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Abstract

The rise of large-scale recordings of neuronal activity has fueled the hope to gain new

insights into the collective activity of neural ensembles. How can one link the statistics of

neural population activity to underlying principles and theories? One attempt to interpret

such data builds upon analogies to the behaviour of collective systems in statistical physics.

Divergence of the specific heat—a measure of population statistics derived from thermody-

namics—has been used to suggest that neural populations are optimized to operate at a

“critical point”. However, these findings have been challenged by theoretical studies which

have shown that common inputs can lead to diverging specific heat. Here, we connect “sig-

natures of criticality”, and in particular the divergence of specific heat, back to statistics of

neural population activity commonly studied in neural coding: firing rates and pairwise corre-

lations. We show that the specific heat diverges whenever the average correlation strength

does not depend on population size. This is necessarily true when data with correlations is

randomly subsampled during the analysis process, irrespective of the detailed structure or

origin of correlations. We also show how the characteristic shape of specific heat capacity

curves depends on firing rates and correlations, using both analytically tractable models and

numerical simulations of a canonical feed-forward population model. To analyze these simu-

lations, we develop efficient methods for characterizing large-scale neural population activ-

ity with maximum entropy models. We find that, consistent with experimental findings,

increases in firing rates and correlation directly lead to more pronounced signatures. Thus,

previous reports of thermodynamical criticality in neural populations based on the analysis

of specific heat can be explained by average firing rates and correlations, and are not indica-

tive of an optimized coding strategy. We conclude that a reliable interpretation of statistical

tests for theories of neural coding is possible only in reference to relevant ground-truth

models.
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Author summary

Understanding how populations of neurons collectively encode sensory information is

one of the central goals of computational neuroscience. In physics, systems are often char-

acterized by identifying and describing critical points (e.g. the transition between two

states of matter). The success of this approach has inspired a series of studies to search for

analogous phenomena in nervous systems, and has lead to the hypothesis that these might

be optimized to be poised at ‘thermodynamic critical points’. However, translating con-

cepts from thermodynamics to neural data analysis has been a challenging endeavour. We

here study the data analysis approaches that have been used to provide evidence for criti-

cality in the brain. We find that observing signatures of criticality is closely linked to

observing activity correlations between neurons– a ubiquitous phenomenon in neural

data. Our study questions the experimental evidence that neural systems are optimised to

exhibit thermodynamic critical behaviour. Finally, we provide practical, open-source tools

for analyzing large-scale measurements of neural population activity using maximum

entropy models.

Introduction

Recent advances in neural recording technology [1, 2] and computational tools for describing

neural population activity [3] make it possible to empirically examine the statistics of large

neural populations and search for principles underlying their collective dynamics [4]. One

hypothesis that has emerged from this approach is the idea that neural populations might be

poised at a thermodynamic critical point [5, 6, 7], and that this might have consequences for

how neural populations process sensory information [7, 8]. As similar observations have been

made in other biological systems [9, 10, 11], it has been suggested that this might reflect a

more general organising principle [12]. Critical phenomena play a central role in physics:

Phase transitions mark a special point in which media qualitatively change their properties by

transitioning from one state of matter into another (e.g. liquid to gaseous at boiling point,

ferro-magnetic and paramagnetic phases, or the emergence of super-conductivity). As such,

the behaviour of a system at critical points is informative about its intrinsic properties. More-

over, critical points are ‘special’ in the sense that they classically only occupy a small portion of

the parameter space. Thus, observing that a system is constantly poised at a critical point

would be surprising, and would hint at an underlying organizing mechanism that keeps the

system at this point. Given the fundamental importance of critical phenomena in physics, and

their success in revealing the laws the determine the behaviour of physical systems, the hypoth-

esis that these approaches might also shed lights on principles underlying neural coding is

intriguing.

Evidence in favour of this hypothesis has been put forward by a series of studies which mea-

sured neural activity from large populations of retinal ganglion cells and reported that their

statistics resemble those of physical systems at a critical point [7, 8]. To this end, Tkačik and

colleagues developed a data analysis framework to search for signatures of criticality in experi-

mentally obtained measurements. Using large-scale multielectrode array recordings [2] and

maximum entropy models [13, 14, 15, 16, 17, 12, 3, 18], it was observed that the normalized

variance of log-probabilities diverges as a function of population size. Importantly, this quan-

tity is mathematically equivalent to the specific heat capacity, an important characteristic

which diverges at critical points. In addition, when an artificial ‘temperature’ parameter was

introduced, specific heat appeared to be maximal for the statistics of the observed data, rather
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than for statistics which have been perturbed by changing the temperature parameter. These

properties of retinal populations resemble the behaviour of physical systems at critical points.

It has been hypothesised [12, 7] that the system needs to be optimized to keep itself at a critical

point, for example through adaptation to stimulus statistics [19, 20, 21] or alternative mecha-

nisms of self-organization [22, 23, 24].

A competing hypothesis states that instead generic mechanisms are sufficient to give rise to

activity data with divergent specific heat, and that the presence of signatures of criticality does

not provide evidence for retinal circuits being poised at a special state that is advantageous for

coding. A series of theoretical studies [25, 26, 27, 28] has shown that common input (i.e,. the

presence of latent variables) can account for signatures of criticality: In particular, Schwab et al

[26] and Aitchison et al [27, 28] showed that Zipf scaling (an alternative characterization of

criticality) and the divergence of the specific heat are closely related, and that in high-dimen-

sional models with a low-dimensional latent variable, the specific heat diverges with system

size under a wide range of circumstances [27, 28]. Similarly, it has been shown empirically that

a purely feedforward model can capture Zipf-like scaling in recordings from the salamander

retina [29].

Interpreting findings of thermodynamic criticality for neural populations, identifying their

mechanistic underpinnings, and clarifying their relationship with alternative theories, has been

fraught with difficulty. We hypothesize that this difficulty stems from a subtle but crucial differ-

ence between how the scaling behaviour of system properties is studied in thermodynamics

and in practical neural data analysis: Most theoretical approaches study how system properties

scale as the size of the system, n, is varied. In contrast, in practical neural data analysis, different

“n” do not correspond to different system sizes, but are obtained by subsampling neural popu-

lations from a large recording (which is itself a subsample of the underlying system). How does

this sampling process affect estimates of whether the system is at a critical point? A second diffi-

culty in interpreting these studies stems from the fact that they are based global statistical mea-

sures whose relationship with simple statistics such as firing rates and correlations— which are

commonly used and have been extensively studied in neural coding [30, 31]—is unclear. We

here focus on one statistic that has been used as evidence of critical behaviour, namely the

dependence of specific heat on population size and temperature. We study how it depends on

neural firing rates and correlations, as well as on how this data is subsampled during data

analysis:

First, we show explicitly that signatures of criticality, can be reproduced in canonical feed-

forward models of neural population activity, as predicted by previous studies [25, 26, 28].

These studies did not have tools for studying population statistics in large simulations, and they

were therefore limited to studying small (n� 40) systems– for these small system sizes, it is dif-

ficult to make statements about the peak in the specific heat and its scaling with population

size. In particular, the dominant peak near unit temperature only emerges for much larger sys-

tems. We overcome this difficulty by providing improved algorithms for efficiently fitting max-

imum entropy models to large neural populations (available at https://github.com/mackelab/

CorBinian), and use them to apply the analyses proposed by previous studies [7] to data simu-

lated from a simple, feedforward encoding model of retinal processing [32, 33, 34, 35].

Second, previous theoretical studies [26, 27, 28] treated only the limiting behavior of the

specific heat at unit temperature, and did not investigate its dependence on firing rates and

correlations. We here relate the characteristic shape of specific heat curves (i.e. the dependence

of specific heat on temperature) to neural correlations and firing rates. The emergence of peak

specific heat at the ‘inherent’ temperature T = 1 has given rise to the idea that correlations in

the observed system are ‘special’, i.e. that systems with stronger or weaker correlations would

not exhibit them [7]. We use an analytically tractable model of the analysis process to show
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that this is not the case– the more strongly correlated the population is, the more pronounced

signatures of criticality will be. This analysis also shows that a ‘low-temperature’ regime (as

reported by [18]) will be found whenever firing rates are sufficiently low.

Third, we analyze the structure of correlations which are sufficient to induce signatures of

criticality, and find that it is sufficient if the average correlation is independent of population

size. Such ‘criticality-inducing’ correlations can arise both from neural mechanisms such as

common input or dense connectivity. Importantly, we show that they can also arise as a conse-

quence of data analysis: Uniformly subsampling a recording with any non-zero correlations to

construct subpopulations yields criticality-inducing correlations.

In summary, we show that statements about signatures of criticality derived from thermo-

dynamics can be reduced to statements about firing rates and correlations, and that correlation

structures which give rise to these signatures are ubiquitous in neural populations.

Results

Signatures of criticality arise in a simple model of retinal ganglion cell

activity

A hallmark of criticality is that the specific heat capacity of the model diverges when the tem-

perature reaches the critical temperature [5]. Tkačik et al. [7] developed an approach for trans-

lating this concept to neural data analysis (see Fig 1):. In this analysis, neural populations of

different size n are generated from the full recording (of size N) by random subsampling. The

statistics of activity for each population of size n are characterized using a maximum entropy

Fig 1. How can one relate theories of thermodynamic criticality to the statistics of neural data? In physical systems, the divergence of specific

heat with system size can be interpreted as the system being at a critical point. We here study an analysis approach that has been proposed in order to

search for similar signatures of criticality in the statistics of neural population activity. In this approach, different populations are subsampled from a

large recording and summary statistics are extracted for each subpopulation (e.g. firing rates, correlations and population spike count statistics).

Subsequently, maximum entropy models are fit to these data which assign a probability to each possible spike-pattern. Exploiting the mathematical

relationship between the log-variance of probabilities (in statistics) and the specific heat (in thermodynamics) then allows one to compute and study the

behaviour of the specific heat with population size. The goal of this study is to determine under which conditions (i.e., for which firing rates and

correlations) such an analysis would report that the system is critical. To this end, we apply this approach to a simulation of neural population activity

and analytically tractable models.

https://doi.org/10.1371/journal.pcbi.1005718.g001
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model fit to population activity [13, 14, 16, 17, 3]. Finally, the maximum entropy models are

perturbed by introducing a temperature parameter, and specific heat is computed for each

population size n and temperature T from the (perturbed) maximum entropy model fit. Diver-

gence of specific heat with population size n, and a peak of the specific heat near unit tempera-

ture T = 1 (the ‘temperature’ of the original data) are interpreted as indication for the system

being at a critical point [7].

We wanted to verify that this phenomenon could be captured in feedforward models of ret-

inal processing. We wanted to directly demonstrate that canonical mechanisms of retinal pro-

cessing—such overlapping centre-surround receptive fields, spiking nonlinearities, shared

Gaussian noise—are sufficient for the signatures of criticality to arise. We first created a simple

phenomenological model of retinal ganglion cell (RGC) activity based on linear-nonlinear

neurons [32, 33, 35]. In this model (Fig 2a), we assumed retinal ganglion cells to have centre-

surround receptive fields [36, 35] with linear spatial integration [37], sigmoid nonlinearities

and stochastic binary spikes: in each time bin of size 20ms, each neuron i either emitted a

spike (xi = 1) or not (xi = 0). We used a sequence of natural images as stimuli. In addition to

the feedforward drive by the stimulus, nearby neurons received shared Gaussian noise, mim-

icking common input from bipolar cells [30]. Thus, cross-neural correlations in the model

arise from correlations in the stimulus, receptive-field overlap and shared noise, but not from

lateral connections between RGCs. As we will explain below, only the strength of correlations,

but not their mechanistic origin or dependence on stimuli, is relevant for determining the spe-

cific heat. Parameters of the model were chosen to approximate the statistics of receptive-field

centre locations of RGCs, as well as histograms of firing rates, pairwise correlation-coefficients

and population spike-counts (Fig 2b).

We subsampled populations of different sizes 20� n� 120 by uniformly sampling cells

from our simulated recording of total size N = 316 neurons. For each population we fit a ‘K-

pairwise’ maximum entropy model [3]. This model assigns a probability P(x) to each spike-

pattern x. It is an extension of pairwise maximum entropy models (i.e. Ising models) [13, 14]

which reproduce the firing rates and pairwise covariances, and has additional terms to capture

population spike-counts [3] (see Materials for details of model specification and parameterisa-

tion). As we needed to efficiently fit this model [38, 39] to multiple simulated data sets, we

developed an improved fitting algorithm (see section 1 in S1 Supporting Information) based

on maximum-likelihood techniques using Markov chain Monte Carlo (MCMC), building on

work by [15]. In particular, we made the most computationally expensive component of the

algorithm, the estimation of pairwise covariances via MCMC sampling, more efficient by

using a ‘pairwise’ Gibbs-sampling scheme with Rao-Blackwellisation [40] (see section 1.1 in S1

Supporting Information). Most Gibbs-sampling approaches for maximum entropy models

[15] update one neuron i at a time by re-sampling its state from the conditional distribution,

given the state of the other n − 1 neurons in the population. We here in each iteration update a

randomly chosen pair (i, j) simultaneously, given the state of the other n − 2 neurons. While

each pairwise sample is more expensive to compute, this approach has the advantage of yield-

ing a direct estimate of the (conditional) probability of i and j being active simultaneously.

From these conditional probabilities, one can estimate pairwise covariances more efficiently

than is possible through averaging samples, a process which is known as Rao-Blackwellization.

Here, Rao-Blackwellization resulted in a reduction of the number of samples (and computa-

tion time) needed for achieving low-variance estimates of the covariances by a factor of

approximately 3 (Fig 2c, Fig. A in S1 Supporting Information). After parameter fitting, the

model reproduced the statistics of the simulated data (Fig 2d, Fig. B in S1 Supporting

Information).
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Following [7], we then introduced a temperature parameter which rescales the probabilities

of the model,

PTðxÞ / PðxÞ
1=T
; ð1Þ

Fig 2. Signatures of criticality in a simulation of retinal ganglion cell activity. a) Simulation schematic:

Neurons have linear stimulus selectivity with centre-surround receptive fields and correlated Gaussian noise.

b) Statistics of simulated population activity. Histograms of firing rates (left), correlation coefficients (centre)

and frequency of population spike-counts (right). c) Estimation-error (normalised mean square error) in

pairwise covariances as function of sample size, averaged across 10 populations of size n = 100. Rao-

Blackwellization reduces the number of samples needed for a given level of accuracy by a factor� 3. d)

Quality of fit: Population models (here n = 100, example population) capture the mean firing rates (left),

covariances (centre) and spike-counts (right). e) Divergence of specific heat: Average and individual traces

for 10 randomly sampled populations for each of 6 different population sizes, exhibiting divergence of specific

heat and peak in heat near unit temperature. Inset: Specific heat at unit temperature and at peak vs.

population size. f) Specific heat for different temperatures and subsampled population sizes (here denoted by

capital letter N) in recordings of salamander retinal ganglion cells responding to naturalistic stimuli,

reproduced from [7].

https://doi.org/10.1371/journal.pcbi.1005718.g002
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where temperature T = 1 corresponds to the statistics of the empirical data. By changing T to

other parameter values one can perturb the statistics of the system [41]: Increasing tempera-

ture leads to models with higher firing rates and weaker correlations (Fig. C in S1 Supporting

Information), with PT(x) approaching the uniform distribution for large T. If the temperature

is decreased towards zero, PT(x) has most of its probability mass over the most probable spike

patterns. We compute the specific heat of a population directly from the probabilistic model fit

to data [7], using

cðTÞ ¼
1

n
Var½ logPTðXjlÞ�; ð2Þ

i.e. the variance of the log-probabilities of the model with parameters λ, normalised by n.

While specific heat is typically motivated by thermodynamics, in this context it corresponds to

a global statistical measure which provides a compact mathematical description of the collec-

tive statistical dynamics of the system. Just like the entropy corresponds to the (negative) aver-

age log-probability across all population states, the specific heat corresponds to the

(normalized) variance of log-probabilities. Thus, specific heat is minimal for data in which all

patterns x are equally probable, and big for data in which pattern-probabilities span a large

range. We used MCMC-sampling to approximate the variance across all probabilities, and

used this approach to calculate, for each population of size n, the specific heat as a function of

temperature (Fig. D in S1 Supporting Information).

We found that the temperature curves obtained from the simulated data qualitatively repro-

duce the critical features of those that had been observed for large-scale recordings in the sala-

mander [7] and rat [8] retina: The peak of the curves diverges as the population size n is

increased, and moves closer to unit temperature for increasing n (Fig 2e). Consistent with

experimental findings [42, 7, 8] (Fig 2f) and [28], we found that specific heat diverged linearly

with population size. Finally, and also consistent with experimental studies, the peak specific

heat is achieved for T> 1, which is what has been interpreted as a ‘low-temperature’ state [18].

These results confirm that signatures of criticality arise in a simple feedforward LN cascade

model based on generic properties of retinal ganglion cells, and do not require finely tuned

parameters or sophisticated circuitry.

A tractable mathematical model of the analysis process explains

specific-heat curves and low-temperature states

In the phenomenological population model above, we observed that specific heat grew linearly

with population size, as it did in previous studies built on experimental data [42, 7, 8, 18]. Dif-

ferent ‘populations’ in these analyses are obtained by subsampling different populations from

a large experimental recording, and that the parameters of each of these models are indepen-

dently fit to each such population. How does this analysis process effect the rate of divergences

of the specific heat, and the qualitative shape of specific heat curves? To answer these ques-

tions, we build a simple mathematical description of the analysis process: In the original

papers, populations of different sizes are obtained by randomly subsampling a large recording

(which is itself a sub-sample of the underlying circuit). As the simplest possible description of

this sampling process, we assume that there is an underlying, infinitely large neural population,

and that each population of size n is a random subsample. We assume that the underlying pop-

ulation is homogeneous, i.e. that all neurons have the same mean firing rate and pairwise cor-

relations. As a consequence, K-pairwise maximum entropy models are fully specified by the

distribution of population spike-count K = ∑i xi [25, 43, 44, 45] for each population of size n.

Criticality and subsampling in simple population models
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We refer to models with this property as ‘flat models’ ([46] calls them ‘reduced’ maximum

entropy models).

We introduce a new parametrised flat model in which the spike-count distribution is given

by the beta-binomial distribution P(K|α, β, n), reducing the number of free parameters from n
to 2. The beta-binomial model is a straightforward extension of an independent (i.e. binomial)

population model: At each time-point, a new firing probability p is drawn from a beta-distri-

bution with parameters α and β, and neurons then spike independently with probability p.

Fluctuations in the latent variable p are shared across the population and lead to correlations

in neural activity. Therefore, this model is a particular instance of a latent variable model. Sig-

natures of criticality in latent variable models have been studied previously [26, 27, 28]. Our

analytically-tractable model provides an explicit construction of how subsampling a large pop-

ulation determines the dependence of specific heat on population size.

Our beta-binomial model provided a good fit to the population spike-count distribu-

tions of the simulated data (Fig 3a) across different population sizes n (Fig 3b). Importantly,

the best-fitting parameters α and β did not vary systematically across population sizes, and

converged to values of α = 0.38 and β = 12.35 (Fig. E in S1 Supporting Informationa), corre-

sponding to a probability of spiking of μ = 0.03 in each bin (i.e. each neuron has an average

Fig 3. Signatures of criticality and low-temperature states in a mathematically tractable model. a) Population spike-count

distribution in RGC simulation, and approximation by models. Only the beta-binomial population model fits simulated data accurately,

and for the full recording (N = 316) closely matches the shape of a beta distribution. b) Beta-binomial model fits for different population

sizes. c) Specific heat traces for beta-binomial model, exhibiting signatures of criticality. Average and individual traces for 30

randomly sampled populations for each of 6 different population sizes. Inset: Specific heat at unit temperature and at peak vs.

population size. d) Location of peak specific heat for independent model as function of firing rate. For μ/Δ = 4.16Hz (assuming Δ =

20ms bins), the peak is above unit temperature, a ‘low-temperature phase’. d) Location of peak specific heat as function of correlation,

for n = 100 and three different firing rates. Peaks cross T = 1 only for firing rates� 4.16Hz. e) ‘Low’ and ‘high’ temperature phases for

beta-binomial model as function of firing rate and correlation strength and for population sizes (n = 20 to n = 120, colors as in b,c).

Increasing correlations and population size expand the low-temperature regime beyond 4.16Hz. Data sets from previous studies had

average firing rates well within low-temperature regime (arrows, colors as in Fig. E in S1 Supporting Information).

https://doi.org/10.1371/journal.pcbi.1005718.g003
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firing rate of μ/Δ = 1.5 Hz) and average pairwise correlations of ρ = 0.073. The beta-bino-

mial model also provided good fits to published population spike-count distributions [43,

45, 8], as well as to those of retinal ganglion cell activity under different stimulus conditions

in [18] (Fig. E in S1 Supporting Information). When we applied this flat model to

populations subsampled from the RGC simulation, we could qualitatively reproduce the

specific heat curves of the K-pairwise model (see also Fig. F in S1 Supporting Information).

In particular, we found a linearly diverging peak that moved closer to T = 1 as the popula-

tion size was increased (Fig 3c). Thus, linear divergence of specific heat is qualitatively cap-

tured by this model of how different populations are obtained by subsampling a large

population.

One of the difficulties of interpreting the scaling behaviour of maximum entropy models

fit to neural data is the fact that the construction of the limit in n differs from those studied

in statistical physics: In statistical physics, different ‘n’ typically correspond to systems of

different total size, and the parameters are scaled as a deterministic function of n (e.g.

drawn from a Gaussian with variance proportional to 1/n in spin-glasses [47, 48]). In studies

using maximum entropy models for neural data analysis, populations of different n are

obtained by randomly subsampling a fixed large recording, and the parameters are fit to

each subpopulation individually. Thus, there is no analytical relationship between popula-

tion size and parameter values in this approach. With our model of the analysis process

based on flat models, it is possible to analytically characterise the behaviour of the specific

heat for large population sizes for this sampling process [25, 44]. Using this approach, one

can show (section 2.3 in S1 Supporting Information and [25] for details) that for virtually all

flat models, the specific heat diverges linearly at unit temperature, but not for any other tem-

perature T> 1 or T< 1 (section 2.4 in S1 Supporting Information). As a consequence, the

peak must move to T = 1 as n is increased. Hence, almost any flat model analysed with the

methods developed by [7] will exhibit signatures of criticality. In particular, these results

hold also for models which are more weakly or more strongly correlated than real neural

populations, and even for models with unrealistic population spike-count distributions (see

Fig. G in S1 Supporting Information for an illustration). There are only two exceptions: The

first one is a model in which all neurons are independent (i.e. a binomial population

model), and the second one is a flat pairwise maximum entropy model—indeed, this is the

only flat model with non-vanishing correlations for which the specific heat does not have its

peak at unit temperature (see [25] for an illustration for the flat pairwise maximum entropy

model).

Finally, it has been observed that the peak of the specific heat curve is consistently ‘to the

right’ of T = 1, which was interpreted as the neural population activity in the retina being in a

‘low-temperature state’ [18]. Our analysis based on the flat model gives insights into this phe-

nomenon: For correlation ρ = 0, the position of the peak can be calculated in closed form (Fig

3d). We observe that the peak will be at temperatures >1 whenever the spike probability is

smaller than μ� = 0.0832, which corresponds to a firing rate of μ�/Δ = 4.16Hz at a bin size of Δ
= 20ms. Thus, in our model, the ‘temperature-state’ of a population can be reduced to a state-

ment about the firing rate relative to the bin size used for analysis: For ρ> 0 (Fig 3e) and for

larger population sizes n, the firing rate at which the transition occurs are shifted to slightly

higher firing rates, i.e. the ‘low-temperature’ regime is even bigger, and e.g. extends to firing

rates up to 8.63Hz for average correlations of ρ = 0.25 and population size n = 120 (Fig 3f).

While this dependence may be more complicated for full correlation structures, our analysis

again connects global population measures from statistical mechanics to basic, directly mea-

surable statistics of neural data: ‘being in a low-temperature state’ is a statement about the fir-

ing rates in the population being low.
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Strong neural correlations lead to fast divergence of specific heat

The rate at which the specific heat diverges provides a mean of quantifying the ‘strength’ of

criticality. What is the relationship between correlations in a neural population and the rate of

divergence? To study how the specific heat rate ~c ¼ cðT ¼ 1Þ=n depends on the strength of

correlations, we used a beta-binomial model to generate simulated data with firing rate μ/Δ =

1.5Hz (i.e. each neuron has a probability of spiking of μ = 0.03 per bin), and different pairwise

correlation coefficient ρ ranging from ρ = 0.01 to ρ = 0.25 (Fig 4a). The heat curves had the

same shape as in the analyses above, with a peak that increases and moves to unit temperature

(Fig 4b). We found that the specific heat rates ~c increased strictly monotonically with ρ (Fig 4b

and 4c). For the beta-binomial model, the large-n value of ~c can be calculated analytically (sec-

tion 3.2 in S1 Supporting Information for details) as a function of the parameters α and β,

~c ¼
aðaþ 1Þc1ðaþ 1Þ þ bðbþ 1Þc1ðbþ 1Þ

ðaþ bÞðaþ bþ 1Þ

þ
abðc0ðaþ 1Þ � c0ðbþ 1ÞÞ

2

ðaþ bÞ
2
ðaþ bþ 1Þ

� c1ðaþ bþ 1Þ;

ð3Þ

where ψ0, ψ1 denote the di- and trigamma function, respectively. This analytical evaluation of

~c (valid for large n) was in good agreement with numerical simulations (Fig 4c left). In the case

of weak correlations ρ, eq 3 can be simplified: In this case, the specific heat rate is proportional

to the strength of correlations (section 3.1 in S1 Supporting Information for details), i.e.

~c � rmð1 � mÞ log
1 � m

m

� �� �2

; ð4Þ

and also increases strongly with firing rate for small μ (Fig. H in S1 Supporting Information).

This expression can also be derived from the Gaussian model in [8] equation (4), by inserting

the expected values of the mean and variance of the population spike-count under random

subsampling. The monotonic relationship between correlations and specific heat is also consis-

tent with the derivation in [27] for latent-variable models: inspection of equation (65) in [27]

shows that the specific heat is related to a sum of conditional entropies– for binary random

variables, these entropies are monotonically related to covariances, which effectively shows

that, in their model, specific heat also increases with correlations.

We found that the relationship between the strength of correlations and the ‘strength’ of

criticality (i.e. the divergence rate of specific heat) also held in simulations of feedforward

models of retinal population activity. In the original study [7], specific heat was computed

from K-pairwise model fits to RGC activity resulting from three different kind of stimuli: ran-

dom checkerboard stimuli (which do not have long-range spatial correlations, although stimu-

lus-driven cross-neural correlations can arise from receptive field overlap), natural stimuli,

which exhibit strong spatial correlations, and full-field flicker (which constitutes an extreme

case of spatial correlations since all pixels in the display are identical). It was found that specific

heat diverges in all three conditions (consistent with a more recent study [18]), and interpreted

this as evidence that signatures of criticality are not ‘inherited from the stimulus’ [7]. When we

simulated responses to different stimuli we found the divergence rates of the specific heat to

follow the pattern of induced correlation strength, consistent with the monotonic relationship

between correlation strength and specific heat growth rate shown above for the flat models

(Fig 4d): For populations size n = 100, checkerboard/natural/full-field flicker stimulation lead

to average correlation strengths of ρ = 0.033/0.075/0.341, respectively, and to specific heat

growth rates of ~c ¼ 0:0029=0:0046=0:0104.
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Fig 4. Relationship between correlations and criticality. a) Specific heat traces for beta-binomial model, different correlation strengths

and population sizes. Heat traces are qualitatively similar, but differ markedly quantitatively (see y-axes). b) Specific heat diverges linearly,

and the slope depends on the strength of correlations. c) Divergence rate of specific heat for beta-binomial model as a function of correlation

strength (left). Rightmost point (at infinity) corresponds to analytical prediction of large-n behaviour. Divergence rates are strictly increasing

with correlation strength (right) which is captured by a weak-correlation approximation (dashed line). d) Specific heat increases with

correlation in the K-pairwise maximum entropy model: average and individual traces for 10 randomly subsampled populations for 6 different

population sizes. Left to right: checkerboard, natural images and full-field flicker stimuli presented to the population. Correlation strengths

denote mean correlation coefficient in each population.

https://doi.org/10.1371/journal.pcbi.1005718.g004
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Tkačik et al. had found the lowest peak in divergence rate for checkerboard (max c� 0.54),

higher peak-divergence rates for natural movies (max c� 0.92) and the highest peak for full-

field flicker (max c� 2.4, all results for n = 100). Thus, the ordering of the peak values of spe-

cific heat in their study is consistent with our results. However, when comparing the values at

T = 1, they found a slightly higher divergence rate for natural movies (~c � 0:005) than for full-

field flicker (~c � 0:004). This mismatch could result from adaptation or temporal dynamics of

the stimulus affecting firing rates or correlations in their data [20], or from our simulations

not precisely matching the statistics of their experimental data.

These statements also qualitatively hold in a modified temperature analysis [7] in which fir-

ing rates are kept constant (at the firing rates of T = 1) when temperature is varied (section 3.4

in S1 Supporting Information and in Fig. I in S1 Supporting Information). We conclude that

the experimental evidence—which showed that the specific heat diverges, and how the speed

of divergences depends on the stimulus ensemble—is largely consistent with a simple, feedfor-

ward phenomenological model of retinal processing. Thus, at least for flat models, ‘being very

critical’ is a consequence of ‘being strongly correlated’, and not evidence for correlations being

fine-tuned or self-organized to a particular value.

Random subsampling gives rise to criticality-inducing correlations

In the above, we showed that a beta-binomial spike-count distribution can be sufficient for sig-

natures of criticality to arise. For this to hold we need the variance of the population spike-

count to grow quadratically with population size, i.e. Var(K)/ n2. The variance of the popula-

tion spike-count is equal to the sum of all variances and covariances in the population,

VarðK Þ ¼
Pn

i¼1
VarðxiÞ þ

P
i6¼jCovðxi; xjÞ. A sufficient condition for signatures of criticality to

arise in these models is that the average covariances (and hence correlations) between neurons

are independent of n, 1

nðn� 1Þ

P
i6¼jCovðxi; xjÞ � constant [27, 6, 5]. We refer to correlations with

this property as ‘criticality inducing’. One possible criticality-inducing correlation structure

are so called ‘infinite range’ correlations: correlation between neurons do not drop off to zero

for large spatial distances. In the extreme case of distance-independent correlations (Fig 5a),

adding more and more neurons to a population will not change the average pairwise correla-

tion within the population (Fig 5b). We note that infinite-range correlations are typically not

present in the thermodynamic limit in physical systems at equilibrium. In neural systems, infi-

nite-range correlations could be a consequence of densely connected circuitry, or of a shared

stimulus drive.

Importantly, criticality-inducing correlations can also result as a consequence of subsam-

pling a large neural population: Even a neural population which does not have infinite-range

correlations can appear critical if it is randomly subsampled during analysis. If different popu-

lations of size n are obtained as above by (uniformly) subsampling a large recording of size N,

then the pairwise correlations in each subpopulation are also a random subsample of the large

correlation matrix of the full recording. For any correlation structure on the full recording

(including limited-range correlations, Fig 5c), the expected average correlation in a population

of size n is identical to the average correlation in the full recording and hence independent of n
(Fig 5d left, grey line). Despite the pairwise correlations being subsampled in blocks of princi-

pal submatrices rather than independently, the variance of the average correlation can drop

with the square of the population size n, and is guaranteed to fall at least as 1/n (section 4.1 in

S1 Supporting Information, and Fig. J in S1 Supporting Information). Because the average cor-

relation will be independent of n and have negligible variance (Fig 5d left, shaded area), spe-

cific heat will diverge with constant slope (Fig 5d right). In contrast, if different population

sizes are constructed by taking into account the spatial structure of the population (i.e. by
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iteratively adding neighbouring cells) then the average correlation in each subpopulation will

drop with n, and the slope of specific heat growth will decrease with population size.

In our RGC simulation, pairwise correlations did drop off to zero with spatial distance for

checkerboard and natural images, but not for full-field flicker (Fig 5e). Pairwise correlations in

the full-field flicker condition initially drop off due to distance-dependent shared noise, but

eventually saturate at a level far above zero that is determined by the full-field stimulus. Due to

these strong infinite-range correlations, both spatially structured sampling and uniform sam-

pling then give rise to linear growth in specific heat (Fig 5f left). For the other two stimulus

Fig 5. Random subsampling leads to criticality-inducing correlations. a) Illustration: A population with 100 neurons and infinite-range

correlations, the average correlation between any pair of neurons is close to 0.05. Correlation as function of inter-neuron distance (left) and full

correlation matrix (right). b) Average correlation in subpopulation of different size n (left) and specific heat at T = 1 as function of n (right), when neurons

are sampled from 1 to 100 (blue). Random sampling gives identical results (gray). c) Population with limited-range correlations, same plots as in panel

a. d) Left: Average correlation as function of population size for spatially structured sampling (green) and uniform subsampling (gray). Right: Specific

heat at T = 1 grows linearly for random subsampling, but shows signs of saturation for spatially structured sampling. e) Average correlation as function

of inter-neuron distance in RGC simulation. For checkerboard and natural images, correlations drop to 0 for large distances. f) Specific heat at T = 1 for

different stimulation conditions, for spatially structured (colour) or random subsampling (gray).

https://doi.org/10.1371/journal.pcbi.1005718.g005
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conditions, however, the choice of subsampling scheme does result in markedly different

behavior of the specific heat growth: Both for natural images and checkerboard stimuli, we can

see the rate of growth decreases for large n under spatially structured subsampling (Fig 5f cen-

tre and right). This effect will be more pronounced for larger simulations, and in additional

simulations we found specific heat to saturate once populations are substantially bigger than

the spatial range of correlations. This behavior is not unique to the simplified flat models. Spe-

cific heat traces computed from K-pairwise models fit to populations obtained with spatially

structured sampling also show a marked decrease in specific heat growth rates (section 4.2 in

S1 Supporting Information and Fig. K in S1 Supporting Information).

In summary, populations will exhibit critical behaviour if correlations have infinite range

(over the size of the recording), irrespective of the sampling scheme. In addition, if a popula-

tion is randomly subsampled (as was done in [7, 8]), then signatures of criticality will arise

even if the underlying correlations have limited range.

Discussion

An intriguing hypothesis about the collective activity of large neural populations has been the

idea that their statistics resemble those of physical systems at a critical point. In recent years, sev-

eral studies [12, 5, 6, 11, 7, 8, 18] proposed a new approach to studying criticality in biological

data, motivated by notions of criticality in thermodynamics. Signatures of criticality have also

been observed in natural images [11] and cortical populations [6], and have been studied using

the theory of finite-size scaling and critical exponents [6]. It has been argued that systems close

to a critical point might be optimally sensitive to external perturbations [6] and that the large

dynamic range of the code (i.e. large variance of log-probabilities) might be beneficial for encod-

ing sensory events which likewise have a large distribution of occurrence probabilities [16].

This hypothesis that neural systems are poised at a thermodynamic critical point could

open up further questions on how the system maintains its critical state and on implications

for how neural populations encode sensory information and perform computations on it.

Alternatively, generic mechanisms could be sufficient to give rise to data which satisfies the

definition of criticality put forward in these studies. We had demonstrated in a previous theo-

retical study [25] that simple models with Gaussian common input can exhibit a diverging spe-

cific heat. More recently, it was shown [26, 27, 28] that common input (or other latent

variables which lead to shared modulations in firing rates, such as non-stationarity [29]) can

give rise to Zipf-like scaling of pattern probabilities, a second signature of criticality. Mathe-

matically, Zipf’s Law is equivalent to stating that the plot of entropy vs energy (i.e. log-proba-

bility) is a straight line with unit slope [26, 27]. Schwab et al [26] showed that particular latent

variable models give rise to Zipf’s law. This result was generalized [27, 28] to show that, under

fairly general circumstances, high-dimensional latent variable models exhibit a wide distribu-

tion of energies (i.e. log-probabilities) and hence a large specific heat. It has also been argued

that the use of data sets which are too small might give rise to spuriously big specific heats [49]:

while this could be true in principle, additional analyses e.g. in [7] show that their results are

robust with respect to data set size, and our results are also valid even in the case of infinite

data. Finally, it has also been suggested that whether statistical models exhibit criticality

depends on which variables are measured and constrained by the model fit [50, 51].

Previously, criticality in neural systems has also been investigated extensively using a defini-

tion of criticality which is based on temporal dynamics with power-law statistics, so-called

‘avalanches’ [52, 5]. Numerous studies have reported and studied ‘avalanche criticality’ [8, 21],

proposed possible mechanisms (e.g. based on self-organization [53]), and discussed finite-size

effects and sub-sampling [54], as well as a need for rigorous statistical analysis [55]. We
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emphasize that the ‘avalanche’ definition of criticality is not equivalent to the thermodynam-

ics-inspired definition used in these more recent studies [12, 8]. Our study is only concerned

with this more recent approach, and our results thus have no bearing on studies of ‘avalanche-

criticality’.

We here related signatures of criticality to the structure of firing rates and correlations in

the population: We found that average correlations which are independent of population size

are sufficient for inducing criticality, irrespective of their origin. In the thermodynamic analy-

sis of physical systems at equilibrium, long-range correlations typically vanish in the thermo-

dynamic limit. In neural systems, however, ‘criticality-inducing’ correlations can arise as a

consequence of various factors: First, in a local patch of retina, retinal ganglion cells have a

large degree of receptive field overlap, and natural stimuli also contain strong spatial correla-

tions. This can lead to correlations which do have unlimited range within the experimentally

accessible length scales. Thus, fluctuations in the stimulus will lead to common activity modu-

lations amongst neurons within the population. Empirically, correlations between pairs of reti-

nal ganglion cells only fall off slowly with the distance between somata (or receptive field

centres) [35]. Second, firing rates e.g. of cortical neurons are modulated by global fluctuations

in excitability [45, 56], resulting in neural correlations with infinite range. Third, and impor-

tantly, we showed that criticality-inducing correlations can also arise as a consequence of data

analysis choices: Uniformly subsampling a large recording with correlations to construct sub-

populations yields criticality-inducing correlations, even if the correlations itself do not have

unlimited range.

We also showed that there is a direct relationship between ‘how critical’ and ‘how corre-

lated’ a population is: The stronger correlations are, the more prominent the divergence in

specific heat is. Mechanisms underlying correlations in spiking activity have been exten-

sively studied in neuroscience [30, 31], and our study makes it possible to relate ‘signatures

of criticality’ derived from thermodynamics to these studies, and to interpret the significance

of observing these effects: Given the ubiquity of criticality-inducing correlations, signatures

of criticality are likely going to be found not just in retinal ganglion cells, but in multiple

brain areas and model systems. They are entirely consistent with canonical properties of

neural population activity, and require neither finely-tuned parameters in the population,

nor sophisticated circuitry or active mechanisms for keeping the system at the critical point.

The relationship between firing rates, correlations and criticality (eqs 3 and 4) also yields a

prediction about how adaptation in a classical sense should modulate signatures of critical-

ity: The height of the peak is monotonically related to both correlation strength and firing

rate. Adaptation typically reduces firing rates and correlations [57, 58]. Taken together, this

leads to the prediction that adaptation should reduce signatures of criticality– this is pre-

cisely the opposite of what has been predicted in [7]. Finally, the dependence of specific heat

on correlations might also be an explanation of why Ioffe and Berry [18] found that a feed-

forward model fit to their retinal data (which had lower correlations) underestimated the

specific heat.

In summary, we conclude that current attempts to interpret findings of thermodynamic

criticality in neural population activity have limited potential to lead to new insights into theo-

ries of neural computation– in particular, they are not able to discriminate between different

hypotheses about either the origin or the functional consequence of the statistics of neural

activity. A reliable interpretation of any test for criticality is possible only in reference to a-pri-

ori knowledge about the outcome of the test on relevant ground truth models. In order to real-

ise the potential of large-scale recordings of neural activity in the search of a theory of neural

computation, we will need data analysis methods which are adapted to the specific properties

of biological data, and in particular the fact that neural activity is highly subsampled [59, 60,
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54, 61]. One approach to dealing with subsampled data is to use latent-variable models which

explicitly model the effect of unobserved inputs and states [62, 63]. In addition, we will also

require hypotheses about the normative principles which govern their computations. A possi-

ble link between neural activity and theories of criticality might emerge from recent work in

machine learning, which is starting to study links between the information-processing capabil-

ities of artificial neural networks and critical phenomena [64].

Materials and methods

Retina simulation

We simulated a population of N = 316 retinal ganglion cells as linear threshold neurons whose

receptive fields were modelled by difference-of-Gaussian filters with ON-centres [37, 35, 33].

The simulation comprised two subgroups of cells with different receptive field sizes (surrounds

56μm and 30μm in retinal space, centres 28μm and 15μm, respectively, one third cells with

large receptive fields). For both subgroups, the weight of the surround was 0.5 of the centre

weight. Locations of receptive field centres (Fig 1 left panel) were based on a reconstruction of

518 soma locations from a patch of mouse retina [65]. As the reconstructed locations in that

data set also comprised about 40% amacrine cell somata, we randomly discarded 40% of the

cell locations. The resulting patch of retina covered an area of 200 × 300μm2, corresponding to

100 × 150 pixels in stimulus space. Correlated noise across neurons was modelled using corre-

lated additive Gaussian noise. Correlations dropped off exponentially with soma distance with

a decay constant of τ = 30μm i.e. noise covariance matrix was chosen as

S ¼ s2
noiseðaIn þ be

� D=tÞ, where Dij is the distance between neurons i and j and a2 + b2 = 1. We

set σnoise = 0.022 and a = 0.45. We modelled neural spiking in discrete time using 20ms bins. In

each bin t, the total input zi(t) to neuron i was given by ziðtÞ ¼ w>i sðtÞ þ �iðtÞ, where wi is the

receptive field of neuron i, s(t) the vectorised stimulus and �i(t) the input noise of neuron i. A

neuron in a given bin is active (xi = 1) if zi + d> 0.5 and inactive (xi = 0) otherwise, with offset

d = 0.168 [66]. Parameters of the simulation (centre and surround sizes, relative strength of

centre and surround, magnitude and correlations of noise, spiking threshold) were chosen to

roughly match the statistics of neural spiking (firing rates, pairwise correlations, population

activity counts) reported in studies of salamander retinal ganglion cells [13, 3, 2].

Stimuli

We used three types of stimuli for this study: natural images, checkerboard patterns and full-

field flicker. For natural image stimuli, we used a sequence of 101 images of foliages. Each

image was 400 × 400 pixels, and each image was presented for 20ms with 300 repetitions total.

The luminance histograms of the images were transformed to a normal distribution with

mean 0.5 and pixel values between 0 and 1.

For the full-field flicker stimulus, luminance levels were drawn from a Gaussian distribu-

tion with mean μ = 0.5 and variance σ2 = 0.06. Checkerboard stimuli consisted of 80 × 80 tiles

of size 5 × 5 pixels each. Luminance levels (from within the interval [0, 1]) of each tile were

chosen to be either 0.15 or 0.77 with probability 0.5. The parameters of both stimulus sets were

chosen to match the dynamic range of the simulated retinal ganglion cells. For both types of

stimuli, 2000 images were generated and the image sequences were presented with 10 repeti-

tions. To calculate specific heat as function of increasing population size, we randomly selected

10 subsamples of the full simulated population of N = 316 cells at population sizes n 2 {20, 40,

60, 80, 100, 120} by uniformly drawing n neurons out of the full population without

replacement.
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Statistical model

We modelled retinal ganglion cell activity by using a ‘K-pairwise’ maximum entropy model

[3]. In a maximum entropy model [67], the probability of observing the binary spike word

x 2 {0, 1}n for parameters λ = {h, J, V} is given by

PðxjlÞ ¼
1

ZðlÞ
exp h>x þ x>Jx þ

Xn

k¼0

Vkd K xð Þ ¼ kð Þ

 !

ð5Þ

Here, the parameter vector h (of size n × 1) and the upper-triangular matrix J 2 Rn�n corre-

spond to the bias terms and interaction terms in a pairwise maximum entropy model (also

known as an Ising model or spin-glass) [13]. The term KðxÞ ¼
Pn

i¼1
xi denotes the population

spike-count, i.e. the total number of spikes across the population within a single time bin, and

the indicator-term δ(K = k) is 1 whenever the population spike-count equals k, and is 0 other-

wise. The term
Pn

k¼0
VkdðK ¼ kÞ was introduced [3] to ensure that the model precisely cap-

tures the population spike-count distribution of the data using n additional free parameters.

The partition function Z(λ) is chosen such that the probabilities of the model sum to 1.

Parameter fitting

To fit the model parameters λ = {h, J, V} to a data set, we maximised the penalised log-likeli-

hood [68, 69] of the data D ¼ fxð1Þ; xð2Þ; . . . ; xðMÞg under the model,

Lðh; J;VÞ : ¼
XM

m¼1

logPðxðmÞjh; J;VÞ

�
1

sh
khk

1
�

1

sJ
kJk

1
�

1

2
VTS� 1V:

ð6Þ

Here, the l1-penalty controlled the magnitudes of parameters h, J, the term kJk1 favoured

sparse coupling matrices, and the regularisation term S on the V-parameters ensures that the

terms controlling the spike-count distribution vary smoothly in k (section 1 in S1 Supporting

Information). This smoothness prior is particularly important for large spike counts, as it

makes it possible to interpolate parameters for which the number of observed counts is small.

In maximum entropy models, exact evaluation of the penalised log-likelihood and its gradi-

ents requires the calculation of expectations under the model, E[xi], E[xi xj] or equivalently cov
(xi, xj), and P(K = k) (section 1.1 in S1 Supporting Information), which in turn requires sum-

mations over all 2n possible states x and is prohibitive for n> 20. Following previous work

[15], we used Gibbs sampling to approximate the relevant expectations (section 1.1 in S1 Sup-

porting Information for derivations and implementation details). We used two modifications

over previous applications of Gibbs sampling to fitting maximum entropy models to neural

population spike train data, with the goals of speeding up parameter learning and alleviating

memory usage:

First, we use Rao-Blackwellisation [40] to speed up convergence of the estimation of covari-

ances of x: for this, we used pairwise Gibbs sampling (blocked Gibbs with block size 2), where

each new sample in the MCMC chain was obtained by updating two entries i and j of x at a

time, rather than just a single entry. This allowed us to get estimates of the conditional proba-

bilities P(xi xj = 1|x*{i,j}), and to use them to speed up the estimation of the second moment

E[xi xj] from empirical average of these conditional probabilities (section 1.1 in S1 Supporting

Information).
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Second, we used a variant of coordinate ascent that calculated all relevant quantities as

running averages over the MCMC sample, and thereby avoided having to store the entire

n� ~M MCMC sample in memory [15], where ~M is the length of the sample. Because all fea-

tures of the maximum entropy model are either 0 or 1 (xi, xi xj and the indicator function for

the spike count), the gain in log-likelihood obtainable from either updating a single element

of h or J [15, 39], or from updating all V simultaneously (but not from updating multiple

entries of h and J) can be computed directly from MCMC estimates of E[xi], E[xi xj] and

P(K = k) (section 1.2 in S1 Supporting Information). For each iteration, we calculated the

gain in log-likelihood for each possible update of hi, Jij and full V, and picked the update

which led to the largest gain [15].

We measured the length of Markov chains in sweeps, where one sweep corresponds to one

round of n(n − 1)/2 Markov chain updates that encompasses all pairs of entries of x in random

order. We set a learning schedule that started at 800 sweeps for the first parameter update and

doubled the number of sweeps in the chain after each set of 1000 parameter updates. We mon-

itored convergence of the algorithm using a normalised mean square error between empirical

E[xi], cov(xi, xj), P(K = k) and their estimates from the MCMC sample. For normalisation, we

used the average squared values of the target quantity, e.g. 1

n

Xn

i¼1
E½xi�

2
for the firing rates. We

stopped the algorithm when a pre-set threshold was reached (0.01%, 0.25%, 0.01% for E[xi],
cov(xi, xj), P(K = k), respectively), or when the fitting algorithm took more than n

100

� �2
� 72h of

computation time on a single core (2.294 GHz AMD Opteron(TM) Processor 6276) (Fig. A in

S1 Supporting Information). For 10 populations of size n = 100 (for natural images), the nor-

malised MSEs after model-fitting were 0.43%, 2.80%, 0.42%). An implementation of the fitting

algorithms in MATLAB is available at https://github.com/mackelab/CorBinian.

Specific heat calculation

To investigate thermodynamic properties of neural population codes, Tkačik et al [7] intro-

duced a temperature parameter T for eq 5:

PT xjlð Þ ¼
1

ZT
exp

1

T
h>x þ x>Jx þ

Xn

k¼0

Vkd K xð Þ ¼ kð Þ

 ! !

ð7Þ

Model fits are obtained at T = 1, and the temperature parameter T is scaled to study the system

(i.e. characterised by PT(x|h, J, V) for T = 1). Varying T, in effect, modulates probabilities by

exponentiating them with 1/T,

PTðxÞ / ðPT¼1ðxÞÞ
1=T
; ð8Þ

and that the family of probability distributions obtained by varying T can be constructed for

any distribution, not just maximum entropy models. For large temperatures PT approaches a

uniform distribution (PT(x)� 2−n for each x), whereas for small temperatures it converges to a

singleton, PT(x�)� 1 with x� = argmaxx(PT = 1(x)).

The specific heat, as given in eq 2, can be obtained from the variance of the log-probabilities

of the model. As the variance in practice cannot be computed for large n, we obtained esti-

mates of c(T) using a pairwise Gibbs sampler. The specific heat does not depend on ZT, as

changing ZT results in a constant, additive shift in log-probabilities which does not affect the

variance. We tracked the variance of log-probabilities over an MCMC chain xð1Þ; . . . ; xð ~M Þ of
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length ~M sampled at temperature T, using

cðTÞ �
1

n
ðÊ½logPTðx

ðmÞjlÞ
2
� � Ê½logPTðx

ðmÞjlÞ�
2
Þ ð9Þ

where Ê denotes the average over spike words x(m) sampled from the the MCMC chain. For

each population, we evaluated c(T) for 31 temperatures between T = 0.8 and T = 2, and found

the Gibbs sampler to provide reliable estimates over this temperature range—we in particular

chose the minimal temperature T = 0.8 larger than previous previously in [7] to minimize pos-

sible effects from the sampler getting stuck (see e.g. [46]). We used a burn-in of 2.0e4 sweeps,

and ran the sampler for n
100

� �2
� 4h of CPU time, resulting in between 9.97e5 and 1.72e6

sweeps for n = 100 (i.e. between 4.94e9 and 8.52e9 sampled individual spike words).

Simplified population models

For the theoretical analysis of the sampling process, we adopted a class of population models

(here referred to as ‘flat’ models) in which all neurons are drawn from an infinite pool of neu-

rons which all have identical mean firing rates, pairwise correlations and higher-order correla-

tions [44, 25, 70, 3, 71]. Such a model is fully specified by the population spike-count

distribution P(K = k), and all spike words with the same spike count are equally probable. As a

result, the probabilities of individual patterns x can be read off from the spike-count distribu-

tion by

PðxÞ ¼
n
k

� �� 1

PðK ¼ kÞ ð10Þ

whenever
Pn

i¼1
xi ¼ k. In a maximum entropy formalism, this model can be obtained by set-

ting hi = 0 and Jij = 0 for all i, j 2 {1, . . ., n} and only optimising entries of V. Without loss of

generality, we fixed fixed V0 = 0 [43], resulting in n degrees of freedom for the model.

In flat models, it is possible to explicitly construct a limit n!1 which will help us under-

stand population analyses performed on experimental data: We assume that there is a spike-

count density f(r), r 2 [0, 1], which describes the population spike-count distribution of an

infinitely large population. f(r) denotes the probability density of a fraction of r neurons spik-

ing simultaneously. Finite-size populations of n cells are then obtained as random subsamples

out of this infinitely large system. Based on previous findings by [25], we show in section 2.3 in

S1 Supporting Information that, in this construction, flat models always exhibit a linear diver-

gence of specific heat, unless the limit f(r) is given by either a single delta peak or a mixture of

two symmetric delta peaks. These two models corresponds to systems that (for large n) either

behave like a fully independent population (whose spike-count distribution converges to a sin-

gle delta peak), or a population described by a pure pairwise maximum entropy model (which

converges to two delta peaks). In particular, any flat model with higher-order correlations [17,

70, 71], or a non-degenerate f(r), will exhibit ‘signatures of criticality’. Furthermore, we show

that, for continuous f(r), c(T) does not diverge for any T 6¼ 1. In combination, these results

show that the peak of the specific heat is mathematically bound to converge to T = 1 for n!
1 in this model class.

We further simplified the flat model by re-parametrising P(K = k) by a beta-binomial distri-

bution, thereby reducing the number of parameters from n to two, and—importantly—obtain-

ing parameters which do not explicitly depend on n. In this model,

PðK ¼ kÞ ¼
n
k

� �Betaðaþ k; bþ n � kÞ
Betaða; bÞ

¼
n
k

� �Z

f ðrÞrkð1 � rÞn� kdr ð11Þ
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and

f ðrÞ ¼
1

Betaða; bÞ
ra� 1ð1 � rÞb� 1

: ð12Þ

For simulated data, we found values for α, β extracted from the beta-binomial fits to popula-

tions of different sizes n to be stable over a large range of n (Fig 3b). We used the beta-bino-

mial parameters obtained from the largest investigated n to estimate the divergence rate ~c
for n!1.

Supporting information

S1 Supporting Information. Supporting derivations and analyses. We provide more

detailed descriptions of the maximum entropy fitting procedures used in this study. We derive

limiting behavior of specific heat capacity for flat models, and analyze effects of uniform sub-

sampling on sample means and variances. Furthermore, we provide control analyses for cen-

tral findings of the study.

(PDF)
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