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This manuscripts contains additional material for the manuscript “A model of neural population
activity in the presence of common input explains higher-order correlations and entropy”. It contains
very detailed step-by-step derivations and proofs for all the formulas used in the paper. We aimed
to present derivations in a self-contained manner, rather than in a brief and elegant one. We also
included some additional explanations, additional figures and enlarged versions of some figures, as
well as additional references.

I. PROPERTIES OF THE DICHOTOMIZED GAUSSIAN

A. Introduction

We use n-dimensional binary random variable X 2 {0, 1}n with mean µ and covariance matrix ⌃ as a simplified
model of neural population statistics. For details on how to fit our common input model, which is equivalent to
Dichotomized Gaussian [8, 18] models, and applications to modelling binarized natural images and neural spike-
trains, see [3, 12, 13]. In particular, the technical report [13] contains some derivations which are overlapping with
the ones in this document.

In the letter, we concentrated on the e↵ects of instantaneous correlations across neurons in binarized spike trains,
as these have been most thoroughly characterized in experimental studies [7, 22–25]. Other studies [5, 11] have used
doubly-stochastic processes with Gaussian process rate functions to generate spike trains with controlled correlation
structure in continuous time. [6, 9, 26] have studied the relationship between input correlations, output correlations
and firing rates in threshold neurons receiving temporally and spatially correlated inputs, and have also investigated
temporal properties of these models. However, none of these studies focused on the e↵ects of pairwise correlations
on population statistics such as entropy, sparsity or heat-capacity. More recently, [2] have investigated the question
of when small neural populations receiving common-input are modelled well by pairwise maximum entropy meth-
ods. [14] used a second order Maximum Entropy model with additional temporal dependencies (under a Markov
assumption) model spatial as well as temporal correlations in neural population recordings. [19–21] studied maximum
entropy models of second order and compared them with models containing higher-order interactions by using dif-
ferent expansion methods. In particular, they also derived and validated analytical approximations for inferring the
parameters of maximum entropy methods, and characterized the scaling of entropy in the ’perturbative’ regime.

B. Spike count distribution

In the letter, we concentrate on homogeneous populations with n neurons, each having firing rate µ, constant
pairwise covariance � and correlation coe�cient ⇢ = �/(µ(1 � µ)) [1, 4, 15]. Binary samples from the model are
obtained by dichotomizing a latent Gaussian Z with mean �, unit variances and pairwise covariance (and correlation
coe�cient) � > 0. This model was introduced and first studied by [1].
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Here, �
�

(s) is the probability density function of a one-dimensional Gaussian with mean 0 and variance �. Similarly,
the probability of observing a spike count K = k is
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C. Strain of the DG

[17] defined the strain  of a distribution over three binary random variables to be the third-order in-
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The strain  measures the correction one has to apply to the probabilities of an second order maximum entropy model
to also account for triplet-interactions.

We calculated the strain of a homogeneous DG with three neurons, using formula (13), with log base 2. Because
of symmetries, it is su�cient to evaluate P

000

, P
001

and P
011

. Each of these three probabilities can be calculated
using a one-dimensional Gaussian integral as in equation (11). Thus, while there is no closed form expression for
the DG in general, the strain can be calculated very precisely using numerical integration. For all possible values
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FIG. 1: Correlations in the DG. This figure is identical to figure 1 of the letter, but enlarged for better visibility. a) The
correlation coe�cient ⇢ increases with firing probability µ for constant input correlation �. b) The KL-divergence �h between
the DG and its second order approximation is modulated by the mean firing rate µ and the correlation ⇢ in a population of
size n = 5. c) In small populations (n = 5), the multi-information explained (I2) by a DG is close to 1. d) The strain of the
homogeneous DG is negative and correlation-dependent. e) For large populations, I2 between the models close to 0 for small
correlations, i.e. the models are very dissimilar. f) Scaling of the entropy rate (i.e. entropy per neuron) of the Ising and DG
model for mean µ = 0.1, and comparison with asymptotic values (labeled 1). The entropy rate drops initially before settling
to the asymptotic value. For weak correlations, di↵erences between models only become apparent for large n.

of µ (µ  0, 5) and ⇢, the strain was negative. Similarly, the probability of three simultaneous spikes P
111

was
consistently lower in the DG than in the MaxEnt model. The homogeneous MaxEnt model actually over-estimates
the occurrence-probabilities of three simultaneous spikes in this common input model.

To test whether this also holds true for more general correlation structures, we simulated random networks of three
neurons by sampling the parameter � from a three-dimensional Gaussian (and flipping the output to ensure � < 0,
i.e. µ < 0.5), and sampling random covariance matrices ⇤ by defining ⇤ to be the product of a randomly sampled
3 ⇥ 3 matrix with its transpose. We varied the means and variances, with the goal of sampling the space of all
admissible means and covariances for a three dimensional DG. In the vast majority of cases in which all three pairwise
correlations had the same sign, the strain was negative. Thus, a negative strain is not necessarily inconsistent with
common input being the source of higher-order redundancies. See [2] for more detailed investigations of the e↵ect of
di↵erent common input statistics on the strain.

II. ASYMPTOTIC PROPERTIES OF THE DG

We present two derivations of the asymptotic spike count distribution f(r) of the DG. The first uses a saddle-point
approximation and is similar to a derivation in [1]. The second is based on the observation that the percentage of
neurons that spike simultaneously for a given input must be the same as the probability of a single neuron spiking
for that input. Finally, we calculate the entropy and asymptotic entropy rate of the DG-model from its spike-count
distributions, as well as the specific heat of the DG at unit temperature.
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A. Derivation of spike-count distribution via saddle-point approximation

For large population sizes n, the integral in (11) can be approximated using the saddle-point approximation: We
set U(s) = r logL(s) + (1� r) logL(�s) to get
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Renormalizing, this yields the asymptotic, continuous valued spike count distribution:
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B. Derivation of spike-count distribution via probability of common input

More easily, but somewhat less rigorously, the asymptotic spike count distribution can also be derived by first noting
that the common input s and the normalized spike counts r are related via the change of variables from r to s via the
function r = L(s). The probability of observing r of the neurons spiking is the same as the probability of an input s
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which has a probability L(s) of producing a spike. Thus,

f(r) =
�(L�1(r))

L0(L�1(r))
. (26)

This formula easily generalizes to arbitrary common input with distribution f
s

(s), and a noise distribution P (X
i

=
1|S

i

= s
i

) = L
i

(s). In this case,

f(r) =
f
s

(L�1(r))
Q
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i

(r
i

))
(27)

It is also easily generalizable to a population model with a finite number of pools, where the pairwise correlations
within each pool, and across each pairs of pools are constant. Such a model is then fully described by the distributions
over the vectors of spike-counts across each pool. For details, see [13].

C. Entropy rate of the DG

(We denote entropies by H and entropy rates by h, in slight departure from the notation in the letter, in which we
used S and s). We note that in the entropy of the model can be split up into the entropy of the spike count, H(K),
and the conditional entropy given the spike count, i.e. H(X|K), H(X) = H(X|K) +H(K). The entropy of the the
spike count H(K), is bounded above by log(n), which is dominated by H(X|k), which grows linearly. Hence, for large
populations, we can calculate the entropy by considering only H(X|k):
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Alternatively, the entropy can be computed noting that it can be decomposed into the entropy of the model given
the common input S, and the mutual information between common input and X, MI(S : X):
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The conditional entropy H(X|S is given by

H(X|S) = n
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The second term, MI(S : X) is negligibly small for large n. This follows (e. g.) from the data-processing inequality:

MI(S : X)  MI(S : Z) (39)
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Therefore, for large n:

h
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By changing variables L(s) = r, one can see that the two derivations lead to the same result.

D. Heat capacity

Analogously to the entropy, the heat capacity and specific heat can easily be calculated from the spike-count
distribution: We have that

HC = E (log p(x))2 � E (log p(x))2 (44)
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For large n, this can be approximated by
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Hence, whenever this integral is non-zero, the heat capacity grows quadratically, and the specific heat linearly in n.
As we pointed out, the integral will be non-zero for any homogeneous population model with interactions of at least
order three.

III. ASYMPTOTIC PROPERTIES OF THE ISING MODEL

A. Entropy rate

For finite population sizes n, the spike-count distribution of the MaxEnt model is given by P
isi

(K = k) =
1

Z

�
n

k

�
exp

�
h
n

k + J
n

k2
�
. For large population sizes n, we chose to find the maximal entropy directly, without identifying

the asymptotic scaling of the parameters h and J . (Alternatively, one could first identify the appropriate scaling of
h and J , and the derive the entropy from the partition function, as, e.g., described in [16]. Note, however, that the
’usual’ thermodynamic limit for the infinite range Ising model results in vanishing second order correlations, and is
therefore not appropriate here.)

For large population sizes n, the entropy of the spike count H(K) is negligibly small compared to the conditional
entropy H(X|K), and we find the MaxEnt distribution directly by finding the spike-count distribution P

isi

which
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This is really the linear program
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In the limit of n ! 1, we can write it as

max
f

H(X|K) = �
Z

1

0

f(r)r log(r) + (1� r) log(1� r)dr (57)

subject to f(r) � 0 8r 2 [0, 1] (58)
Z

f(r)dr = 1 (59)
Z

f(r)rdr = µ (60)
Z

f(r)r2dr = µ2 + � (61)

(62)

By finding the function f that maximizes it, we can find the the asymptotic entropy of the maximum-entropy
distribution without having to use the exponential form of the MaxEnt distribution, and in particular, without
identifying the parameters h and J . We make the informed guess that the functional form of P which maximizes is
a mixture of two delta-distributions, f

isi

(r) = p
1

�(r � r
1

) + p
2

�(r � r
2

), where r
2

= 1 � r
1

. The reason for this is
that to get an asymptotic distribution with non-vanishing correlations, we need at least to di↵erent ’states’ of the
population, corresponding to the physical system being in a ferromagnetic, rather than paramagnetic phase. Note
that the ’usual’ scaling of J as 1/n and h as constant yields a paramagnetic solution with vanishing correlations.

The locations r
1,2

and probabilities p
1,2

are chosen such that the mean and variance are as desired, i.e. by
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The entropy rate is given by
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Summing up, the entropy is given by:
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= �r log
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(r)� (1� r) log
2
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Thus, we can calculate the asymptotic entropy rate of the Ising model without having to identify the parameters h
and J explicitly. Also, we see that an Ising model with rate µ

0

and no correlations has the same entropy as one rate
µ
1

with pairwise covariance � provided that µ2

0

� µ
0

= µ2

1

� µ
1

+ �.
We are yet to show that the form of f

isi

that we guessed above is indeed the solution to the linear program. In
general, one can prove the optimality [10] of a feasible solution x⇤ for the linear program

min v>x (74)

subject to x � 0 (75)

Ax = b (76)



9

A) B) C)

Mean µ

C
or

re
la

tio
n 
ρ

 

 

0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8 0.2

0.4

0.6

0.8

1

Mean µ

C
or

re
la

tio
n 
ρ

 

 

0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8 0.2

0.4

0.6

0.8

1

Mean µ

C
or

re
la

tio
n 
ρ

 

 

0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

0

0.02

0.04

0.06

FIG. 3: Asymptotic Entropy of the DG and MaxEnt model A) Asymptotic entropy rate of the DG-model as a function of
mean µ and correlation coe�cient ⇢ B) Asymptotic entropy rate of the corresponding MaxEnt model C) Di↵erence in entropy,
i.e. KL-divergence, between the two models

by finding a solution �⇤ to the dual program

max�>b (77)

A>�  v (78)

which has the same result, i.e. v>x⇤ = �⇤>b. Rewriting the MaxEnt problem as minimizing the negative entropy,
we need to find a vector � which satisfies

a) �
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+ �
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3

(µ2 + �) = �h
isi

(79)

b) �
1
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s2  s log(s) + (1� s) log(1� s). 8s 2 [0, 1], (80)
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(The values of � are obtained by requiring that the equality a) holds, and that inequality b) holds with equality at
the point s = µ� µ2 � c, and that the derivatives of the lhs and rhs of equation b) also match at this point).

Noting that µ� µ2 � c = r � r2, condition a) holds:

�
1

+ �
2

µ+ �
3

(µ2 + �) = (84)

= �h
isi

+ �
2

(r2 � r) + �
2

(µ� µ2 � �) (85)

= �h
isi

(86)

For condition b) to hold, we check that r is a local minimum of the function �(s) = rhs(s) � lhs(s). As �(r) = 0,
and that it does not have any other stationary points for s  1/2, we get that �(s) � 08s 2 (0, 1).

B. Derivation of large-n spike count distribution

We want to identify the parameters h
n

and J
n

of the Ising model in the parameterization P (K = k) =�
n

k

�
exp

�
h
n

k + J
n

k2
�
. For large n, the distribution of normalized spike counts R is given by

f(r) =
1

Z
exp(n

�
⌘
e

+ h
n

r + nJ2r2
�

(87)



10

We know that the spike-count distribution asymptotically collapses to two delta-peaks at locations r
1,2

with weights
p
1,2

. Thus, we know that

log (f(r
1

))� log (f(r
2

)) ! log(p
1

)� log(p
2

) (88)

also log (f(r
1

))� log (f(r
2

)) = n (h
n

+ nJ
n

) (1� 2r
1

) (89)

and thus n (h
n

+ nJ
n

) (1� 2r
1

) ! log(p
1

)� log(p
2

) (90)

Thus, we need J
n

= J/n and h of order 1, and for large n, (h
n

+ J
n

n) = 1

n

log p1�log p2

r2�r1
=: ↵

n

. We also know that in
the limit, we need h

n

+ r
1

nJ
n

= log(r
1

)� log(r
2

) to ensure that first local maximum of f(r) is at r
1

.
To satisfy these constraints, we set

J
n

=
1

n

log r
2

� log r
1

r
2

� r
1

=: J/n (91)

h
n

= ↵/n� J (92)

Summing up, we get

f
isi

(r) =
1

Z
isi

exp
�
↵r + n

�
⌘
e

(r) + J(r2 � r)
��

(93)

Z
isi

= n

vuut
2⇡

n
⇣

1

r1r2
� 2J

⌘ (exp(↵r
1

) + exp(↵r
2

)) exp
�
n
�
⌘
e

(r) + J(r2
1

� r
1

)
��

, (94)

where the partition function Z
isi

can be derived using a saddle-point approximation around r
1

and r
2

. This large-n
approximation over-estimates the spike-count variance, and thus the pairwise correlations slightly (by the variance �

n

defined in the next section). Therefore, its estimates for the sparsity are biased downwards.

C. Heat capacity

We want to calculate the asymptotic scaling of the specific heat of the Ising model. We first note that the diverging
part of the specific heat, which we calculated for the DG, is zero for the (homogeneous) Ising model:

c
isi

= n

Z
f(r)

�
⌘
2

(r)2 � s2
�

�
dr (95)

= p
1

�
⌘2
2

(r
1

)� ⌘2
2

(r
1

)
�
+ p

2

�
⌘2
2

(r
2

)� ⌘2
2

(r
2

)
�

(96)

= 0 + 0 (97)

Thus, we know that the specific heat remains finite, and all terms corresponding to the linear terms cancel out to
give zero. (In general, this integral could be non-zero for a pair of delta-peaks, but not if they are symmetric around
0.5, as in this case, ⌘

2

evaluate at the delta-peaks will be exactly the entropy, i.e. the term inside the square will be
0.)

For large n, f(r) can be approximated using a mixture of two Gaussians with means r
1

and r
2

, variances �
n

=⇣
n
⇣

1

r1r2
� 2J

⌘⌘�1

, and relative heights p
1

and p
2

, f
n

(r) = p
1

N (r, r
1

,�
n

) + p
2

N (r, r
2

,�
n

).
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The specific heat c
isi

is given by

c
isi

=
1

n
Var(log

2

p(x)) (98)

=
1

n

⇣
E

K

�
h
n

k + Jk2
�
2 � E

K

�
h
n

k + Jk2
�
2

⌘
(99)

= n

Z
f
n

(r)(h
n

r + nJ
n

r2)2 �
✓Z

f
n

(r)(h
n

r + nJ
n

r2)dr

◆
2

(100)

= n
�
h2

n

�
E(r2)� E(r)2

�
+ n2J2

n

�
Er4 � E(r2)2

�
+ 2J

n

h
n

n
�
E(r3)� E(r2)E(r)

��
(101)

:= n
�
h2

n

C
2

+ n2J2

n

C
4

+ 2J
n

h
n

nC
3

�
(102)

⇡ n
�
(↵/n� J)2C

2

+ J2C
4

+ 2J(↵/n� J)C
3

�
(103)

= nJ2 (C
4

+ C
2

� 2C
3

) + 2↵J (C
3

� C
2

) +
↵2

n
C

2

(104)

where the expectations are with respect to f
n

.
Using

E(r4) = p
1

r4
1

+ p
2

r4
2

+ 6�
n

�
µ2 + �

�
+ 3�2

n

(105)

E(r3) = p
1

r3
1

+ p
2

r3
2

+ 3�µ (106)

E(r2) = � + p
1

r2
1

+ p
2

r2
2

(107)

we get that

C
4

+ C
2

� 2C
3

= �
n

(4(� + µ2)� 4µ+ 1) (108)

C
3

� C
2

= � (2µ� 1) (109)

This firstly confirms that the linear term in c
isi

drops out, and that (ignoring terms which are of order 1/n or 1/n2,
the specific heat of the Ising model at unit-temperature is given by

c
isi

= nJ2�
n

(4(� + µ2)� 4µ+ 1) (110)

=
J2(4(� + µ2)� 4µ+ 1)

1

r1r2
� 2J

(111)

=
J2(4(� + µ2)� 4µ+ 1)

1

r1r2
� 2J

(112)

Multiplying by log2
2

(e) to rescale to log base 2 yields the result.

IV. EXAMPLE OF A SYSTEM WITH BOUNDED (OR ZERO) CORRELATIONS AND A
NON-EXTENSIVE ENTROPY

In case of independent neurons the entropy of all neurons adds up linearly leading to the maximal possible increase
in entropy. Any kind of redundancy reduces the total entropy but in many cases entropy is still extensive in the
number of neurons. Therefore, it is not obvious under which conditions a sublinear scaling of entropy in the limit
of large n can be achieved with bounded second-order correlations. The simplest example may be the ”grandmother
cell” code where each neuron in a population encodes for a di↵erent stimulus such that only one neuron is active at
any given time. Assuming that the probability of being activated is the same for all neurons, the resulting entropy is
log(n). Thus the entropy rate log

2

(n)/n goes to zero for large n.
In the grandmother cell code example, however, not only the entropy rate but the probability of firing µ = 1/n

and hence the entropy per neuron (log
2

n+ (n� 1) log
2

(n/(n� 1))/n goes to zero for large n as well. In other words,
the sublinear growth of the total entropy is not due to an increasing amount of redundancy but due to the vanishing
entropy of the individual neurons.

In the following, we will show that it is possible to construct a code for which the entropy of each neuron is fixed and
the joint entropy still scales sublinearly even though the pairwise correlations vanish. Like in the grandmother cell
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code, we will again assume that n neurons will encode for n di↵erent stimuli only. In contrast to the grandmother cell
code, however, we will now assume that each neuron has a tuning curve which is given by a random, binary vector: For
randomly chosen n/2 out of the possible stimulus values, it deterministically spikes, whereas for the other n/2 values,
it deterministically stays silent. In this setup, each neuron has a firing rate close to 0.5, and pairwise correlations
vanish for large n. However, the entropy is not extensive, but still given by log

2

(n), as there is a deterministic mapping
of population-states to the n stimulus values.

Finally, we remark that the example can be modified to have exactly zero correlation across all pairs of neurons
when using non-random tuning curves and (n + 1) stimulus values. For n = 2m�1 it is always possible to construct
an (n + 1) ⇥ (n + 1) Hadamard matrix Q for which Q 2 {�1, 1} and QQ0 = (n + 1)I. One row of Q consists only
of ones while for all other rows exactly half of the entries are one and the other half are minus one. Let F denote
the n⇥ (n+ 1) matrix which is obtained from Q by leaving out the row with ones only. If e

k

2 R{n+ 1} is the k-th
standard basis vector whose k-th component is one and zero otherwise, then we can describe the activation of the
neurons for any stimulus value k by Fe

k

. If we again assume that the stimuli are distributed uniformly, the correlation
between all pairs of neurons is zero due to the orthogonality of the Hadamard matrix. Thus we have constructed an
example for which the firing probability of each neuron is exactly 0.5 (and hence the entropy of each neuron 1bit), all
pairwise correlations are exactly zero, and the entropy scaling is given by log

2

(n+ 1).
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