
the European Community (EUVD 86/609/ EEC) for the care and use of labo-
ratory animals. Surgical, electrophysiological, and postprocessing methods
have been described in detail in Tolias et al. (2007). Briefly, form-specific
recording chambers built out of titanium were positioned stereotactically
with the aid of high-resolution magnetic resonance anatomical images over
the left hemisphere operculum in area V1. Inside the chambers, a custom-
built array of tetrodes was chronically implanted. Neural activity was
recorded at 32 kHz, digitized, and stored using the Cheetah data acqui-
sition system (Neuralynx, Tucson, AZ), and spikes were extracted when-
ever the recored voltage exceeded a predefined threshold on any tetrode
channel. Single units were isolated using a custom-built offline clustering
system working on features extracted from the recorded waveforms, and
only well-isolated neurons were used in our analysis. The animal was im-
planted with a scleral search coil. Eye movements were monitored online
and recorded for offline analysis at 200 Hz.

Visual stimuli were displayed using a dedicated graphics worksta-
tion (TDZ 2000; Intergraph Systems, Huntsville, AL) with a resolution of
1280 x 1024 pixels and refresh rate of 85 Hz, running an OpenGL-based
stimulation program. The behavioral aspects of the experiment were con-
trolled using the QNX real-time operating system (QSSL, Ontario, Canada).
In the orientation experiment, the monkey aquired fixation on a colored
square target (0.2°) for 300 ms. Then a sine wave grating stimulus was
presented on the screen for 500 ms (size of the grating: 5° in diameter, spa-
tial frequency: 4 cycles/°, 100% contrast). Eight equally spaced orientations
were randomly interleaved. During the stimulation period, the animal was
required to maintain fixation within a window of +1°. In the free-viewing
experiment, the monkey was shown a sample from a collection of 1000
natural scenes for 2 seconds. During this time, the animal could freely look
around the scene. For the analysis presented here, we extracted fixation pe-
riods from the recorded eye movement data. To compute fixation periods,
we detected points where the norm of the derivative of the eye trace crossed
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a predefined threshold. We regarded times between the saccade offset of
the previous saccade and the next onset as fixation periods. Extremely short
fixations (below 30 ms) and fixations where the eye trace was significantly
changing over time (drift) were discarded. To obtain robust estimates of the
moments, we discarded a small number of fixations in which at least one
neuron fired more than 20 spikes. Fixation periods were 278.0 £ 104.6 ms
long (mean + SD). The firing rate of a neuron was obtained by summing up
all spikes fired by the respective neuron between the start and the beginning
of a fixation period.

Appendix B: Constraints on the Covariance of a Binary Distribution
and Existence of a Solution for DG

We want to determine the range of possible covariances between two binary
random variables X and Y with means P(X=1)=p and P(Y =1) =94.
The covariance C = Cov(X,Y)=P(X=1,Y =1) — pq. As probabilities
are nonnegative, this yields C > —pg. Also, P(X =1,Y = 1) <min(p,q),
which leads to C < min(p(1 —g),4(1 — p)). Finally, P(X=0,Y =0) has
to be nonnegative. But P(X=0,Y=0=1-p—g+P(X=1Y=1)=
1—p—g +C — pq.This implies that C > —(1 — p)(1 — g). Moreover, these
conditions are sufficient for the existence of a two-dimensional binary ran-
dom variable with means p and q and covariance C.

To show that equation 2.2 always has a solution for any p,q, and
%;j = C that satisy the conditions above, we have to show that we
can find a A such that ®u(yi1, y2,A) =C + pg =: P(11), with &(y) =
p and ®(y») =¢q. As P, is continuous in A, it is sufficient to show
that ®,(y1, y2, —1) < P(11) and ®y(yy, y2,1) = P(11). Let V, be a bivari-
ate gaussian random variable with mean 0, variances 1, and correla-
tion A; then ®;(y1, 2, -1) =P(Vi <y, Vo <) =P(—pp<Vi<n)=p+
g —1=P(11)— P(X=0,Y =0) < P(11). Similarly, ®>(31. . 1) = P(V; <
v, V2 < v2) = P(Vi < min(y1, 1)) = min(p,q) > P(11).

To see that there are matrices that satisfy the constraints above but are
not the covariance matrix of any binary distribution, consider the matrix

1/4 -1/8 -1/8
~1/8 1/4 -1/8
~1/8 -1/8 1/4

It is quickly verified that this matrix is positive definite, and the con-
ditions above hold for all subsets of two of the three neurons. However,
there is no binary distribution with this matrix as covariance. If it ex-
isted, each neuron X, Y, Z would have mean 0.5, and the probability of
at least two out of the three neurons spiking simultaneously would be
P(X+Y+Z=2)=-1/8+1/4=1/8. However, the probability of three
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simultaneous spikes is
P(X+Y+Z=3)=P(X+Y+Z2>0)
—-P(X=1)-P(¥Y=1)-P(Z=1)
+P(X+Y=2)+P(X+Z=2)+P(Y+Z=2)
<1-1/2-1/2-1/24+1/84+1/8+1/8
=-1/8.

Thus, the constraints that this covariance imposes on the probability of
observing one or two spikes in the population would force the probability
of three simultaneous spikes to be a negative number. As this is clearly
not possible, such a matrix cannot be the covariance of a three-dimensional
binary distribution.

Appendix C: Fitting the Dichotomized Gaussian for Firing Rates
n=0.5

Equations 2.2 have a closed-form solution if the firing rate of each neuron i
is p; = 0.5. In this case, A;; = sin(27 X;;). This solution can be obtained by
calculating the probability mass of a bivariate gaussian in one quadrant of
the 2D plane. We need to find A such that

,%xTAdex =X + 1/4,

1
A=7// e
27‘(\/1—)»2 x>0

where x = (x,y)". We write A =UDU', where u = %(% _11 ), and D=L

(!3* 12 .). Changing variables from x to u = D~Y2U"x, we get that

0
1 1.7
ae [
2 UT DY2u>0
o

:E’

where o =arccos(—2).

1
Hence, A =— cos (277 (Zij + 1))

=sin(27 ;).
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