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Abstract

Maximum entropy models have become popular statistical models in neuroscience
and other areas in biology, and can be useful tools for obtaining estimates of mu-
tual information in biological systems. However, maximum entropy models fit to
small data sets can be subject to sampling bias; i.e. the true entropy of the data can
be severely underestimated. Here we study the sampling properties of estimates
of the entropy obtained from maximum entropy models. We show that if the data
is generated by a distribution that lies in the model class, the bias is equal to the
number of parameters divided by twice the number of observations. However, in
practice, the true distribution is usually outside the model class, and we show here
that this misspecification can lead to much larger bias. We provide a perturba-
tive approximation of the maximally expected bias when the true model is out of
model class, and we illustrate our results using numerical simulations of an Ising
model, i.e. the second-order maximum entropy distribution on binary data.

1 Introduction

Over the last several decades, information theory [1, 2] has played a major role in our effort to
understand the neural code in the brain [3, 4]. Its usefulness, however, is limited by the fact that
the quantity of interest, mutual information (typically between stimuli and neuronal responses) is
hard to compute from data [5]. Consequently, although this approach has led to a relatively deep
understanding of neural coding in single neurons [4], it has told us far less about populations [6, 7].
In essence, the brute-force approaches to measuring mutual information that have worked so well on
single spike trains simply do not work on populations. This is because the key-ingredient of mutual
information is the entropy, and in general, estimation of the entropy from finite data sets suffers
from a severe downward bias [8, 9]: on average, the entropy estimated on the data set will be lower
than the actual entropy of the underlying model. While a number of improved estimators have been
developed (see [5, 10] for an overview), the amount of data one needs is, ultimately, exponential in
the number of neurons, so even modest populations (tens of neurons) are out of reach.

To apply information-theoretic techniques to populations, then, our only hope is to develop para-
metric models, and especially models in which the number of unconstrained parameters grows (rel-
atively) slowly with the number of neurons [11]. For such models, estimating information requires
much less data than brute force methods. Still, the amount of data is nontrivial, and naive estimators
of information can be badly biased. Here we consider one class of models – maximum entropy
models subject to linear constraints – and compute the bias in the entropy. We show that if the true
distribution lies in the parametric model class, then the bias is equal to the number of parameters
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divided by twice the number of observations. When the true distribution is outside the model class,
however, the bias can be much larger.

We illustrate our results using a very popular model in neuroscience, the Ising model [12], which
is the second-order maximum entropy distribution on binary data. Recently, this model has become
a popular means of characterizing the distribution of firing patterns in multi-electrode recordings,
and has been used extensively in a wide range of applications, including recordings in the retina
[13, 14] and visual cortex [15]. In addition, several recent studies [16, 17, 18] have used numerical
simulations of large Ising models to understand the scaling of the entropy of the model with popula-
tion size. And, finally, Ising models have been used in other fields in biology, for example to model
gene-regulation networks [19].

2 Theory

2.1 Maximum entropy models

Our starting point is an underlying true distribution, denoted p(x) where x is a (typically real valued)
vector; the goal is to model it with a maximum entropy distribution. For simplicity, when developing
the formalism we take x to be discrete; however, all our results apply to continuous variables.

The maximum entropy distribution is the distribution with the highest entropy subject to a set of
constraints, where the entropy is given by

S = −
∑
x

p(x) log p(x) . (1)

Specifically, suppose that under the true distributions a set of m functions, denoted gi(x), i =
1, ...,m, average to µi,

µi =
∑
x

p(x)gi(x) . (2)

If we use q(x|µ) to denote the maximum entropy distribution (with µ ≡ (µ1, µ2, ..., µm)), the
constraints (here taken to be linear in the probability) are of the form∑

x

q(x|µ)gi(x) = µi . (3)

Finding an explicit expression for q(x|µ) is a straightforward optimization problem (see, e.g., [2]).
It can be shown that the maximum entropy distribution is in the exponential family,

q(x|µ) =
exp [

∑m
i=1 λi(µ)gi(x)]

Z(µ)
(4)

where the parameters, λi (the Lagrange multipliers of the optimization problem), are chosen such
that the constraints in Eq. (2) are satisfied. The partition function, Z(µ), ensures that the probabili-
ties normalize to one,

Z(µ) =
∑
x

exp

[
m∑
i=1

λi(µ)gi(x)

]
. (5)

Once we have identified the parameters of this model, we can insert Eq. (4) into Eq. (1), which
allows us to write the entropy in the form

Sq(µ) = logZ(µ)−
m∑
i=1

λi(µ)µi . (6)

2.2 Estimation bias in maximum entropy models

So far we have assumed that the true µi are known. In general, though, we have to estimate the
µi from data. Specifically, if we have K observations of x, denoted x(k), k = 1, ...,K, then the
estimate of µi, denoted µ̂i, is given by

µ̂i =
1

K

K∑
k=1

gi

(
x(k)

)
. (7)
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We can still use the maximum entropy formulation described above; the only difference is that we
replace µ by µ̂. Thus, the maximum entropy distribution is given by q(x|µ̂) (Eq. (4)) and the
entropy by Sq(µ̂) (Eq. (6)).

Because of sampling error, the µ̂i are not equal to their true values, µi; consequently, neither is
Sq(µ̂). This leads to variability, in the sense that different sets of x(k) lead to different entropies
and, because the entropy is concave, to bias. Thus, the entropy estimated from a finite data set will
be lower, on average, than the entropy obtained from the true underlying model. In the largeK limit,
so that µ̂i is close to µi, the bias can be computed by Taylor expanding around Sq(µ) and averaging
over the true distribution, p(x). Anticipating somewhat our result, we use −b/2K to denote the
bias, and we have

− b

2K
≡ 〈Sq(µ̂)− Sq(µ)〉p(x) =

m∑
i=1

∂Sq(µ)

∂µi
〈δµi〉p(x) +

1

2

m∑
i,j=1

∂2Sq(µ)

∂µi∂µj
〈δµiδµj〉p(x) + ...

(8)

where

δµi ≡ µ̂i − µi =
1

K

K∑
k=1

gi

(
x(k)

)
− µi . (9)

The angle brackets with subscript p(x) indicate an average with respect to the true distribution, p(x)
(note that δµi depends on x via the right hand side of Eq. (9)).

The quantity we focus on is b, the normalized bias (as it is independent of K in the large K limit).
Computing the averages and derivatives in Eq. (8) is straightforward (see Appendix A in the supple-
mentary material for details), and we find that, through second order in δµ,

b =
∑
ij

Cq
−1

ij Cpji, (10)

where
Cqij ≡ 〈δgi(x)δgj(x)〉q(x|µ) (11a)

Cpij ≡ 〈δgi(x)δgj(x)〉p(x). (11b)

Here Cq
−1

ij denotes the ijth entry of Cq−1 and

δgi(x) ≡ gi(x)− µi . (12)

2.3 Bias when the true model is in the model class

Equation (10) tells us the normalized bias (to first order in 1/K). Evaluating it is, typically, hard, but
there is one case in which we can write down an explicit expression for it: when the true distribution
lies in the model class, so that p(x) = q(x|µ). In that case, Cq = Cp, the normalized bias is
the trace of the identity matrix, and we have b = m (recall that m is the number of constraints);
alternatively, Bias[S] = −m/2K.

An important within-model-class case arises when x is discrete and the “parametrized” model is a
direct histogram of the data. If x can take on D values, then there are D − 1 parameters (the “−1”
comes from the fact that p(x) must sum to 1) and the normalized bias is (D − 1)/2K. We thus
recover a general version of the Miller–Madow [8] or Panzeri & Treves bias correction [9], which
was derived for a multinomial distribution. (Note that our expression differs from theirs by a factor
of log 2; that’s because they use base 2 logarithms whereas we use natural logarithms.)

Alternatively, one can exploit the relationship between entropy-maximization and maximum-
likelihood estimation in the exponential family to deduce this result from the asymptotic distribution
of maximum likelihood estimators [20]. For details see Appendix B (in the supplementary material).

2.4 Bias when the true model is not in the model class

In practice, it is rare for the true distribution to lie in the model class, so it is important to know
how the normalized bias behaves in general. In this section, we investigate how quickly it changes
when we leave the model class. We concentrate on the worst case scenario and determine the largest
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normalized bias that is consistent with a given “distance” from the true model class. For cases in
which we are close to the true model class, we provide a perturbative expression for this quantity.
To assess the normalized bias out of model class, we assume that p(x), the distribution from which
the data was generated, can be written as

p(x) = q(x|µ) + δp(x) (13)
with δp(x) chosen so that it is orthogonal to all the constraints; that is

∑
x δp(x)gi(x) = 0, which

in turn implies that ∑
x

p(x)gi(x) =
∑
x

q(x|µ)gi(x) (14)

(and both, of course, are equal to µi). We then ask how the normalized bias behaves as δp(x) varies.

Because q(x|µ) is independent of δp(x), so is Cqij , and the normalized bias, b, that appears in
Eq. (10) can be written (using Eq. (11b))

b = 〈B(x)〉p(x) (15)
where

B(x) ≡
∑
ij

δgi(x)Cq
−1

ij δgj(x) . (16)

It’s not possible to say anything definitive about the normalized bias in general, but what we can
do is compute its maximum as a function of the distance between p(x) and q(x|µ), with “distance”
measured by the Kullback–Leibler divergence. The latter quantity, denoted ∆S, is given by

∆S =
∑
x

p(x) log
p(x)

q(x|µ)
= Sq(µ)− Sp (17)

where Sp is the entropy of p(x). The second equality follows from the definition of q(x|µ), Eq. (4),
and the fact that 〈gi(x)〉p(x) = 〈gi(x)〉q(x|µ), which comes from Eq. (14).

We are interested in finding the maximal normalized bias that is consistent with a given ∆S. Rather
than maximizing the normalized bias at fixed ∆S, we take the complementary approach here: For
each each possible bias, we find the minimally possible ∆S, and thereby obtain a functional re-
lationship between bias and minimal ∆S. Then, by inverting this relationship, we can obtain the
maximal bias for a given ∆S. Since Sq(µ) is independent of p(x), minimizing ∆S is equivalent
to maximizing Sp. Thus, again we have a maximum entropy problem. Now, though, we have an
additional constraint on the normalized bias, which gives us an additional Lagrange multiplier in
addition to the λi we had for the original optimization problem. We may thus write, in analogy to
Eq. (4),

p(x|µ, β) =
exp [βB(x) +

∑
i λi(µ, β)gi(x)]

Z(µ, β)
(18)

where Z(µ, β) is the partition function and the λi(µ, β) are chosen to satisfy Eq. (2), but with p(x)
replaced by p(x|µ, β). Amongst all models that satisfy the moments constraints and have the same
normalized bias, this is the one that is closest (in KL–divergence) to the maximum entropy model.

Note that we have slightly abused notation: whereas in the previous sections the λi and Z depended
only on µ, they now depend on both µ and β. However, the previous variables are closely related to
the new ones: when β = 0 the constraint associated with b disappears, and we recover q(x|µ); that
is, p(x|µ, 0) = q(x|µ). Consequently, λi(µ, 0) = λi(µ), and Z(µ, 0) = Z(µ).

Relating ∆S to b is now a purely numerical task: choose a set of µi and a normalized bias, b,
determine the Lagrange multipliers, λi(µ, β) and β, that appear in Eq. (18), then compute Sp the
entropy of p(x|µ, β), and subtract that from Sq(µ) to find ∆S (see Eq. (17)). In section 3.2 we do
exactly that. First, however, to gain some intuition into how the normalized bias depends on ∆S, we
compute the relationship between the two perturbatively. This can be done by considering the small
β limit. In this limit we can expand both ∆S and b as a Taylor series in β. Defining

∆S(β) ≡ Sq(µ)− Sp(β) (19)
where Sp(β) is the entropy of p(x|µ, β), and using primes to denote derivatives with respect to β,
we have, through second order in β,

∆S(β) = Sq(µ)− Sp(0)− βS′p(0)− β2

2
S′′p (0) (20a)

b(β) = b(0) + βb′(0) . (20b)
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We expand ∆S(β) to second order in β because S′p(0) = 0, which follows from the fact that when
β 6= 0 there is an additional constraint on the normalized bias, and so any β 6= 0 can only lower
the entropy; therefore, β = 0 must be a local maximum. Alternatively, a straightforward calculation
in which we write down the entropy of p(x|µ, β) using Eq. (18) (which results in an expression
analogous to Eq. (6)) and differentiate with respect to β, yields

S′p(β) = −βb′(β) . (21)

From this it follows that S′p(0) = 0; in addition, we see that S′′p (0) = −b′(0). Thus, using the fact
that when β = 0, p(x|µ, 0) is within the model class, so Sp(0) = Sq(µ), Eq. (20) tells us that when
β is sufficiently small,

∆S =
(b−m)2

2b′(0)
. (22)

The term in the denominator, b′(0), is relatively easy to compute, and we show in Appendix C (in
the supplementary material) that it is given by

b′(0) = Var[B]q(x|µ) −
m∑

i,j=1

〈B(x)δgi(x)〉q(x|µ)C
q−1

ij 〈δgj(x)B(x)〉q(x|µ) . (23)

The key result of the perturbative analysis is that when the true distribution is out of the model class,
the normalized bias can be increased by a term proportional to b′(0)1/2. Thus, the size of b′(0) is
crucial for telling us how big the bias really is. In the next section we investigate this numerically
for a particular model, the Ising model.

3 Numerical Results: Estimation bias in Ising models

For our numerical simulations, we consider the second order maximum entropy model on n binary
variables, also known as the Ising model [12] (see [13, 14] for an application of Ising models to
neuroscience). In this section, we use numerical studies to verify that the asymptotic bias gives
an accurate characterization of the expected bias for relevant sample-sizes K, investigate the size
of the normalized bias when the true model is not in the model class, and study the scaling of the
normalized bias with the number of parameters. We show numerically that, for the Ising model, the
model-misspecification can result in the normalized bias increasing much faster with population size.

3.1 Estimation in a binary maximum entropy model

We consider n interacting spins si, i = 1, ..., n with si ∈ {0, 1}. We put constraints on the first and
second moments only, so m, the number of constraints, is n(n + 1)/2: gi(s) = si and gij(s) =
sisj , i < j. The maximum entropy model (with the λi’s replaced by hi and Jij and the gi written
explicitly) has the form

q(s|h, J) =
1

Z(h, J)
exp

∑
i

hisi +
∑
i<j

siJijsj

 . (24)

To illustrate our results for the asymptotic bias, and to investigate how large K has to be for the
asymptotic calculation to be relevant, we performed the following simulations: For different values
of K (ranging from 10 to 104) and different values of the model-size n ∈ {2, 3, 5, 10, 15}, we
generated 104 data sets of size K each from an independent binary model with n variables and
mean µ = 0.1 or µ = 0.5, i.e. sampling from the distribution given in Eq. (24) with Jij = 0 and
hi = log(µ/(1 − µ)). For each such data set, we fit a pairwise binary maximum entropy model
to the data by gradient-ascent on the (log-concave) likelihood. By calculating the entropy of the
resulting model (via Eq. (6)) and averaging over the 104 data sets, we obtained a numerical estimate
of the difference between the true entropy and the expected estimated entropy; i.e. the bias.

Figure 1 shows (aside from the reassuring fact that our asymptotic calculations are consistent with
the numerical simulations) that the asymptotic solution gives surprisingly accurate results even for
relatively low values of K. From figure 1B and D, we can see that, for values of K of around 100,
the numerical biases already lie very close to the asymptotic prediction. Since the asymptotics are
accurate for large K, we expect this fit to remain close. It is hard to precisely verify the tiny biases

5



of some small models (n = 2 or 3) with very large data sets (K > 103), because the standard errors
in our estimates from 104 simulations are relatively large.

We note that our choice of Jij = 0 is merely for concreteness, and that the validity of our formulation
is not dependent on the values of Jij . We also performed simulations with models in which Jij is
non-zero and drawn from a Gaussian distribution, which yielded qualitatively similar results.
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Figure 1: Asymptotic bias in Ising models. A) Comparison of asymptotic bias with expected bias
calculated via simulations of an independent model with a mean of 0.5 (see text). The thin-black
lines correspond to the bias as predicted by our asymptotic calculation. We have here inverted the
sign of the bias, the actual biases are negative numbers. B) Same data as in A, but on a semi-
log plot to illustrate how many samples are necessary for the asymptotic bias to be an accurate
representation of the actual bias: For the parameters used here, the bias seems to be accurate even
for small (< 100) values of K. We rescaled the estimated biases of each population size n such that
the predicted asymptotic biases (thin black lines) are on top of each other, and such that the biases
are positive. C and D) Same as in A and B, but for an independent model with mean 0.1. Error bars
show standard errors on the mean estimates from 104 simulated data sets.

3.2 Estimation bias when the data has higher-order correlations

What happens when the true model is not in the model class? To investigate this question, we
first consider a homogeneous pairwise maximum entropy models of sizes n ∈ {5, 10, 15}, com-
mon means 〈si〉 = 0.5 or 0.1, and pairwise correlation-coefficient ρi,j = 0.1 for each pair i, j,
and calculated the normalized bias for these models. We then numerically calculated ∆S for all
normalized biases for which the constrained optimization problem yielded accurate fits (for very
small or large normalized biases, the optimization did not converge to values which satisfied the
moment constraints, indicating that such a big normalized bias would be inconsistent with the speci-
fied second order moments). The results are shown in Fig. 2, along with the perturbative predictions.
For these parameters, the maximum and minimum normalized bias did not deviate much from the
within-model-class case. However, for the next example, the deviation is much larger.

To get a better understanding of the additional bias (or, potentially, reduction in bias) due to model
misspecification, we studied the bias of the Dichotomized Gaussian distribution , which can be inter-
preted as a very simple model of neural population activity in which correlations amongst neurons
are induced by common, Gaussian inputs into threshold neurons [21, 22]. We calculated the nor-
malized bias of this model for means set to 〈si〉 = 0.1, a realistic value for many applications of
maximum entropy models in neuroscience, and different values of the pairwise correlation coeffi-
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Figure 2: Bias in the case of model misspecification. Top row: ∆S/S2, where S2 is the entropy
of the second order model, as a function of the normalized bias for a model with means 〈si〉 =
0.5 and correlation-coefficient 0.1. The red (dashed) lines show the exact ∆S calculated by using
equation (18), and the green (solid) lines using the perturbative expansion in equation (22). Bottom
row: Same as top row, but using means of 〈si〉 = 0.1.

cient ρ ∈ {0.02, 0.1, 0.5}. We also calculated the bias for a maximum entropy model with matched
second order moments.

As predicted, the normalized bias of the maximum entropy model increased quadratically in the
population size n (see Fig. 3A, and recall that the number of parameters, m, is quadratic in n:
m = n(n+ 1)/2). However, for the Dichotomized Gaussian, the normalized bias was substantially
larger. For example, for population size n = 15, its bias is 2.3 times as big for ρ = 0.1, and 6.8
times as big for ρ = 0.5. Figure 3B shows ∆S versus population size for the models in Fig. 3A,
and the corresponding “maximally biased” model, i.e. the model which has the same normalized
bias as the Dichotomized Gaussian, but minimal ∆S. Interestingly, ∆S for the maximally biased
models (equation (18)) is very similar to ∆S for the Dichotomized Gaussian. This suggests that our
extremal calculation of the bias is relevant for a reasonably mechanistic model of neural population
activity.

4 Conclusions

In recent years, there has been a resurgence in interest in maximum entropy models in neuroscience
and related fields [13, 14, 15]. In particular, maximum entropy models can be useful for model-based
estimation of the information content of neural populations [11], as direct information-estimates do
not scale well for large population sizes. In this paper, we studied estimation biases in the entropy of
maximum entropy models. We focused on “naive” estimators, i.e. estimators of the entropy which
simply calculate it from the empirical estimates of the probabilities of the model, and do not attempt
to do any bias reduction.

We found that if the true model is in the model class, the (downward) bias in a maximum entropy
estimate from finite observations is proportional to the ratio of the number of parameters to the
number of observations, a relationship which is identical to that of the (naive) histogram estimators
[8, 9]. However, we also show that if the model is misspecified (i.e. if the true data do not come
from the specified exponential family model), then the bias can be much larger. We numerically
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Figure 3: Bias in the case of model misspecification, using the Dichotomized Gaussian. A) Scal-
ing of the normalized bias with population size. The normalized bias of the Dichotomized Gaussian
(DG) is much bigger than that of the maximum entropy model. B) Distance from model class, ∆S,
versus population size for the Dichotomized Gaussian and maximum entropy models. They are
about the same, indicating that the Dichotomized Gaussian model has close to maximum bias.

investigated the bias in second-order binary maximum entropy models (also known as Ising models),
and showed that in this case, model misspecification can lead to substantially bigger biases.

Non-parametric estimation of entropy is a well researched subject, and various estimators with op-
timized properties have been proposed (see e.g. [5, 23]). A number of studies have looked at the
entropy estimation for the multivariate normal distribution [24, 25, 26, 27] and other continuous
distributions, and improved estimators for the Gaussian distribution have been described [28]. As
the (differential) entropy of a Gaussian distribution is essentially its log-determinant, the bias of
this model can be related to results about the eigenvalues of random matrices [29]. An overview of
estimators of the entropy of continuous-valued distributions is given in [30].

However, to our knowledge, the entropy bias of maximum entropy models in the presence of model-
misspecification has not be characterized or studied numerically. We provided here an asymptotic
derivation of this bias, and studied it numerically for the pairwise binary maximum entropy model,
the Ising model. Our characterization of the bias relates the (worst case) bias in the case of model-
misspecification to the distance (as measured by KL–divergence) between the model and the actual
data. This characterization does not yield a precise estimate of the bias on a given data-set which
could simply be ‘subtracted-off’– thus, our derivation does not directly yield an improved estimator
of the bias for such data-sets. However, importantly, our results show that model-misspecification
can indeed lead to additional bias which can be much larger than generally appreciated. Using
numerical simulations, we showed that this also happens for a realistic model which shares many
properties with neural recordings. In addition, our results could be useful for deriving general guide-
line for how many samples a neurophysiological data-set needs to contain to achieve a bias which is
less than some desired accuracy.
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A Derivation of Eq. (10)

To show that Eq. (10) does indeed follow from Eq. (8), we need to compute the mean and covariance
of δµi, and the derivatives of Sq(µ) with respect to µi. We start with the former. The mean of δµi,
which is given by (see Eq. (7) and (9))

〈δµi〉 =
1

K

∑
k

〈gi(x(k))〉p − 〈gi(x)〉p = 0 . (A.1)

The covariance can be computed by noting that δµi is the mean of K uncorrelated, zero mean
random variables (see Eq. (9)), which implies that

〈δgiδgj〉p =
1

K
[〈gi(x)gj(x)〉p − 〈gi(x)〉p〈gj(x)〉p] =

Cpij
K

(A.2)

where the last equality follows from the definition given in Eq. (11a).

We next compute derivatives of the entropy with respect to the µi. Using Eq.(6) for the entropy, we
have

∂Sq(µ)

∂µi
=
∂ logZ(µ)

∂µj
− λi −

∑
j

µj
∂λj
∂µi

. (A.3)

From the definition of logZ(µ), Eq. (5), it is straightforward to show that

∂ logZ(µ)

∂µi
=
∑
j

µj
∂λj
∂µi

(A.4)

Inserting Eq. (A.4) into (A.3), the first and third terms cancel, and we are left with

∂Sq(µ)

∂µi
= −λi . (A.5)

The second derivative of the entropy is thus trivial,

∂2Sq(µ)

∂µi∂µj
= − ∂λi

∂µj
. (A.6)

This quantity is hard to compute, so instead we compute its inverse, ∂µj/∂λi. Using the definition
of µj ,

µj =
∑
x

gj(x)
exp [

∑
i λigi(x)]

Z(µ)
, (A.7)

differentiating both sides with respect to λi, and applying Eq. (A.4), we find that

∂µj
∂λi

= 〈gi(x)gj(x)〉q(x|µ) − 〈gi(x)〉q(x|µ)〈gj(x)〉q(x|µ) = Cqij . (A.8)

The right hand side is the covariance matrix within the model class.

Combining Eq. (A.6) with (A.8) and noting that

∂λi
∂λi′

=
∑
j

∂λi
∂µj

∂µj
∂λi′

= δii′ ⇒ ∂λi
∂µj

= Cq
−1

ij , (A.9)

we have
∂2Sq(µ)

∂µi∂µj
= −Cq

−1

ij . (A.10)

Inserting Eqs. (A.1), (A.1), (A.5) and (A.10) into (8), we arrive at Eq. (10).

10



B Alternative derivation of the within-model class bias

We present a brief alternative derivation of the within-class bias from classical results about the
asymptotic distribution of maximum likelihood estimators. Suppose that XK = {xk}k=1,...K is a
sample of size K from the model q(x|λ) with true parameter λ, and that L(λ′) =

∑
k log q(xk|λ′)

is the likelihood of some parameters λ′ given the data. Then, it can be shown that the asymptotic
distribution of (twice) the difference between the true log-likelihood L(λ) and the log-likelihood of
a maximum likelihood-estimate λ̂ = argmaxλ′L(λ′) has a Chi-square distribution with m degrees
of freedom (where m is the number of parameters, the dimensionality of the vector λ) [20],

2
(
L(λ̂)− L(λ)

)
∼ χ2

m. (B.1)

As the mean of a random variable with distribution χ2
m is simply m, this implies that the bias in the

estimate of the log-likelihood is 〈(L(λ̂)−L(λ)〉q(x|λ = 1
2m. Using the duality between maximum-

entropy estimation and maximum likelihood estimation in exponential family models, we can now
derive the entropy bias from the likelihood bias: maximizing the entropy subject to the empirically
measured moments µ̂ is equivalent to maximizing the likelihood of model (4).

This means that maximum entropy model q(x|µ), which matches the empirical means µ̂ in the data-
set, is the same model whose parameters λ̂ maximize the likelihood L(λ′), and here therefore we
slightly abuse notation to use λ̂ and µ̂ interchangeably,

1

2
m =

〈
L(λ̂)− L(λ)

〉
q

=

〈∑
k

log q(xk|λ̂)

〉
q

−K
∑
x

q(x|λ) log q(x|λ)

= KSq(λ) +

〈∑
k

λ̂>g(xk)− log(Z(λ̂)

〉
q

(B.2)

= KSq(λ)−K
〈

log(Z(λ̂)− λ̂>µ̂
〉
q

= K〈Sq(λ)− Sq(λ̂)〉q

Rearranging terms, we recover our result that Bias[S] = −m/2K.

C Calculating b′(0)

Here we compute b′(0) (as in the main text, primes denote derivatives with respect to β). Recalling
that b(β) = 〈B(x)〉p(x|µ,β), using the definition of p(x|µ, β) given in Eq. (18), and making use of
the relationship logZ ′(µ, β) = b+

∑
i µiλ

′
i(µ, β), we have

b′(β) = Var[B]p(x|µ,β) +

m∑
i−1
〈B(x)δgi(x)〉p(x|µ,β)λ′i(µ, β) (C.1)

where λ′i(µ, β) denotes a derivative with respect to β.

To compute λ′i(µ, β), we use the fact that 〈gi(x)〉p(x|µ,β)) is independent of β, which implies that

0 =
d〈gi(x)〉p(x|µ,β)

dβ
= 〈δgi(x)B(x)〉p(x|µ,β) +

∑
j

〈δgi(x)δgj(x)〉p(x|µ,β)λ′j(β) . (C.2)

While we can’t invert the matrix 〈δgi(x)δgj(x)〉p(x|µ,β) for arbitrary β, we can invert it when β = 0,
since 〈δgi(x)δgj(x)〉β=0 = Cqij . Setting β to 0 in Eq. (C.2), we have

λ′i(µ, 0) = −
∑
j

Cq
−1

ij 〈δgj(x)B(x)〉q(x|µ) (C.3)
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where we used the fact that p(x|µ, 0) = q(x|µ). Inserting this expression into Eq. (C.1), setting β
to zero, and replacing p(x|µ, 0) with q(x|µ), we recover Eq. (23).
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