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One major challenge in the sensory sciences is to identify the stimulus features on which sensory systems base their
computations, and which are predictive of a behavioral decision: they are a prerequisite for computational models of
perception. We describe a technique (decision images) for extracting predictive stimulus features using logistic regression.
A decision image not only defines a region of interest within a stimulus but is a quantitative template which defines a
direction in stimulus space. Decision images thus enable the development of predictive models, as well as the generation of
optimized stimuli for subsequent psychophysical investigations. Here we describe our method and apply it to data from a
human face classification experiment. We show that decision images are able to predict human responses not only in terms
of overall percent correct but also in terms of the probabilities with which individual faces are (mis-) classified by individual
observers. We show that the most predictive dimension for gender categorization is neither aligned with the axis defined by
the two class-means, nor with the first principal component of all facesVtwo hypotheses frequently entertained in the
literature. Our method can be applied to a wide range of binary classification tasks in vision or other psychophysical
contexts.
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Introduction

One of the central goals of visual psychophysics is to
identify the aspects of a physical stimulus that determine
human behavior. For simple visual patterns the experi-
menter imposes on the observer which information, or
features, she can use to solve a given perceptual task.
Thus we can measure perception as a function of the
available features and build models based on these
features. While this approach has led to the success of
many low-level computational models, it does not yield an
answer to the question of which features are used by the
visual system in more natural tasks. For natural vision
tasks, there are typically a multitude of features in a given
visual scene which the observer system could potentially
exploitVcorners, contours, lightness gradients or color
gradients to name but a few.
In single-cell neurophysiology an analogous goal would

be to characterize the receptive field of a neuronVwhich
physical stimulus properties make the neuron spike. One
very successful and general approach is to stimulate the
neuron with a sequence of noisy stimuli and then correlate
the input with the spike train of the neuron (Marmarelis &

Marmarelis, 1978). Many variants of this reverse corre-
lation approach exist, for an overview see Wu, David, and
Gallant (2006). In psychophysics, noise-based reverse
correlation techniques are known as classification image
methods (Ahumada & Lovell, 1971; Beard & Ahumada,
1998; Eckstein & Ahumada, 2002; Knoblauch & Maloney,
2008; Ross & Cohen, 2009). In cases where classification
images adequately predict behavior, they can also give
insights into the neural mechanisms involved in a
psychophysical task (Nienborg & Cumming, 2009). To
stress the similarity of this feature identification approach
to reverse correlation in neurophysiology, some authors
also refer to this approach as perceptive field estimation
(Neri & Levi, 2006). In addition to classification image
techniques using (white) noise, a variant of reverse
correlation termed the bubbles technique recently gained
some popularity in the vision sciences (Dupuis-Roy,
Fortin, Fiset, & Gosselin, 2009; Gosselin & Schyns, 2001;
Murray & Gold, 2004; Schyns, Gosselin, & Smith, 2009).
These techniques have been of great importance for

identifying the features used by human observers in
detection and discrimination tasks. However, both techni-
ques rely on substantial manipulations of the stimulus: In
the case of classification images, the target is embedded in
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either white or correlated noise (Abbey & Eckstein, 2007),
whereas in the bubbles technique, it is windowed on
multiple spatial scales. This raises the question of how
such noise embeddings affect the strategy used by the
observers: The features returned by these methods may
not be those which are predictive of human behavior
during natural viewing, but only those used by human
observers if forced to view an image under the conditions
imposed by the techniques. Both techniques gain most
information about the features used by human observers
close to threshold, whereas under typical every day
conditions performance is not close to threshold. In
gender classification, for example, we may well make
errors in real life but typically not because the face was
nearly invisible (“dense fog” as for classification images),
but rather because the clearly visible features analyzed led
us astray. Finally, while the bubbles-technique localizes
important regions in a stimulus, it does not yield a
predictive model which can be used to predict human
responses on novel stimuli.
These limitations have led us to search for feature

identification techniques which can be applied during
natural viewing, and are thus complementary to noise
embedding methods. In particular, we will describe a
technique enabling us to extract the features that are
important for predicting the responses of human observers
in natural classification tasks and apply it to a gender
categorization experiment of human faces. Our strategy is
to exploit the fact that there is substantial variability both
across different faces and human responses, which makes
it possible to analyze what features of a faces lead to
human (mis) classifications. Therefore, our approach
requires tasks with enough variability across stimuli (here
faces) and experimental conditions in which performance
is not completely at ceiling. The benefit of the method,
however, is that stimuli are presented in natural viewing
conditions.
Gender categorization of human faces provides an ideal

testing ground for our method, as it has been extensively
studied in the past both with psychophysical (Dupuis-Roy
et al., 2009; Mangini & Biederman, 2004; Sekuler, Gaspar,
Gold, & Bennett, 2004; Smith, Gosselin, & Schyns, 2004),
neuro-imaging (Ng, Ciaramitaro, Anstis, Boynton, &
Fine, 2006; Smith, Fries, Gosselin, Goebel, & Schyns,
2009; Smith et al., 2004) and computational approaches
(Abdi, Valentin, Edelman, & O’Toole, 1995; Gray,
Lawrence, Golomb, & Sejnowski, 1995; Lu, Plataniotis,
& Venetsanopoulos, 2003; O’Toole, Vetter, Troje, &
Bulthoff, 1997; O’Toole et al., 1998). Most computational
studies have focussed on building algorithms which can
be used to determine the gender of a face from its
statistical properties alone, and which thus constitute
candidate mechanisms for the algorithms that underlie
human gender classification. One influential idea is the
observation that the first principal component of (unnor-
malized) faces is informative about gender (Abdi et al.,

1995; O’Toole, Abdi, Deffenbacher, & Valentin, 1993;
O’Toole et al., 1998; Sirovich & Kirby, 1987; Turk &
Pentland, 1991; Valentin, Abdi, Edelman, & O’Toole,
1997). To evaluate the algorithms described above and
their plausibility as models of human face processing,
their overall performance (in percentage correct) is
compared against the performance of human observers
(Blackwell et al., 1997; Hancock, Bruce, & Burton, 1998).
We extend these studies by trying to build algorithms
which not only predict the over-all percentage correct of
human observers, but also their responses on a stimulus by
stimulus level (Graf, Wichmann, Bulthoff, & Scholkopf,
2006). Secondly, we work with stimuli for which size,
mean pixel intensity and variance of pixel intensity has
been normalized, and for which we show the first
principal component not to be a good predictor of gender
(see Discussion).
Studies using classification images (Mangini & Biederman,

2004; Ross & Cohen, 2009; Sekuler et al., 2004), or
bubbles (Dupuis-Roy et al., 2009; Smith et al., 2008;
Tyler & Chen, 2006) have been employed to identify
features which are used by human observers in gender
categorization tasks. These studies have generally con-
cluded that the eye-region is important for humans to
determine the gender of a presented face. However, these
studies did not evaluate the ability of these models to
predict the gender-classification decisions of human
observers on novel stimuli.
Our approach is an extension of classification image

techniques which use generalized linear models (such as
logistic regression) (Knoblauch & Maloney, 2008). As we
use it to predict decisions in a binary classification task,
we refer to the estimated filters as decision images (Kienzle,
Franz, Scholkopf, & Wichmann, 2009; Wichmann, Graf,
Simoncelli, & Schoelkopf, 2005) (Yovel, Franz, Stilz, &
Schnitzler, 2008, in the auditory domain). The central idea
is to train a statistical classification algorithm on the
responses provided by human subjects in a psychophysical
task (here: perceived gender) instead of ground truth (real
gender). In this way, we will obtain decision images
which resemble the internal decision space of individual
human subjects, rather than create a decision space that
optimally separates the physical stimulus classes, as is
done when training learning machines on problems in
engineering (Gray et al., 1995; Moghaddam & Yang,
2002). Clearly, if human observers perform above chance-
level, the extracted decision boundaries will be correlated
with the (physically) optimal decision boundaries. We
perform additional analyses to show that the extracted
decision models do not merely reflect the optimal features,
but rather observer-specific decision boundaries.
We are not limited to predicting an observer’s binary

response (correct versus incorrect) but we can predict the
observer’s response probabilities, e.g. when indicating
the gender of human faces shown repeatedly during a
gender discrimination task. By using repeated stimulus
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presentations, we can also quantitatively evaluate and
compare decision images corresponding to different cate-
gorization models. The decision image not only defines the
critical region-of-interest within a stimulus (as the bubbles
technique does) but, similar to a classification image it
is a quantitative template which defines a direction in
stimulus space. Therefore, they can be used for the
generation of optimized stimuli (Wang & Simoncelli,
2008) for subsequent psychophysical experiments, as we
will show below. In contrast to classification images (which
are defined relative to the noise used in the experiment),
the decision images can be interpreted relative to the
natural variability in the stimulus.

Methods I

Statistical techniques
Estimating informative features

Of the very many potential stimulus features a human
observer may use when performing a classification task,
we aim to extract those features of the stimulus which are
predictive of their decisions. In general, we consider an
experiment in which each of n stimuli siVtypically an
image in visual psychophysics, but equally a sound in
auditory psychophysicsVis presented multiple times (m
presentations). At each presentation j, the observer
responds with a binary decision yij Z {1, j1}, depending
on whether they perceive the stimulus to be belonging
to class j1 or 1Vfemale or male in case of the
experiments reported herein. We assume decisions to be
stochastic, i.e. that observers respond with probability
P(Yi = 1ksi) = :p(si). Statistically speaking, we assume
each trial of the experiment to be an independent
Bernoulli trial, an assumption that is widespread in
psychophysics (e.g. Wichmann & Hill, 2001a). Here we
estimate the decision probabilities by using the empirical
estimate p̂(si) =

1
m#{ j : yij = 1}, but our method can also be

applied in situations where the p̂(si)’s are obtained in a
different manner, e.g. by explicit uncertainty estimates
provided by the observers. The use of m multiple
presentations allows for the quantitative assessment of
the resulting model, i.e. how much of the variability in the
human responses is accounted for Murray, Bennett, and
Sekuler (2002).
Our key interest is to link the relative decision

frequencies (referred to as “empirical probabilities” in
the following) with the stimulus: Given a stimulus si, we
want to obtain a prediction of the corresponding p(si).
This task is analogous to fitting psychometric functions
(Wichmann & Hill, 2001a), with the difference that here
s is high-dimensional rather than univariate. We assume
that the relationship between the stimulus and the decision

probability can be represented by the combination of a
linear filter 5 and a static nonlinearity f, i.e. by a model of
the form

pðsiÞ ¼ f ð5Õsi þ "Þ: ð1Þ

Models of this form are sometimes referred to as linear–
nonlinear cascade models in computational neuroscience
(Simoncelli, Paninski, & Schwartz, 2004) or Generalized
Linear models in statistics (McCullagh & Nelder, 1989).
Linear–nonlinear models have been extensively studied in
psychophysics (Knoblauch & Maloney, 2008; Neri, 2004)
and successfully applied in a variety of tasks. Clearly,
there are also many situations in which this model is too
constrained to provide a good model of human behavior,
for example for the recognition of objects embedded in a
natural scene.
In the formula above, 5 is a vector of the same

dimensionality as s. (If the stimulus s is an image of
arbitrary dimension K � Z (as in visual psychophysics) we
simply re-shape s to be a vector of dimension KZ � 1.)
The scalar " is a bias term which can be used to shift the
decision boundary p(s) = 0.5 closer to one class or the
other. To calculate the predicted classification probability,
we take an inner product between the stimulus si and 5,
add ", and apply a static nonlinearity f to the result. In our
psychophysical application we refer to 5 as the decision
image, in neurophysiology it would be referred to as the
receptive field. In psychophysics, the nonlinearity f is a
psychometric function which maps the real-valued filter
outputs zi = 5Bsi + " to probabilities in the range [0,1]. In
neurophysiology, f could be used to model nonlinear
spike-generation mechanisms. All stimuli s which lie in
the hyperplane given by the equation 5Bs + " = z for some
z will have the same decision probability p(s) = f(z). In
particular, the decision boundary p(s) = 0.5 is the hyper-
plane 5Bs + " = fj1(1

2
). The decision probability p(si) is

thus a function of the (signed) distance of si to this
decision hyper-plane: Moving stimuli perpendicular to the
decision boundary will increase (or decrease) the associ-
ated decision probabilities, whereas moving in parallel
will keep them constant.
Our aim is to find 5Vthe weight vector or decision

imageVand the function f such that the predicted
probabilities p(si) are as close as possible to the empirical
probabilities p̂(si), a task analogous to psychometric
function fitting. As optimizing both the decision image
and the nonlinearity f together would be a non-convex
optimization problem, we will separate the two stages in a
way that is analogous to techniques for estimating
receptive fields in neurophysiology (Sharpee, Miller, &
Stryker, 2008): First, we estimate the decision image 5
under the assumption that the nonlinearity is the logistic
function, and then optimize the nonlinearity in a second
step.
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Estimation of the decision image 5

Finding the direction 5 along which the two classes
vary most can be regarded as a classification problem, as
in Wichmann et al. (2005): Linear algorithms, such as
support vector machines, can be used to find the direction
of maximal separation between the two sets of stimuli,
here female and male faces. Unlike in Wichmann et al.
(2005), however, we present each stimulus m times, and
thus we have not only the observer’s binary decision for
each stimulus, but also an estimate of the decision
probability p̂(si) over the m repetitions. Hence, we can
interpret the estimation step as a regression from si
against p̂i: we move from binary classification as in
Wichmann et al. (2005) to probability estimation. One
standard algorithm for this task is penalized logistic
regression, which finds 5 by minimizing the objective
function

L ¼
X

i

p̂ðsiÞlogð1þ ejð5Õsiþ"ÞÞ
þð1j p̂ðsiÞÞlogð1þ e5

Õsiþ"Þ þ )kk5kk2: ð2Þ

This is equivalent to maximizing the regularized log-
likelihood under the assumption that the nonlinearity f
is the logistic function l(t) = (1 + exp(jt))j1, where t is
the signed distance to the separating hyperplane. Although
we do not restrict f to be of this form, psychometric
functions can often be well approximated by such a shape.
Importantly, the cost function of logistic regression is
convex. Therefore, the optimization problem has a unique
solution, a single, global optimum which can be found
efficiently. The loss function in Equation 2 is linear in the
probabilities ( p̂). Thus, for logistic regression, the two
views of classification with repeated stimuli and regres-
sion onto probabilities are mathematically equivalent.
The regularization term )kk5kk2 is used to avoid over-

fitting, which is important in high-dimensional regression
problems (Hofmann, Schölkopf, & Smola, 2008). In a
Bayesian setting, maximization of the penalized log-
likelihood can be interpreted as finding the maximum-
a-posterior estimate (MAP) for 5: In this case, the
regularization term is the log of the prior distribution over
parameters 5, i. e. a prior of the form exp(jkk5kk2)) is
assumed. In any case, choice of the regularizer should be
guided by prior knowledge about the problem. Often,
however, explicit domain knowledge is unavailable, or
unreliable, and then the regularization term is used to
enforce smoothness (Knoblauch & Maloney, 2008) or
sparseness (Gerwinn, Macke, Seeger, & Bethge, 2008;
Mineault, Barthelme, & Pack, 2009) of the filters 5. Note
that in this case the regularization term acts very much
like the penalty terms in model selection (Jäkel, Schölkopf,
& Wichmann, 2007). Applying our decision image
estimation technique to gender classification of faces,

we simply chose the standard regularization kk5kk2 = ~i5i
2.

It is possible that more informed choices of the regulariza-
tion term may lead to even better results (Knoblauch &
Maloney, 2008). The regularization parameter ) which
determines the trade-off the goodness-of-fit of the data
with the penalty for overly complex models was chosen
by ten-fold cross-validation. This means that we repeat-
edly fitted the model on 90% of the data, and took those
parameters which, on average, lead to the best perform-
ance on the remaining 10% of the data.
It can be shown that the vector 5 which minimizes the

function in Equation 2 (where the summation is over the
entire training set) will always be in the subspace spanned
by the training stimuli si, the so-called representer
theorem (Hofmann et al., 2008). Thus, rather than work-
ing in the full space of K � Z-dimensional stimuli, we can
perform an (orthogonal) change of variables and work in a
n dimensional space (if there are n stimuli): We apply a
PCA to the full set of stimuli, but keep all n principal
components, and thus still work in the space spanned by
all n stimuli: We use PCA to increase computation
efficiency by dimensionality reduction (n = 428; K � Z =
65536), but not for it to have any influence on the
performance of the algorithms (Abdi et al., 1995). (An
orthogonal change of variables does not affect any linear
algorithm, as it leaves the inner products between any two
vectors unchanged.)
If the stimuli si are high-dimensional compared to the

number of datapoints (K � Z d n) it is always possible to
perfectly fit the model to the data. Consequently, mere
goodness of fit can not be used as a performance measure.
Instead, we directly tested how well the model can predict
data the model was not trained on. Therefore, to obtain a
realistic estimate of the generalization performance of the
model, we use cross-validation: The model is fitted to a
subset of the data, and then the performance is evaluated
on a different and disjoint subset. We used leave-one-out
estimates: To predict the output of the model to the
stimulus si, which we call zi, we trained it on all other
stimuli but si. All values of zi in this article, including
those in the figures, are cross-validated predictions. Thus,
we have two levels of cross-validation: We use 10-fold
cross validation to find the regularization parameter ), and
we use leave-one-out estimates to report predictions (and
thus evaluate how well our decision images really predict
human behavior) (Bishop, 2006).

Fitting the nonlinearity f

Above, we estimated 5 under the assumption that the
nonlinearity is the logistic function l(s). In practice,
however, it often leads to superior performance to re-
adjust the nonlinearity after identification of the filters:
Having estimated 5, we can calculate the scalar products
zi = 5Bxi and determine f by fitting a function to the set of
points (z1, p̂1)I(zn, p̂n). Assuming each subject’s response
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to be the outcome of a Bernoulli trial, we find f by
maximizing the log-likelihood

lð f ; p̂; zÞ ¼
Xn

i¼1

p̂ilogð f ðziÞÞ þ ð1j p̂iÞlogð1j f ðziÞÞ;

ð3Þ

(see Wichmann & Hill, 2001a for details).
To each data set, we fitted each of three functions with

two free parameter (a thresholded linear, a Weibull
(asymmetric) and a logistic (symmetric) function to cover
the most often required shapes of the psychometric
function). For further analysis we picked the functional
form that yielded the best fit. Almost always the data were
best fit by the logistic function. Human observers occa-
sionally “lapse” independently of stimulus magnitude, for
example because of eye-blinks, attentional fluctuations, or
finger-errors. In the current settings this translates into a
nonzero probability that an observer will indicate to have
seen a female (or male) face even if the opposite gender
should have been “crystal clear”. Such lapses potentially
lead to serious parameter misestimates during maximum-
likelihood fitting. This can be overcome if the asymptotic
error probabilities are fitted simultaneously (Wichmann
& Hill, 2001a). Therefore, the fit of the pointwise
nonlinearity involves a total of 4 free parameters (two
for the function proper, two for the asymptotes), as well as
selection of the best fitting function type. Simultaneous
fitting of both the filter 5 and the asymptotes did not lead
to any gain in prediction performance, most likely because
such an optimization is non-convex: the theoretical
advantage of estimating the decision image 5 and the
asymptotes directly together is more than offset by the
disadvantage of non-convex optimization.1

Comparison with alternative models

There are alternative models attempting to predict the
decisions of human subjects. For example, one could
assume a simple classification model in which each
stimulus is assigned to the class whose mean is closer.
We refer to this model as the prototype classifier, and this
is a very popular model for face perception (Burton,
Jenkins, Hancock, & White, 2005; Leopold, Bondar, &
Giese, 2006; Loffler, Yourganov, Wilkinson, & Wilson,
2005). The prototype classifier can be cast in our linear–
nonlinear cascade framework. Its filter 5 is simply given
by 5prot =

1
nm~ijyijsi, i.e. the difference of the two class

means.
The simple prototype classifier ignores the fact that

the different dimensions of the stimuli (i. e., the pixel-
intensities) are correlated. However, one can correct for
these correlations by pre-multiplying the filter 5 by the

inverse of the within-class covariance Cwithin, yielding the
filter 5lda = Cwithin

j15prot. This algorithm (Lu et al., 2003)
is known as (Fisher’s) linear discriminant analysis in
statistics (LDA in the following). In psychology, it has
been noted several times that it is important to take the
variances (and co-variances) into account when learning a
category (Fried & Holyoak, 1984; Reed, 1972). This
effectively results in categorization models which are
related to LDA. LDA can be shown to be an optimal
classifier, provided that the stimuli in each of the two
classes are Gaussian, have the same within-class cova-
riance, and the means and covariances are known exactly.
In practice, however, we do not know the exact means and
the covariance, and we have to estimate both from the
data. Misestimation of the covariance could result in
worse classification performance then the simple proto-
type classifier. On small data sets it is thus advisable to
use a regularized covariance estimate Creg = Cwithin + )1,
where 1 is an identity-matrix. We optimize the regulari-
zation ) by cross-validation, as we did for logistic
regression.
Finally, a decision boundary 5 can be found by

minimizing a different convex cost function in place of
the logistic-regression cost function from Equation 2. For
example, the support vector machine (SVM) algorithm
finds a decision boundary by minimizing the so-called
hinge-loss (Hofmann et al., 2008). The SVM is a general
purpose machine learning algorithm which has success-
fully been applied in a variety of domains, and has also
been used previously for the estimation of decision images
(Wichmann et al., 2005). We modified the original SVM-
algorithm (which performs binary classification) in order
to also take into account the estimated decision proba-
bilities p̂(si) (see Appendix A.1 for derivation and
discussion of our modified algorithm).
For each of these models, we first obtained the

corresponding filter 5, and then fitted the nonlinearity to
the residuals as described above.

Stimulus generation

We presented stimuli in four experimental conditions,
which differed in orientation, illumination and texture.
Figure 1 shows four example stimuli (two female and two
male faces). In condition 1, faces were presented in frontal
view, illuminated predominantly by diffuse, ambient light
and an additional point source (spotlight) at 65 degrees
azimuth and 25 degree eccentricity to create a “natural
looking” illumination. Faces were rendered with the same
texture obtained from a neutral mean face to eliminate
texture cues to gender, e.g. facial hair (Vetter & Troje,
1997). Condition 2 was identical to condition 1, except
that faces were shown slightly from the side, at an angle
of 15 degrees. Condition 3 differed from condition 2 in
that faces were shown with their original texture, i.e. each
face had a different texture. For some men with strong
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beard growth this meant that there was a slightly darker
region around the mouth. In condition 4, we used the same
view and texture as condition 2, but a different illumina-
tion: The light source had no diffuse ambient component,
resulting in a sharp spotlight creating deep shadows.
For each condition 428 images of faces (256� 256-pixel

resolution; 215 females and 213 males) were generated
using the MPI-face database.2 173 of these 428 were
obtained by morphing pairs of randomly selected faces
of the same gender using methods described in Blanz
and Vetter (1999). The morphs were linear in texture-
coordinates, but not in pixel-space.
All faces were normalized to have the same mean and

standard deviation of pixel intensity (Russell, 2009), the

same area (i.e. no size cue), and the faces were aligned
such that the cross-correlation of each face to a mean face
of the database was maximal.
Stimuli were presented using a carefully linearized

Siemens SMM21106LS gray-scale monitor driven by a
Cambridge Research Systems Visage display controller
(spatial resolution 1024 � 768 at a refresh rate of 130 Hz
non-interlaced). Neither male nor female faces changed
the mean luminance of the display. Subjects viewed the
screen binocularly with their head stabilized by a headrest.
In the first set of experiments, the mean luminance of

the screen was 213 cd/m2 for conditions 1 to 3 and 181 cd/
m2 for condition 4. The temporal envelope of stimulus
presentation was a modified Hanning window (a raised
cosine function with rise and fall times of 200 ms and a
plateau time of 800 ms). Faces were presented in random
order and subjects were instructed to respond quickly; the
median response time was 647 ms with a standard
deviation of 190 ms after stimulus onset, i.e. on the vast
majority of trials subjects responded whilst the stimuli
were still on screen. No feedback as to whether the response
was correct was provided. At the viewing distance of 60 cm
the stimuli (nominally) subtended 9.5 degrees of visual
angle. Seven observers with normal or corrected-to-
normal vision who were naive to the purpose of the
experiment acted as experimental subjects; they were paid
for their participation. Each subject categorized each of the
428 faces per condition 10 times, for a total of 4280 trials
per subject and condition, i.e. 17 120 trials per subject in
total and a grand total of 119 840 trials reported in this
study. Stimuli were presented in blocks of (about) 500
stimuli from each condition, and the order of blocks and
stimuli within each block was randomized.

Results I

Performance of observers in the gender
discrimination task

In each condition, each of the 428 stimuli was presented
10 times to the observers in random order. Subjects
indicated the perceived gender by pressing one of two
buttons. Overall, observers performed accurately, but not
at ceiling, with an average percentage correct (pc) of
85.0%, (SEM 1.80%).
There was a bias towards responding “male,” which was

indicated 59.0% of the time (SEM 2.9%), on a balanced
stimulus set. Consistent with previous studies (Troje &
Bulthoff, 1996, and references therein), observers were
slightly better at discriminating the faces which were
shown slightly from the side (condition 2, pc = 84%, SEM
2.0% than when presented in frontal view (condition 1,
pc = 81%, SEM 2.3%). Each of the observers performed
better on condition 2 than on condition 1 (binomial test, 7

Figure 1. Examples of faces used in the experiments; the two
leftmost columns show the same two female, the two rightmost
columns the same two male faces. Observers were asked to
indicate the gender of a presented face. Conditions differed in
orientation, illumination and texture. Top row, condition 1: faces
were presented in frontal view, illuminated predominantly by
diffuse, ambient light and an additional point source (spotlight) at
65 degrees azimuth and 25 degree eccentricity to create a
“natural looking” illumination; faces were rendered with the same
texture obtained from a neutral mean face to eliminate texture
cues to gender. Second row, condition 2: same as condition 1
except that faces were shown slightly from the side, at an angle of
15 degrees. Third row, condition 3: same as condition 2 except
that faces were shown with their original texture, i.e. each face
had a different texture. For some men with strong beard growth,
like the gentleman in the rightmost column, this meant that there
was a slightly darker region around the mouthVat least from an
introspective point of view a reasonable cue to gender. Bottom
row, condition 4: same as condition 2 (mean facial texture for all
faces) except that the illumination had no diffuse, ambient
component resulting in a sharp spotlight creating deep shadows.
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out of 7, p G 0.01). The stimuli in conditions 2 and 3 were
identical except for the fact that the faces in condition 3
were rendered with their original texture, whereas an
uninformative texture was used in condition 2. Not
surprisingly, the texture-cue helped gender-discrimination
performance, with the average up to pc = 90%, SEM
1.2%, in this condition, and all observers performing
better in this condition than in condition 2 (7 out of 7,
p G 0.01). Condition 4 consisted of faces which where
presented slightly from the side, had a neutral texture, and
in which the shadows caused by the spotlight illumination
removed some potential cues. This condition proved to be
of intermediate difficulty, with an average performance
level between those of conditions 2 and 3 (pc = 85%,
SEM 1.7%).
The errors made by the observers in determining the

gender of a face cannot (solely) be attributed to stimulus-
independent lapses, but depended on the stimuli in a
systematic fashion: First, within each observer, the
probability of an error depended strongly on the stimulus.
On both female and male faces separately, the errors per
stimulus were inconsistent with the assumption that
occurrence-probability of an error was independent of
stimulus identity. The mutual information between
“stimulus” and “error” was 0.14 bits (average across
observers and gender of stimulus, no bias correction, SEM
0.007). The hypothesis of independence could thus be
rejected (G-test (Kullback, 1997), p G 0.01 for each
observer). Second, observers had a tendency to make
errors on the same stimuli, indicating that some faces were
more difficult to categorize than others. We correlated the
response probabilities between observers for female and
male faces separately. The mean rank-correlation between
the error-probabilities of any two observers was 0.27 for
the female, and 0.57 for the male faces. The correlations
between any two observers were significant (p G 0.05)
on the male faces for each pair of observers in each
condition, and on 95% of pairs for the female faces (158/
168 pairs). Thus, it is clear that some faces are more
difficult to categorize than others, and that there is a
significant amount of agreement amongst observers about
which of the stimuli are difficult. However, we will show
below that there are also significant differences between
observers, and that the decision image technique’s sensi-
tivity is high enough to identify those differences.

Modeling decision probabilities of a single
observer

To capture the relationship between the face stimuli s
and decision probabilities p(s), we fitted a (penalized)
logistic regression to the psychophysical data of each
observer and condition. We first describe the data of
observer CGF for condition 3 fitted with the logistic-

regression model (Logreg), and compare it to the simple
prototype model (Prot).
Observer CGF chose the correct gender with probability

0.88. Our decision model fitted with logistic regression
chose the correct gender with probability 0.87, whereas
the prototype classifier chose the correct gender only with
probability 0.75. For a model to be a good predictor of the
decisions of the observer, we would, at the very least,
expect that they can also predict which of the stimuli the
observer perceived as female. Logreg predicted the class
(i.e. gender) chosen by the observer in 93% of cases. Prot,
on the other hand, was correct only 83.0% of the time.
Figure 2A depicts the psychometric function of observer
CGF for condition 3 predicted by the logistic regression
model. The empirically estimated gender assignment
probability ( p̂(s)) for each face (y-axis) is plotted against
the distance of that face from the decision boundary (filled
yellow circles; B = 428)). The black line is the decision
probability p(s) predicted by the model. To help judge the
quality of the fitVgiven that N is large and that many
data-points overlapVthe gray histograms show the dis-
tribution of classification responses. The top histogram
consists of all the stimuli which are predominately
classified by the observer as female p̂(9) Q 0.5), the
bottom histogram those classified as male. Stimuli which
fall outside two standard deviations of the model-
prediction are colored in red.
Clearly, for any model with good predictive power the

data-points (filled yellow circles) should be scattered
around the model prediction. For a perfect model fit the
only source of deviation between model prediction and
data is the (unavoidable) binomial noise resulting from the
Bernoulli decision process. For a perfect model one
requirement is that only 5% of the data-points should fall
outside two standard deviations from the model prediction
(gray lines). For the logistic regression model Q = 12.0%
of points fall outside two standard deviationsVnot
perfect, but arguably reasonable (88% versus 95% fall
within two standard deviations). In addition, we quantify
for each face its “deviation” from the model-prediction by
the deviance residual (Wichmann & Hill, 2001a). For a
perfect model the average deviance D�Vdefined as the
(total) deviance divided by the number of data-pointsVis
expected to be, on average, 1.0 (Wichmann & Hill, 2001a,
2001b). In practice in low-level psychophysical tasks
average deviance values around 1.5 still are regarded as a
“good” fit of the model (e.g. Goris, Wagemans, &
Wichmann, 2008; Wichmann, 1999). For the logistic
regression model shown in Figure 2 the average deviance
equaled 1.81Vagain not perfect, but reasonably close
given the simplicity of our model: a linear filter, the
decision image, followed by a static nonlinearity (the
fitted psychometric function).
To see whether the inflated average deviance D� arises

from systematic errors in the logistic regression model, we
performed a Monte Carlo simulation of a “synthetic”
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observer which is described exactly by the logistic
regression model. We performed 500 such experiments,
and compared the simulated deviance residuals to those
observed experimentally. Figure 2B shows the histogram
of deviance residuals for observer CGF and condition one
as well as simulated deviance residuals for the logistic-
regression model. The close similarity of the histograms
indicates that the fitted regression model and empirically
obtained data from observer CGF match well. To quantify
the similarity, in Figure 2C we plot the cumulative
distribution of empirical and simulated deviance residuals,
and perform a Kolmogorov–Smirnov test for the difference
of cumulative distributions. For each of the 500 simulated
experiments, we calculated the p-value for rejecting the
null-hypothesis of no difference. In this case, the median
p-value was 0.02. Thus, in most cases, the null-hypothesis
of no difference could be rejected at a level of 5%, but not
at 1%. Again, this indicates that the logistic regression
decision image accounts for a large part, but not all of
CGF’s gender discrimination probabilities.
For comparison, Figure 3 shows the same psychophys-

ical data, but using the prototype classifier as predictive
model. In this case, the deviations from the model
prediction are much larger, the average deviance was

4.92. This indicates the clear failure of the simple Prot
model for which Q = 36.0% of the data points are more
than two standard deviations away from the model
prediction. Figures 3B and 3C show the histogram and
cumulative distributions of residuals for the prototype
model. The differences between the simulated and real data
are evident, and the median p-value of the Kolmogorov–
Smirnov test was p = 6.1 � 10j10, and less than 0.01 for
each simulation. Thus, while the overall percentage
correct of this model was seemingly highVthe Prot model
predicts the observer’s gender assignment 83.0% of the
timeVevaluating its model performance on a stimulus-by-
stimulus basis shows that the prototype classifier predicts
the decision probabilities of the observer only poorly.
The discrepancies on a stimulus by stimulus level

clearly underscore the importance of analyzing a model
in detail: predicting the overall categorization perform-
ance does not imply that the model is a good description
of the underlying psychophysical process. To further test
and quantify the difference between the different ways to
obtain the decision image, i.e. logistic regression versus
mean-of-class (prototype), we calculated rank-correlations
between the measured responses p̂(si) and the distances to
the decision boundary in the model, z(si)Vthis statistic is

Figure 2. Data for observer CGF in condition 3 using logistic regression to estimate the decision image. A) Gender assignment probability
for a face on the y-axis is plotted against the distance of that face from the decision boundary in the decision image model (filled yellow
circles; N = 428). For a model with good predictive power the data-points (filled yellow circles) should be scattered around the model
prediction (black line) with deviations consistent with a binomial decision process; for a perfectly correct model 95% of the data-points
should be within two standard deviations from the model prediction (gray lines). To help judge the quality of the fitVgiven that N is large
and many data-points fall on top anotherVthe gray histograms show the distribution of classification responses (top histogram: p̂(9) Q
0.5); bottom histogram: (p̂(S) 9 0.5). Stimuli falling outside the 95%-confidence intervals of the model-prediction are colored in red in the
histograms. (For details on Q see text.) B) Histogram of deviance residuals (yellow): The deviance of each data-point is the signed
distance from the model prediction rescaled by its (binomial) standard deviation; for comparison the histogram of expected deviance
residuals for an exactly correct model is shown (black line). (For details on D see text.) C) Cumulative distribution of deviances (yellow
line): Cumulative distribution of deviance residuals rather than the histogram. Again, for comparison the cumulative distribution of
expected deviance residuals for an exactly correct model is shown (black line). (p is the p-value of a KS-test on the two distributions, for
details see text.)
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independent of the fitted (monotonic) nonlinearity. Due to
the binomial scatter, the median expected rank correlation
even of a perfect model would not be 1.0, but 0.915. (We
obtained 0.915 from Monte Carlo simulations of a
synthetic observer which is perfectly described by the
model, see above.) The rank correlation for Logreg was
0.88. In stark contrast, the rank-correlation for Prot was
only 0.74 (simulated: 0.92).

Conditional correlations: Predictions beyond
class-structure

Some of the correlation between our model and the
experimental data is, however, a consequence of the fact
that the stimuli fall into distinct classes. If a classification
algorithm and an observer classify most of the stimuli
correctly, their decisions will be correlated even if the
algorithm was not fit to the psychophysical data of the
human observer at all and may use entirely different
features to perform the task. Thus, we need to perform
additional analyses to determine whether the model is
capturing the decisions of the observers, and not simply the
class-structure of the stimulus.
Thus we need to determine whether the algorithm

can predict the perceived gender of each face (by each
observer), and not just the true gender of each face. This
can be achieved by calculating correlations conditioned
on the stimulus class, here gender. Correlations between
human responses and the model that we find using only
stimuli in one class indicate that the model is indeed
capturing the observers decisions, and not just re-
discovering the class-structure of the stimulus set. For a
perfectly correct observerVi.e. an observer for which we
know the decision features exactlyVthe median correla-
tions were 0.75 on the female faces and 0.58 on the male
faces. The overall conditional correlation, taken as the

mean of the two correlations, was 0.68. For the Logreg
model the rank correlations between decisions and model
predictions were 0.56 on the female faces, and 0.45 on the
male faces, conditional correlation thus 0.51 (p G 10j10 in
both cases). In contrast, the conditional correlations for
Prot was only 0.24 (female: 0.27, male: 0.22). This
provides further evidence that the prototype model is
inadequate for modeling the observer’s decisions.

Summary statistics across observers

So far, we performed a detailed comparison of the
performance of the logistic-regression model with the
simple prototype classifier for a single subject, and
showed that the prototype classifier is unable to predict
his responses. In contrast, the logistic regression model is
a good predictor, and is statistically similar to a perfectly
correct model. In the following, we show that these results
also hold for the other observers and conditions. We
report a summary of performance statistics in Table 1).
Across observers and conditions, the average deviance

of the logistic regression model was 1.94 (SEM 0.0578,
median 1.8978), and was smaller than 2.39 for each
subject and condition. For single subjects, the values
(average across conditions) ranged from 1.80 to 2.2.
Performance was slightly better on conditions 3 and 1
(1.85 and 1.87) than on 2 and 4 (1.99, 2.02). For the
prototype classifier, the mean average deviance was 4.38
(SEM 0.30, median 3.99.), and the average deviance was
larger than 3.25 in each experiment (see also Figure 6,
top left).
The rank-correlation between predictions and actual

responses was 0.86 (SEM 0.0035, median 0.86) for the
logistic regression model, which was very close to the
corresponding value for the simulated observers, which
had an average correlation of 0.91. For the prototype

Figure 3. Data for observer CGF in condition 3 re-plotted from Figure 2 but using the prototype classifier as predictive model.
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classifier, the correlation was 0.72 on average (simulated:
0.90). Additionally, we want to evaluate the ability of
the classifiers to predict the observers decisions (and not
merely the class-structure of the stimulus) by calculating
conditional correlations: The average conditional corre-
lation for the logistic regression model was 0.46 (SEM
0.021, median 0.46, simulated: 0.65), whereas for the
prototype classifier it was only 0.20 (SEM 0.0064, median
0.20, simulated 0.70). Thus, while the logistic regression
model gets reasonably close to “optimal” (as estimated
from the simulated data assuming an exact model fit), this
is not the case for the prototype classifier. Figure 6 (first
column) shows these comparisons for the two models and
for each subject and condition.
As specified above, 173 stimuli were created by

morphing two faces of the same gender, with methods as
described in Blanz and Vetter (1999). We also analyzed
prediction performance of the decision image models
separately on the 255 genuine faces. On this stimulus set,
the overall prediction performance was reduced slightly:
The average correlation between responses and prediction
dropped from 0.86 to 0.85, the class conditional correla-
tion stayed at 0.46, and the average deviance was
increased to 2.23.
We also analyzed model performance by pooling the

data across conditions and observers: For each stimulus si,
we estimated the average probability of it being classified
as female p̂pool(si), where the average is now across all
experiments. Similarly, we calculate the predicted proba-
bility ppool(si) by averaging the predictions on different
experiments. Figures 4A and 5A show scatter plots of the

decision probabilities plotted against the model predic-
tions. For the logistic regression model (Figure 4), the
decision image model predictions and those of the
observers are highly correlated c = 0.94, whereas for the
prototype classifier (Figure 5), the correlation is 0.80. The
conditional correlation is 0.76 for Logreg (higher than for
the typical single subject, as the noise can average out
across observers), but only 0.30 for Prot. Thus, while the
performance of the prototype classifier can be attributed
mainly to its ability to reproduce the class-structure of the
stimulus, the logistic regression model is highly correlated
with the decisions of the human observers even within
each class.
Finally, we calculated pooled deviance residuals for

every stimulus by averaging residuals across experiments.
Figures 4C and 5C compare the histograms of the actual
pooled residuals against those from simulated observers:
For the logistic regression model, the histograms are
highly overlapping, whereas for the prototype classifier,
many residuals are larger than they should be for a model
fitting the data well.

Comparison with other models: Fisher’s
linear discriminant and SVM

Next, we will compare the logistic-regression model
and the simple prototype classifier with alternative
models, namely Fisher’s linear discriminant (LDA) and
linear support vector machines (SVM). The performance
of LDA is of interest, as it can be interpreted as a more

Figure 4. Summary plot for the logistic regression decision image model across all 7 subjects and 4 conditions for each of the N = 428
face stimuli. (Each of the 428 data-points is based on 10 � 7 � 4 = 280 observations.) A) The (average) male-decision probability p(S) on
the x-axis is plotted against model predictions on the y-axis. Decision image model predictions and those of the observers are highly
correlated, c = 0.97. B) Histograms of expected (black) and observed (blue) deviance residuals as in Figure 2B but averaged across all
7 subjects and 4 conditions. C) Cumulative distribution of expected and observed deviance residuals as in Figure 2C but averaged across
all 7 subjects and 4 conditions.
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principled variant of the prototype learner which also
takes into account the covariance structure of the stimulus
(Ashby & Gott, 1988; Fried & Holyoak, 1984; Reed,
1972). Support vector machines have been used in a
variety of technical applications, as well as for the
estimation of decision images in previous studies (Graf
et al., 2006). We used a modified version of the SVM
algorithm which also take the decision probabilities into
account (see Appendix A). Figure 6 compares the
performance statistics of these models with our decision
image model across conditions and observers. Summary
statistics can be found in Table 1.
The decision image model estimated with LDA was

much better than the prototype classifier, and had an
average deviance of 2.24 (SEM 0.11, median 2.18). Thus,
taking into account the covariance structure of each class
can considerably improve the ability of means-of-class
classifier to model our psychophysical data. However,
LDA was markedly worse than the logistic regression
model: For each of the 28 conditions (7 observers, 4
stimulus types), the average deviance across conditions
was higher than that of the logistic regression model (p G
10j9). In addition, the mean deviance was also signifi-
cantly higher (paired-sample t-test, p = 0.0003). Qualita-
tively, the same also holds true for our other performance
measures, as can be seen from Figure 6, second column.
Finally, using the SVM resulted in an average deviance

of 2.38 (SEM 0.12, median 2.29), and was outperformed
by both the logistic regression (see Figure 6, right column)
and the LDA model: It had a lower average deviance than
LDA in only 3 out of 28 experiments (p = 1.4I10j5). In
addition, both its rank correlation and class-conditional
correlation with the observer’s decisions were lower in
27 out of 28 comparisons (p G 10j6). Thus, while the
LDA and the SVM performed much better than the simple
prototype classifier, they did not reach the same level

of accuracy as the decision image model estimated by
logistic regression. This was also the case when we
excluded the morph faces. The logistic regression model
performed better than linear discriminant analysis (26 out
of 28 conditions and observers), which in turn performed
better than the SVM (28 out of 28) and the prototype
classifier (average deviance 4.87). For modeling gender
categorization of human faces logistic regression thus
appears to be the method of choice to estimate the
decision image (at least superior to LDA, SVM and the
simple prototype).

Analyzing predictions across observers

In a reasonably easy task, there is necessarily a lot of
agreement between observers in which stimuli are
perceived as male or female. As a result, the average rank
correlation between the responses of any two observers is
high, and we found it was 0.82 for our observers. Thus,
the responses of any one observer can be used as a predictor
for predicting the responses of any other observer. We
investigated whether our decision models were better
predictors than these “cross-observer” predictions. If so,
this implies that the fitted logistic regression model is sen-
sitive to an individual’s idiosyncratic features used to
assign gender (Peterson & Eckstein, 2009), i.e. that the
individual differences between the decision images are not
merely “noise” but contain crucial inter-observer differences.
The logistic regression models were better at predicting

responses (as measured by rank-correlation) than another
human observer in 98% out of 4 � 6 � 7 = 168
comparisons (95% when we excluded the morphed faces),
and in 82% if only considering percent correct. For each
of the 28 experiments, the model-prediction was better

Figure 5. Summary plot with data re-plotted from Figure 4 but using the prototype classifier as predictive model.
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then the (averaged) performance of the other 6 observers
(see Figure 7). For the Prot, the cross-observer predictions
were better in 98% of all comparisons. LDA and SVM
showed better performance for 88%, resp. 76% of compar-
isons, but neither reached the level of performance of the
logistic regression model.

Correlating reaction times with predictions

Above we showed that responses of the observers in our
experiments could be predicted fairly well by a simple
generalized linear model. However, the model was not
perfect, and a small number of faces were not predicted

Figure 6. Comparing the performance of the decision model estimated using logistic regression with other estimation methods; the diagonal
lines in each of the subplots mark the equal performance contour. Top row: Comparison of the average deviance of the logistic regression
model with those of the prototype model, the Fisher discriminant model, and the support vector machine (from left to right). For each of the
four conditions and seven subjects, the logistic regression model outperforms the three alternative models. Second row: Scatter plots of the
rank-correlations of the model-predictions with the subjects’ predictions. Bottom row: Scatter plots of the partial rank-correlation
between the predicted and observed probabilities after conditioning on the true gender of each stimulus. Partial rank-correlation conditioned
on the true gender show how well a model predicts the exact decision probabilities and not just the gender; see text for details.
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well, i.e. their deviance residuals were clearly too large.
What makes these stimuli harder to predict? One
hypothesis is that our decision image model can predict
human responses better if the decision is mainly driven
by bottom-up cues from the stimulus and is made
quickly. If observers spend more time cogitating about
their decision, perhaps comparing the current face to
ones that she is familiar with, our model based purely on

a linear stimulus filter is bound to fail. If this were
correct, this would imply that stimuli for which reaction
times are low have small deviance residuals, and vice
versa.
For each observer and condition, we separated all face

stimuli into 10 bins based on their reaction time (RT),
each containing 10% of all stimuli, and calculated the
average squared deviance residual in each bin (Wichmann

Model Average Deviance Percent Correct Rank Corr Corr(9) Corr(S)

Logreg 1.935 T 0.058 0.922 T 0.008 0.863 T 0.003 0.577 T 0.031 0.352 T 0.045
Prot 4.382 T 0.297 0.842 T 0.013 0.722 T 0.015 0.279 T 0.013 0.125 T 0.011
LDA 2.236 T 0.114 0.913 T 0.010 0.847 T 0.006 0.520 T 0.033 0.312 T 0.040
SVM 2.383 T 0.118 0.910 T 0.011 0.832 T 0.007 0.465 T 0.039 0.264 T 0.031

Table 1. Summary of results: For each of the four estimation methods, we show different performance metrics averaged over all observers
and conditions, with standard errors calculated across observers. Corr(9) and Corr(S) are the rank-correlations between the predictions
of the algorithm and the observers’ decisions evaluated on the female and male faces separately.

Figure 7. Comparing the performance of the decision model estimated using the prototype classifier, Fisher discriminant analysis and
logistic regression (left, middle, and rightmost columns, respectively) with cross-subject predictions; the diagonal lines in each of the
subplots mark the equal performance contour. Top row: Rank-correlations of the cross-subject predictions plotted against model-
predictions. (Rank-correlations of model predictions on the x-axes re-plotted from Figure 6, middle row; see text for details.) Bottom row:
Same as top row except that partial rank-correlations conditioned on the true gender are shown. (Partial rank-correlation of model
predictions on the x-axes re-plotted from Figure 6, bottom row; see text for details.)
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& Hill, 2001a). From Figure 8, one can see that the RTs
increases monotonically with binindex. In fact, the rank
correlation between the percentile and mean deviance is
perfect, c = 1. When we excluded the morphed faces from
the analysis, the correlation was 0.9. For very fast
decisions, the average deviance residual is as expected
from a perfect model, around 1.0, whereas for slow
decisions, they are substantially bigger. We repeated the
same analysis for each subject individually, and found a
significant correlation (at p G 0.01) for 6 out of the 7
subjects, with a median correlation of 0.94. The correla-
tion was also significant for each of the four conditions
separately, and was at least 0.96 in each case.
This analysis could be confounded if the deviance and

the reaction times both depend on the empirical decision
probabilities p̂(s): If a face is difficult to categorize, then
subjects might spend more time thinking about it. But if
the algorithms also have trouble in categorizing such faces
correctly, then the correlation between reaction times and
deviance residuals would merely be a consequence of the

common correlation with the factor “stimulus difficulty.”
To rule out this possibility, we computed a partial
correlation between the reaction times and deviance
residuals, conditioning on the decision probabilities. We
binned the decision probabilities into 5 bins, and normal-
ized the reaction times within each bin by subtracting
their mean and dividing by the standard deviation. This
processing step did not eliminate the correlation between
reaction time percentile and deviance, which was still
0.95, as can be seen from Figure 8. The conditional
correlation was also significant for each of the four
conditions (minimum 0.81) and for 6 out of 7 observers
(median 0.84). Similarly, for 21 out of 28 observers and
conditions separately, reaction times and deviance residuals
were significantly correlated (14 out of 28 conditioning
on response probability).
This analysis lends credibility to our claim that the

logistic regression model really captures the features used
by human observers when categorizing faces according to
gender if they respond quickly, and treat this as a
“sensory” decision. For longer decision timesVnot more
difficult decisionsVthey appear to use other strategies,
perhaps memory, to arrive at their gender judgement.

Methods II

Using decision images to generate new
stimuli

We can use the decision images to generate optimally
discriminable stimuli (Wang & Simoncelli, 2008). Accord-
ing to our model, the probability that a stimulus is classified
into a particular class, e.g. female, is monotonically related
to its distance from the decision boundary. Therefore, if we
add a multiple of the normal vector 15 (1 9 0) to any
stimulus s0, we can create a stimulus s0 + 15 with p(s0 +
15) 9 p(s0). For simplicity, we take s0 to be the mean face
in each condition.
Similarly, we can create a pair of stimuli symmetric

about s0 by adding or subtracting equal amounts of 5 to/
from it: p(s + 15) 9 p(s0 j 15) Moreover, the probabilities
vary fastest when we go perpendicular to the decision
boundary: For any other vector with kk5kk = kkJkk we have that
p(s0 j 15) e p(s0 j 1J) G p(s0 + 1J) e p(s0 + 15). The
reason is that 5BJ G 5B5 = kk5kk2 for any vector J with
kkJkk = kk5kk. As the absolute “length” kk5ikk is arbitrary, we
normalized the decision faces to have norm kk5kk = 1.0. In
other words, adding some multiple of 5 to a stimulus
should lead to stimuli which are more discriminable than
when any other vector (of same length) is added to s0. If 5
really captures the direction in feature space along which
the male–female perception varies the most, then even
small changes of 1 should lead to measurable changes in

Figure 8. Correlating reaction times (RTs) with the average
deviance for the decision images estimated using logistic
regression. For each subject and condition, faces were assigned
into ten RT-bins and the deviance residuals associated with each
face were averaged within a bin (see text for details on RT-bin
boundary assignment). Such averaged deviance is shown against
RT-bin percentiles (filled black circles; error bars correspond to
standard errors of the mean (SEM) across subjects). RTs are
likely a function of the observers’ gender assignment probabilities;
to remove this potentially confounding influence we conditioned
on the entropy of the observers’ responses (see text for details).
The correlation between RTs and average deviance persists after
conditioning (filled orange circles; error bars correspond to SEM
across subjects).
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the decision probability p(s + (15)). On the other hand,
the model predicts that addition of any vector + which is
orthogonal to 5 should not result in a stimulus which
looks more female or male than s0: p(s0 T 1+) = f(5B(s T
1+)) = f(5Bs0) = p(s0), if 5

B+ = 0.
Our approach of generating stimuli which are either

maximally discriminative or invariant with respect to the
stimulus class is related to previous studies of linear
mechanisms in psychophysics. For example, analogous
ideas based on the duality between the most-discriminable
directions and constant-response contours have been used
in color vision (Knoblauch, 1995).

Testing the models with optimized stimuli

We tested these predictions by conducting a second set
of experiments, in which three of the subjects of the first
experiment took part. The subjects performed a standard
spatial 2 alternative forced choice task in which they were
asked to indicate which of the two artificial faces s + 15
and s j 15 they perceived as looking more female. If the
values of 1 which lead to visible gender differences for the
filter 5 are smaller than the ones for an alternative filter J,
we can conclude that the model 5 captures the decision
boundary better than J. For each choice of 5, we tested
10 different values of 1 in order to map out psychometric
functions and thus test the sensitivity of the subjects to
changes in 5. The pairs of faces sT(15) were generated
using the decision images 5 obtained from the first
experiment. We used the 5s corresponding to the weight
vectors of logistic regression, the prototype classifier and
the support vector machine for conditions 1, 2 and 3. In
addition, we used a slightly low-passed version of the
Logreg filter 52. Using a prior which explicitly enforces
smooth decision boundaries would make this smoothing
step unnecessary (see Discussion) (Knoblauch & Maloney,
2008; Ross & Cohen, 2009).
In addition, we wanted to test the hypothesis that

subjects are insensitive to changes along a direction which
is thought to contain no information about gender, i.e.
directions within the decision boundary. This should lead
to much flatter, perhaps even degenerate psychometric
functions with p(s0 T 1+) = p(s0) for all values of 1. We
therefore generated two additional filters + for each
subject which were chosen to be orthogonal to the filter
of logistic regression, i.e. such that 5B+ = 0. We
constrained + to be a linear combination of the eigenvec-
tors of the data set of all faces, where the weights were
chosen to be of similar magnitude as the decision images.
This procedure was used with the aim of making the
statistics of the non-directions as similar to the decision
images as possible. However, as this constraint does not
uniquely determine + , we picked a direction at random for
each subject.

Each subject was tested on each of the five choices of
filters (corresponding to the prototype classifier, logistic
regression, low-pass logistic regression, two neutral
directions +), and on ten different values of 1. Combina-
tions were presented intermixed and in random order, and
each combination was presented 225 times. This resulted
in a total number of 11250 trials for each subject.
Pairs of faces s T 15 were presented next to each other

in the same experimental setup as described above. We
randomized whether the face on the left side corresponded
to s + 15 or s j 15. Each pair was presented using a
modified Hanning window with a rise time of 300 ms, a
plateau of 300 ms and a fall time of 300 ms. The inter-
stimulus interval was 200 ms. On each trial, the subjects
indicated whether the left face or the right face looked
more female by pressing a button on a touchpad. Subjects
were asked to respond quickly, and were not given
feedback on their performance.

Results II

Interpreting the decision images

The filter 5 of each model is a vector which has exactly
the same dimensionality as the stimuli (faces). Therefore,
it can be visualized as an image (see Figure 9), and this is
the reason we refer to these filters as decision images, or
“decision faces” in the particular experimental context
considered here. Both the decision image of logistic
regression and that of the prototype classifier place power
at the eye-region, indicating that this region is important
for gender categorization of human faces. This finding is
consistent with previous studies using bubbles (Dupuis-
Roy et al., 2009), classification images (Mangini &
Biederman, 2004; Sekuler et al., 2004), or analysis of
photographs and gender ratings (Russell, 2009). However,
while both models place emphasis on the eye region, they
actually have vastly different prediction performance:
Thus, mere localization of important regions is not
sufficient to predict human behavior, but the exact filter
shapes also matter.
Secondly, one can see that the decision image for the

prototype is dominated by low spatial frequencies, which
is not the case for the optimal decision boundary. The
reason for that is that, as the prototype is obtained by
averaging faces (which are dominated by low spatial
frequencies), it is bound to also be of this form, even if
low spatial frequencies contain no class-specific informa-
tion at all.
The decision faces can be interpreted more readily if

they are used to generate female or male looking faces by
adding them to a neutral looking mean face s0, as described
above. From Figure 10, we can see that subtracting 5
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leads to a male looking face (left column) whereas adding
5 results in a female looking face (right column). This is
true both for the filter for Logreg (first row) as well as for
Prot (second row), but the effect is stronger for the
Logreg-filter. In contrast, using a direction along the
decision boundary does not result in faces which look
either male or female (last row).

Evaluating the experiments with optimized
stimuli

For each observer, experimental condition and choice of
the filter 5, we fitted psychometric functions to the
responses of the subject against the weight 1, which
determines ‘how much’ of the decision image is added to
a neutral face. We quantified the performance of each
model by finding the value of 1 at which subjects were
90% correct. Averaged across observers and conditions,

the filter 5 corresponding to the decision image of logistic
regression performed best, and reached the performance
criterion for values of 1 less than 0.1 (see Figure 11D).
The filter of logistic regression with low-pass filtering
slightly outperformed the original Logreg filter (mean-1 at
90% correct: 0.081 vs. 0.0947). This is an indication
that our regularization procedure is not optimal yet (see
Discussion). Both of these decision images consistently
outperformed the SVM (mean-1 = 0.11) and the prototype
classifier (mean-1 = 0.14).
Similar results were obtained for each of the three

experimental conditions, and each observer individually:
In each of the 9 experiments, the filter corresponding to
logistic regression (without smoothing) outperformed both
the SVM and the Prot filters (Binomial test, 9/9, p =
0.002). In 7 out of 9 experiments, smoothing of the
decision image did lead to a performance increase (p =
0.089). As we mentioned previously, the absolute scaling
of 1 is arbitrary, and it is really the relative differences
which are meaningful. Therefore, for each classifier and
condition, we calculated the percentage correct attained at
the value of 1 at which the best algorithm achieved 90%
correct. On average, when logistic regression (lowpass)
was at 90%, Logreg was at 84% T 2.3, SVM at 78% T 2.6
and Prot at only 74% T 3.0.
The filter + which was parallel to the decision boundary

did not result in any differences in perceived gender; in
fact, the psychometric function was flat across the whole
range of 1’s considered, and never achieved 90% correct.
Thus, at least for the particular directions that we tested,

Figure 9. Decision images (“decision faces”) for conditions 1, 2
and 3 (left, middle and right columns, respectively; see Figure 1,
topmost three rows) averaged across observers. Different meth-
ods to estimate the decision images are shown in different rows.
Top row: Using logistic regression to estimate the decision images
(good fit to psychophysical classification data). Middle row: Using
the prototype classifier as predictive model (poor fit to psycho-
physical classification data). Bottom row: “Synthetic” decision
image orthogonal to that estimated using logistic regression in the
top row (see text for details).

Figure 10. Synthesising maximally discriminative faces with
respect to gender using the decision images for condition 3 (see
Figure 9, middle column), averaged across observers. Compara-
ble distances along the respective axes are visualized, from 1 =
j0.5 to 1 = 0.5 (see text for details). Top row: Synthesized using
the logistic regression-estimated decision image, for which
observers were typically at 90% correct for 1 = T0.08 Middle
row: Synthesized using the prototype-based decision image, 90%
correct for 1 , T0.15. Bottom row: Synthesized using the synthetic
decision image orthogonal to that estimated using logistic
regression, no clear gender change even for 1 9 3 as predicted
by our model.
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we can conclude that moving along the decision boundary
does not result in stimuli which appear male or female
(see Figures 10A–10D), which is in accordance with our
predictions.

Discussion

Stimulus correlations and stimulus bias

We presented a method to derive a predictive model of
psychophysical decisions during a binary discrimination
task, and applied it to gender perception of human faces.
As our method derives the predictive featuresVthe
decision imageVfrom the example stimuli shown, it is
inevitable that the decision images depend on the stimulus
class used, as they define the classification task used. For
example, our model’s decision boundary will be similar to
the decision boundary of an optimal classifier, unless
subjects are at chance level, and there will be a bias
towards the more physically discriminative features.
Therefore, it is of critical importance to show that the
prediction ability of the decision image goes beyond
‘rediscovering’ the physical structure of the stimulus, and

care is to be taken when comparing the features returned
by experiments based on different stimuli.
In addition, the individual entries 5i of the decision

image will depend on the covariance structure of the
stimuli. For simplicity, we will discuss this dependence
for Fisher’s linear discriminant: In this case, the decision
boundary is 5 = Cj1(2+ + 2j), where C is the within-
class covariance, and 2T are the means of the two
(perceived) classes. For every pixel k, the difference
between the two classes is inversely weighted by the
variance within each class. An entry 5k will be large if
either the pixel s(k) varies a lot between classes or varies
little within the classes. In terms of spatial frequency, the
effect of pre-multiplying by Cj1 can be interpreted as
dampening of those spatial frequencies which are more
dominant in the stimulus. For faces and for most natural
stimuli low spatial frequencies are more powerful, this can
explain why the decision images of the Prot classifier
(which ignores the covariance structure) have much power
in the low spatial frequencies than those which do take the
covariance structure into account.
The discussion above also implies that the generation of

stimuli by adding a multiple 1 of the decision image 5
only makes sense for small values of 1, i.e. for local
perturbations: Suppose that for some pixel k, the variance
Ckk is small, and therefore that 5i is large. This means that

Figure 11. Results of the gender discrimination experiment using synthetic faces symmetrically placed around a neutral face in “face-
space”. A) Thresholds for 90% correct gender discrimination shown for synthetic face images synthesized using various decision images
for faces of condition 1 (see Figure 1, top row). Results are pooled across observers and error bars indicate the SEM. B) Same as A
except for faces from condition 2 (see Figure 1, second row, for the face condition and Figure 10 for example stimuli). C) Same as A
except for faces from condition 3 (see Figure 1, third row). D) Same as A except pooled not only across observers but conditions 1, 2, and
3, too.
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even small changes in this pixel value will lead to
noticeably changes in its perceived class. However, the
fact that Ckk is small also implies that, for most stimuli,
the pixel value s(k) will be small. Thus, if 1 is chosen too
large, the corresponding pixel entry s + 15k will be large,
and is likely to be larger than it would be in any real face,
creating artifacts and unnaturally looking stimuli. In our
experiments we easily found values of 1 which appeared
distinctly male or female, and at the same time still looked
very ‘face-like’. However, larger values of 1 resulted in
noticeable artifacts.
The fact that the prototype classifier (which entirely

ignores Ckk) performs so poorly implies that human
observers must implicitly take the covariance structure
of faces into account for making the decisions about the
gender of a face. A related (but not equivalent) idea has
been formulated by studies (e.g. O’Toole et al., 1993)
using principal component analyses (PCA) on face images
and arguing that the first principal component was
discriminative between male and female faces. In our
experiments, all faces were normalized to have the same
mean luminance, and standard deviation of luminance
values. Consequently, the first principal component to
determine gender was not a good predictor of gender: For
example, on the stimuli condition 1, it resulted in a
percentage correct of only 56.9%. This suggests that the
separation of the two classes by the first principal com-
ponent is a consequence of an overall brightness differ-
ence between male and female faces (Russell, 2009), and
therefore only works for un-normalized stimuli. Given
that the absolute light levelVand hence the light intensity
of facesVchanges under real-life conditions, reliance on
the first principal component for gender discrimination is
clearly a sub-optimal strategy. The performance of
observers in our experiments with normalized stimuli also
shows that absolute luminance is not necessary for gender
classification.
We discussed the dependence of the entries 5i on the

covariance structure of the stimulus for the case of linear
discriminant analysis, as its decision boundary is solely
determined by the covariance and means of the two
classes. However, the conclusions qualitatively also apply
to algorithms such as logistic regression or SVMs. These
algorithmsVunlike LDAVare not motivated by specific
assumptions about the statistical structure of the stimuli
and are therefore likely to work better for stimuli for which
simple distributions such as Gaussians are inappropriate:
This is the case for many classes of naturalistic stimuli,
e.g. natural images.

Limitations and possible improvements
Applicability of the method

We want to estimate predictive features in classification
tasks, without having to embed the stimuli in noise. As
our strategy is to exploit the variability in the stimulus

classes, we require stimuli which are sufficiently hetero-
geneous within each class to ‘sample’ different features.
In addition, the task has to be such that the performance
of human observers is it not completely at ceiling, as in
this case, it would be impossible to learn anything about
their strategies that goes beyond re-discovering the class
structure of the stimulus, as outlined above. If it is not
possible to design the experiment such that these require-
ments are met, then noise embedding techniques would
be the method of choice. In this respect, our method is
complementary to classification images and bubbles. In
addition, the applicability of this method is limited to
binary classification tasks, although it might be possible
to extend it to situations in which subjects are asked to
discriminate between multiple alternatives.

Better feature spaces and model specifications

We applied our methods to face images that were
parameterized by their pixel intensities. One shortcoming
of the approach presented here is the construction of new
stimuli by addition: It is by no means guaranteed that the
sum of two faces is another face, or more generally, that
the (weighted) sum of two stimuli from a class is itself a
member of the class. For faces this problem could be
alleviated by not working in pixel-space, but rather in a
parameterized morph-space like the one introduced by
Blanz and Vetter (1999), or by projecting into a lower-
dimensional face-space (Sirovich & Meytlis, 2009). If we
applied our decision image technique not to the pixel
images but to their standardized versions in morph-space,
we would be guaranteed that our synthetically generated
stimuli look like faces, at least for reasonable perturba-
tions of 1 (see above). On the other hand, interpretation of
the decision image might be harder, as the identified
features have to be “projected-out” of the morph-space
into pixel space to be interpretable (c.f. Kienzle et al.,
2009). Alternatively, one could parameterize the stimuli
not by their pixel values, but use a set of basis functions
which are of the kind that is thought to be implemented in
early stages of the visual pathway. For example, one could
project the stimuli onto a filter bank of oriented filters, and
apply the algorithm to the filter-responses.
The fact that our model is based on only one linear

template makes it useful only for stimuli which are
aligned, i.e. in which there is no uncertainty about the
location of the target. If more general stimulus classes are
to be used, models based on multiple templates will need
to be used (Cohen, Shiffrin, Gold, Ross, & Ross, 2007;
Ross & Cohen, 2009; Tjan & Nandy, 2006).

Better priors

Similarly, it is to be expected that more informed
choices of the regularization term will lead to better
results both in terms of performance and interpretability
of the decision images. As we typically have little data,
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the regularizer is critically important during optimiza-
tion. Currently we use the L2-norm which enforces
distributed weights, and is used in popular classification
algorithms such as the SVM. The L1-norm leads to
sparser solutions, however, and for feature identification
we want sparseness (Mineault et al., 2009). In particular,
if a feature is correlated with a very predictive one (but
not predictive in isolation) we would want such a feature
to be set to 0, rather than both features being included in
the decision image. For the face stimuli used in this
study, using a regularizer which explicitly favors solutions
which are dominated by low spatial frequencies would
eliminate any need for smoothing decision images post-hoc
(Knoblauch & Maloney, 2008). In our experiments, we
found that a gentle smoothing of the images helps the pre-
diction performance in our second round of experimentsV-
this can be regarded as evidence that our regularization is
not optimal yet (Mineault et al., 2009).

Fully Bayesian models: Iso-probability contours not
parallel to the boundary

We have used a nonlinear–linear model which was
fitted using logistic regression with a regularization term.
Our decision image (filter) 5opt is a maximum a posteriori
(MAP) solution, i.e. the most likely filter given the data
and the prior. Consequently, p(s) = p(5opt

Bs) is the “most
likely” value of the decision probability for stimulus s.
The MAP-predictor is a very popular estimator in
statistics, and is often even referred to as “Bayes-optimal.”
However, the MAP-estimator is only optimal under very
particular conditions (under the assumption of a 0/1 loss
(Bishop, 2006)), and a better predictor is the posterior
mean probability p(s) = X5 f (5Bs):(5)d5. Not a single
filter is used for prediction, but rather an integral over all
possible filters, weighted by their relative posterior
probabilities, :(5). In such a fully Bayesian model, the
decision boundary is still linear, and the direction along
which the probabilities vary the fastest is still normal to
the decision boundary. However, in general, the iso-
probability contours (i.e. the lines along which p(s) is
constant) are no longer hyper-planes parallel to the
decision boundary (Bishop, 2006). Rather, p(s) depends
both on the distance of s from the decision boundary, as
well as on the distance of s to the mean of the prior. The
closer s is to the prior mean, the faster the probabilities
change when going away from the boundary. It will be
interesting to see in the future whether such fully
Bayesian models can be differentiated from our MAP
model based on experimental data.

Summary and conclusions

For human beings the accurate perception of faces is
essential: Typically we recognize individuals, determine

their gender, and even decode their emotional state simply
by looking at their face. How this crucial ability is brought
about in terms of visual information processing is,
however, still unclear. One of the main challenges is to
infer the stimulus features on which the human visual
system bases its computationsVa pre-requisite for suc-
cessful computational models of visual perception in
general, and face perception in particular.
Here we described a technique for extracting the critical

stimulus features predictive of the responses of humans
observers during natural viewing of faces and use it to
model data from a psychophysical gender discrimination
experiment. We were able to predict human responses
with remarkable accuracyVremarkable, as gender dis-
crimination is a high-level visual task, and thus believed
to be complex, whereas our model is comparatively
simple: a decision image (linear filter) followed by a
static nonlinearity. The linear filter was found by search-
ing for features which are informative of the psychophys-
ical decisions of observers. The good performance of the
prediction models suggest that these features do not only
correlate with the observers’ responses, but rather play a
more fundamental role for face categorization, namely
that these are the features that are actually used by the
human observers. Indeed, our second round of experi-
ments shows that these features alone can be used to
generate faces which were perceived as distinctly male or
female.
Our findings are consistent with studies postulating

“norm based” encoding of faces (Loffler et al., 2005): In
our experiments, the distance of a face to a separating
hyperplane predicted the probability of (mis-) categorizing
a face. However, the optimal gender-separating axis was
not aligned with the axis defined by the average male and
female face. Therefore, the simple prototype model
popular for modeling faces (Leopold et al., 2006; Loffler
et al., 2005), which uses the class means or averages (but
not the class covariance) is not sufficient for explaining
responses in our experiments despite its popularity in the
literature. (For a different critique of such prototype face
models see Jiang et al., 2006.) Rather, the superior
performance of LDA shows that it is at least necessary
to model the class covariances. Finally, the small but
consistent advantage of logistic regression (which takes
into account individual stimuli) over LDA (which takes
into account only the covariance across stimuli) suggests
that the mechanism subserving gender classification
decisions in humans is indeed sensitive to individual
stimuli and not only class covariance structure.
We used our method to derive a predictive model of

psychophysical decisions during a binary gender classi-
fication task with human faces. The method per se is not
limited to this task, but offers numerous applications.
In the domain of face perception, for example, it could
be used to derive objectively the features underlying
perceived beauty, health, emotions, or kinship (Dal
Martello & Maloney, 2006), to name but a few. Decision
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images could also be useful for understanding medical
conditions in which feature-processing is impaired, for
example by computing the decision images of observers
which suffer from face processing deficits such as
prosopagnosia. On the other hand, one could derive
decision images of trained expert on, e.g. a medical
diagnosis task, to see what features they may be using,
and how they differ from those used by non-experts.
Subsequently, one could then train non-experts on the
‘expert features’.

Appendix A

Support vector machines for repeated
stimulus representations

The support vector machine (SVM) (Hofmann et al.,
2008) is a classification algorithm popular in machine
learning, and has successfully been applied in a variety
of domains. The SVM separates the two classes by a
hyperplane which is chosen such that the margin
between the decision boundary and each of the two
classes is maximal. Although the algorithm is linear in
conception, it can easily be generalized to nonlinear
settings by using nonlinear kernel functions. We used a
linear kernel for our experiments, but the calculations in
this appendix are valid for any choice of kernel. A SVM for
binary classification separates two classes of data points by
a decision boundary of the form f(x) = ~iyi!ik(xi, x) + ",
where the kernel function k specifies the dot-product of any
two data points in feature-space. Intuitively, the kernel
function captures the similarity between any two points.
The optimal decision function f is found by minimizing

the cost-function

L !ð Þ ¼ C
Xn

i¼1

k1j yi f xið Þkþ þ 1

2

X

ij

yiyj!i!jk xi; xj
� �

;

ðA1Þ

where k1 j yi f(xi)k+ = max(0, 1 j yi f(xi)). This
optimization problem can be rewritten as

max
!

W !ð Þ ¼
Xn

i¼1

!ij
1

2

X

ij

!i!jyiyjk xi; xj
� �

; ðA2Þ

subject to 0 e ! e C Oi; ðA3Þ

and
X

i

!iyi ¼ 0: ðA4Þ

Thus, the optimal decision boundary is found by
optimizing over the weights !i on the data samples. This
implies that the number of parameters in the optimization
is independent of the dimensionality of the feature space,
which makes it possible to work in high (or infinite
dimensional) feature spaces. However, it also implies that
the computational requirements of the algorithm scale
with the size of the data set considered. Thus, although
in principle, repeated presentations of the stimulus can
be handled by simply inserting each presentation as a
separate data point, this procedure can quickly result in
very large data sets which become computationally
inconvenient or even infeasible. Furthermore, we also
want to be able to handle situations in which the
decision probabilities pi are arbitrary continuous quanti-
ties in [0, 1], and not estimated over multiple stimulus
presentations.
Here, we will briefly show how the SVM can be

generalized to a setting in which each object xi does not
only have a class-label yi, but also a corresponding
confidence or decision probability pi. pi determines our
confidence as to whether the class-label yi is correct. For
example, if pi = 0.5, we know that xi is an entirely
ambiguous stimulus. Furthermore, the case pi = p, yi = j1
is equivalent to pi = 1 j p and yi = 1. To resolve this
ambiguity, for every stimulus with labels (yi, pi), we add a
second stimulus pi + n = 1 j pi, yi + n = jyi. Then, the loss
function can be generalized to

L !ð Þ ¼ C
X2n

i¼1

pik1j yi f xið Þkþ þ 1

2

X

ij

yiyj!i!jk xi; xj
� �

:

ðA5Þ

The loss of every training point is re-weighted by its
certainty pi. The second part of the loss function, which
regularizes the shape of the decision function, is unchanged.
This is equivalent to

max
!

W !ð Þ ¼
X2n

i¼1

!ij
1

2

X

ij

!i!jyiyjk xi; xj
� �

; ðA6Þ

subject to 0 e ! e Cpi Oi; ðA7Þ

and
X

i

!iyi ¼ 0: ðA8Þ

Thus, the only things that have changed is that the
summation is now over (at most) 2n rather than n weights
!, and that the upper bound on each !i is Cpi rather than
C. If any pi is zero, we know that !i = 0, i.e. the
corresponding stimulus can be eliminated from the
optimization problem, and the sum is over less than 2n
terms.

Journal of Vision (2010) 10(5):22, 1–24 Macke & Wichmann 20



Importantly, the algorithm does not simply ignore data
points with pi = 0.5, but rather aims to place them close to
the decision boundary. Even stimuli which are classified
very inconsistently can provide important information
about the position of the decision boundary. A similar idea
has been studied in the field of machine learning under
the name of ‘Universum SVM’ (Weston, Collobert, Sinz,
Bottou, & Vapnik, 2006), which uses a ‘Universum’ of
‘non-examples’ in addition to the labeled data points.
While the derivation and motivation of the USVM is very
different to our approach, it is mathematically equivalent
to a SVM with confidences pi which are either 0, 1 or
exactly 0.5: The ‘Universum’ consists of those data points
which have completely ambiguous class labels.
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Footnotes

1
The MPI face database is located at http://faces.kyb.

tuebingen.mpg.de.
2
A Generalized Linear Model fit with a distribution-

model that has heavy tails (such as the Cauchy for
symmetric lapses), can be used to be more robust to
lapses, and possibly avoid an explicit, non-convex fit of
the lapse-rates. We would like to thank the reviewer for
this suggestion.
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