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1 Fitting the K-pairwise maximum entropy model to
data

To identify the values λ̂ of the model parameters which yield the best fit of the maximum
entropy model to data, we maximise the log-likelihood of the model given the data. The
general form of the log-likelihood of a maximum entropy model parametrised by vector
λ is given by

L(λ) =

M∑
m=1

logP (x(m)|λ) = −M logZλ +

M∑
m=1

λ>f(x(m)) (1)

for the spike-data vectors x(m) ∈ {0, 1}n, m = 1, . . . ,M and (usually intractable)
normalizer Zλ,

Zλ =
∑
x

exp
(
λ>f(x)

)
.

Every choice of the feature function f defines a specific maximum entropy model over
this n-dimensional binary space. For the K-pairwise maximum entropy model used in
this paper, f(x) ∈ {0, 1}n(n+3)/2+1 is composed of:

1. n first-order features

fi(x) = xi,

with corresponding parameters collected in h. The hi, i = 1, . . . , n control single-cell
firing rates (in units of bins rather than Hz).

2. n(n− 1)/2 second-order features

fij(x) = xixj ,

with parameters Jij , j, i = 1, . . . , n, i < j, controlling pairwise neuronal correla-
tions.

3. n+1 population-scale features

fk(x) =

{
1, if

∑
i xi = k

0, otherwise

with parameters Vk, k = 0, . . . , n. The vector V controls the overall number of
spikes in each temporal bin.

Note that that there is some degeneracy between the parameter vectors V and both
h and J —a global upwards shift of firing rates for example can be achieved both by
adding a positive constant ε to each hi, or by adding εk to each of the Vk. Similarly,

adding a constant ε to every Jij can be balanced by subtracting εk(k−1)
2 from each Vk.

Since either manipulation of V is zero for k = 0, fixing Vk=0 = 0 is not sufficient for
getting rid of this parameter degeneracy. As we never interpreted the parameter-values
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themselves, but only the fit to data, we made no attempt to add additional constraints
to achieve a unique parameterization.

We can re-write the K-pairwise model into the general maximum entropy form by
stacking the feature functions fi, fij , and fk into the vector-valued feature function
f and doing the same with parameters hi, Jij , and Vk to obtain λ = {h, J, V } ∈
Rn(n+3)/2+1. The derivative of the log-likelihood with respect to any single parameter
λl, l = 1, . . . , n(n+ 3)/2 + 1 is given by (see e.g. [1])

δ

δλl

M∑
m=1

logP (x(m)|λ) =
δ

δλl

M∑
m=1

(
λ>f(x(m))− logZλ

)
=

M∑
m=1

δ

δλl
λ>f(x(m))− δ

δλl
M log

∑
x

exp
(
λ>f(x)

)
=

M∑
m=1

fl(x
(m))−M

∑
x λl exp

(
λ>f(x)

)∑
x exp (λ>F (x))

= M

(
1

M

M∑
m=1

fl(x
(m))− Eλ[fl(x)]

)
. (2)

As can be seen from equation (2), the gradient of the log-likelihood vanishes if and only
if the data means match the expectations of f(x) under the model.

To deal with data-sets of limited size, we maximised a regularised variant of the log-
likelihood,

L(h, J, V |σh, σJ ,Σ) : =

M∑
m=1

logP (x(m)|h, J, V )− 1

σh
‖h‖1 −

1

σJ
‖J‖1 −

1

2
V >Σ−1V (3)

Σ = (σSS + σII)−
1

σS + σI
S0•S0•

>

Skk′ = exp

(
− (k − k′)2

2τ2
S

)
S0k = σS exp

(
− k2

2τ2
S

)
.

Here, the matrix Σ implements a combined ridge and smoothing regression over V ,
with (n + 1) × (n + 1) identity matrix I and smoothing matrix S corresponding to a
squared-exponential kernel [2]. We set V0 = 0 and accounted for this by conditioning on
V0 and correspondingly subtracted S0•(σS +σI)

−1S0•
> from Σ. We used σh = σJ = 104,

σS = 10, σI = 400 and τS = 10.

To fit maximum entropy models to large neural populations, one needs to first approxi-
mate the feature moments Eλ[f(x)] needed for the gradients of both eq. (1) and eq. (3)
also for large populations (n > 20), and then update the parameters λ.

We introduce two modifications over previous approaches to fitting maximum entropy
models to neural data [3] to improve computational efficiency: First, we used pairwise
Gibbs sampling and Rao-Blackwellisation to considerably improve estimation of the
second-order feature moments Eλ[fij(x)], and Second, we follow the authors of [4], who
described a trick for efficiently updating the parameters in pairwise binary maximum
entropy models: If one restricted updates to coordinate-wise updates, then one can
calculate the gain from updating a single variable in closed form, which makes it easy to
select both the variable to update as well as the step-length in closed form. We show how
this trick can be extended to allow a joint update of all the population-count features
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V . In addition, the gain in log-likelihood is linear in the feature-moments, which makes
it possible to compute it from a running average over the MCMC sample, and avoids
having to store the entire sample in memory at any point. We describe our contributions
in the sections 1.1 and 1.2, respectively.

1.1 Pairwise Gibbs sampling and Rao-Blackwellisation

Following previous work [1], we used MCMC sampling to approximate the expectations
of the feature functions f(x) under the K-pairwise model with parameters λ. These
expected values Eλ[f(x)] are required to evaluate the gradients of the (penalised) log-
likelihood, as well as the log-likelihood gains resulting from parameter updates. As
the number of pairwise terms grows quadratically with population size n, most of the
parameters of the model P (x|λ) for large n control pairwise moments Eλ[xixj ]. To make
the estimation of these pairwise interactions more efficient, we implemented a pairwise
Gibbs sampler that for each update step of the Markov chain samples two variables
xi and xj , i 6= j, i, j ∈ 1, . . . , n. This furthermore allowed us to ’Rao-Blackwellise’ the
single-cell and pair-wise feature components fi(x) = xi and fij(x) = xixj [5–8]. i.e. to
use the conditional probabilities P (xi = 1|x∼i, λ) and P (xixj = 1|x∼{i,j}, λ) for moment
estimation, instead of the binary xi and xixj .

The Rao-Blackwell theorem states that the variance of the Rao-Blackwellized estimators
is equal or (as in our case) smaller than that of the original estimators. We construct
Rao-Blackwellized estimators from the sampling-based estimators

Eλ[fi(x)] ≈ 1

m̃

m̃∑
m=1

x
(m)
i

Eλ[fij(x)] ≈ 1

m̃

m̃∑
m=1

x
(m)
i x

(m)
j

by conditioning on the transition probabilities {P (x
(m)

i(m) , x
(m)

j(m) = 1|x(m)

∼{i(m),j(m)}, λ)}m̃m=1

used to generate the Markov chain {x(m)}m̃m=1.

Empirically, Rao-Blackwellization resulted in substantially faster convergence of the
MCMC-estimated model firing rates Eλ[fi(x)], second moments Eλ[fij(x)], and thus also
of the covariances covλ(xi,xj |λ) = Eλ[fij(x)]− Eλ[fi(x)]Eλ[fj(x)] (see supplementary
figure A). Unlike the binary variables xi, xixj however, the conditional probabilities are
real numbers from the interval (0, 1) and cannot be stored in memory-efficient sparse
matrices. We thus implemented a running average over conditional probabilities that
discards the current chain element immediately after drawing the next one, while keeping
track of the quantities

Eλ[fi(x)] ≈ 1

m̃

m̃∑
m=1

P (x
(m)
i = 1 | x(m)

∼i , λ)

Eλ[fij(x)] ≈ 1

m̃

m̃∑
m=1

P (x
(m)
i x

(m)
j = 1 | x(m)

∼{i,j}, λ)

as m̃ increases from 1 to MCMC sample size M̃ . We also kept track of the non-Rao-
Blackwellised estimates

Eλ[fk(x)] ≈ 1

m̃

m̃∑
m=1

δ

(
n∑
i=1

x
(m)
i , k

)

3/27



800 1600 3200 6400
0

4

8

12

200 1000 5000 25000 125000

10 -3

10 -2

10 -1

10 0

800 1600 3200 6400

%
 n

or
m

al
is

ed
 M

S
E

0

100

200

200 1000 5000 25000 125000

10 -2

10 0

10 2

Rao-Blackwell
no Rao-Blackwell

# of sweeps
800 1600 3200 6400

0

0.5

1

# of sweeps
200 1000 5000 25000 125000

10 -5

10 -3

10 -1

%
 n

or
m

al
is

ed
 M

S
E

a b

Figure A. Impact of Rao-Blackwellisation a) Comparison of normalised MSE
between Rao-Blackwellised and non-Rao-Blackwellised Gibbs sampling, as a function
of MCMC chain length, on the 10 subpopulations of size n = 100 used in the paper.
Top: means, i.e. first-order moments Eλ[xi], Center: covariances covλ(xi,xj), Bottom:
population-spike count features. No Rao-Blackwellization was used for population-spike
count features P (K = k|λ). Vertical lines and horizontal axis ticks mark Markov chain
lengths used for computing the 1st, 1001st 2001st, ... updates of parameter entries λl
during training the K-pairwise models to data. All MSEs in this figure are computed as
errors between estimated firing rates / covariances / P (K) at given chain length versus
the average of the estimates obtained after 106 sweeps. b) behaviour of MSEs for large
MCMC chain lengths. Traces are averages over the 10 traces from panel a.

for the expectations of the population-level indicator feature functions Eλ[fk(x)] =
P (K = k|λ), with Kronecker delta function δ(x, y) = 1 if x = y, and δ(x, y) = 0
otherwise.

We quantified the advantage of Rao-Blackwellising the Gibbs sampler with long Markov
chains drawn from the K-pairwise maximum entropy model fits to populations of size
n = 100 drawn from the simulated RGC data. For each investigated parameter fit, we
ran two chains under different conditions: a first chain for which we Rao-Blackwellised
the single-cell and pairwise feature moments, and a second chain for which we did not.
These Markov chains were run for M̃ = 106 sweeps and hence orders of magnitude
longer than had occurred for the invidivual parameter updates within this study, which
comprised 800 to 30000 sweeps, or 3.96× 106 to 1.485× 106 individual MCMC chain
updates at n = 100. The long sample runs served to give an approximation for the
”true” expected values of the target quantities of interest to us: firing rates Eλ[fi(x)],
covariances covλ(xi,xj) and population spike count distribution P (K = k|λ).

We quantified the speed of convergence of the estimates to the ”true” expected feature
moments by the normalised MSE between sampler-derived feature moments after any
given length 0 < m̃ < M̃ of the MCMC chain and the results we got after the full chain
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length. After the full M̃ = 106 sweeps, the Rao-Blackwellised and non-Rao-Blackwellised
estimates on average differed by 1.7× 10−4%, 0.013% and 4× 10−6% normalised MSE
for firing rates, covariances and population spike count distributions, respectively. We
computed the distance to ”truth” for each condition as the normalised MSE to the
Eλ[f(x)] averaged over both conditions. We obtained MCMC estimates for the feature
moments of the K-pairwise maximum entropy models fits to 10 subsampled populations
of n = 100 neurons each drawn from our retina simulation. Supplementary figure Aa
displays the results for the two conditions, Rao-Blackwellised vs. non-Rao-Blackwellised,
for each of the 10 investigated fits.

MSEs of firing rate features Eλ[xi] did not benefit from Rao-Blackwellisation. This
is expected, as each xi is sampled n − 1 times per sweep and thus the moments are
already well estimated relative to the second-order features. For covariances covλ(xi,xj),
normalised MSEs showed clear improvement under Rao-Blackwellisation, visible as an
approximately constant offset between the avarages over all 10 parameter fits in the
loglog-domain as seen in figure Ab. The normalised MSE on average was 3.19 times
higher for non-Rao-Blackwellised (given by the downwards offset of the normalised
MSEs of the Rao-Blackwellised estimates). The fraction of samples needed from Rao-
Blackwellised runs to achieve the same normalised MSE on the pariwise moments
than non-Rao-Blackwellised runs (given by the leftward offset of the normalised MSEs
of the Rao-Blackwellised) overall was 32.02%. The fraction ranged from 34.93% at
800 sweeps to 31.74% at 30000 sweeps. The ratio of normalised MSEs was similarly
stable, being 2.96 times higher at 800 sweeps and 3.27 times higher at 30000 sweeps for
non-Rao-Blackwellised samples than for Rao-Blackwellised ones.

1.2 Exploiting the structure of the K-pairwise feature functions
allows blockwise parameter updates.

As described in the previous section, we can use MCMC to obtain the expected values
of the feature function Eλ[f(x)] that are needed to to optimise the model parameters

λ. To find the parameter setting λ̂ which maximise the log-likelihood over the given
data vectors x(m), m = 1, . . . , M , we follow an iterative update scheme introduced
previously [4], and extend it to the K-pairwise model. The update scheme optimises
parameter changes λnew−λold relative to a current parameter estimate λold, rather than
the parameters λ directly. The benefit of this scheme over standard gradient ascent on
the regularised log-ligkelihood as in eq. (2) is that we can give closed-form solutions for
optimal values of a single component λl when temporarily holding all other components
λ∼l fixed.

Changing the current parameter estimate λold to λnew leads to a change in log-likelihood
of

∆L(λnew, λold) =
1

M

M∑
m=1

logP (x(m)|λnew)− 1

M

M∑
m=1

logP (x(m)|λold)

= (λnew − λold)>
(

1

M

M∑
m=1

f(x(m))

)
− Eλold

[
exp

(
(λnew − λold)>f(x)

)]
.

(4)

The only relevant expectations are w.r.t. the data distribution and P (x|λold), i.e. the
current parameter estimate. The term Eλold [exp

(
(λnew − λold)>f(x)

)
] can be simplified

when restricting the update vector λnew−λold to be non-zero only in selected components.
In the simplest case, only a single component λl is updated. In this case, the fact that
all components of the K-pairwise feature function f(x) are binary, allows to move the
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exponent out of the expected value, a trick used by [4]:

The resulting single-coordinate updates only require the feature moments Eλold [fl(x)]:

Eλold [exp
(
(λnew − λold)>f(x)

)
] = Eλold [exp((λnewl − λoldl )fl(x)]

= Eλold [1 + (exp(λnewl − λoldl )− 1)fl(x)]

= 1 + (exp(λnewl − λoldl )− 1)Eλold [fl(x)].

Equation (4) can now be solved analytically for the single free component λnewl that
maximises the change in log-likelihood. A closed-form optimal solution is still possible
when adding an l1-penalty to the log-likelihood [4]. We use this l1-regularised variant to
calculate the possible gain in penalized log-likelihood for each possible update of the
single-cell (hi) and pairwise (Jij) feature moments E[xi] and E[xixj ], and then perform
the update which yield the largest gain.

If we instead allow more than a single component l of the update λnewl − λoldl to be
non-zero, we in general would have to deal with the term

Eλold

[∏
l∈J

[1 + (exp(λnewl − λoldl )− 1)fl(x)]

]
,

which requires the higher-order moments Eλold
[∏

l∈I fl(x)
]

for all I ⊆ J and J ⊆
{1, . . . , n} being the index set of components that are not set to zero.

The population spike-count features fk(x), however, are mutually exclusive (only one of
the n+1 features can be non-zero at any time), and therefore we can update all parameters
of V jointly, and still pull the exponenetial term outside of the expectation. For the
population-spike count features fk(x), hereafter collectively called fV (x) ∈ {0, 1}n+1, all
such terms of order ||I|| > 1 are zero due to the sparsity of fV (x). When restricting the
current parameter update of λ to only update components corresponding to V , we have

∆L(V new, V old) = (V new − V old)>
(

1

M

m∑
m=1

fV (x(m))

)
− Eλold [exp((V new − V old)>fV (x))]

and

Eλold [exp
(
(V new − V old)>fK(x)

)
] =

∑
x

exp
(
(V new − V old)>fK(x)

)
P (x|λold)

=

n∑
k=0

∑
x:

∑
i xi=k

exp
(
(V newk − V oldk fKk (x)

)
P (x|λold)

=
n∑
k=0

exp
(
(V newk − V oldk )fKk (x)

) ∑
x:

∑
i xi=k

P (x|λold)

=

n∑
k=0

exp
(
(V newk − V oldk )fKk (x)

)
P (k|λold).

We obtained estimates of the values of P (k|λold) = Eλold [fk(x)] from the MCMC sample
using the indicator functions fk(x), and optimising w.r.t. V newk , k ∈ {1,. . . ,n} using
gradient-based methods [9].

In summary, our update-scheme for maximising the log-likelihood proceeds as follows:
For a given parameter vector λold, we first estimate the expectation of the feature
functions fi(x), fij(x) and fk(x) using a running average over an MCMC sampling and
Rao-Blackwellization. We then calculate, for each possible single-neuron parameter hi
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and each possibly pairwise term Jij the gain in penalised log-likelihood that we would get
from updating it, using methods as described above and derived in [4]. We additionally
compute the gain in penalised log-likelihood that would result from optimising all n
of the free V parameters jointly, using a convex optimization. Finally, we choose the
update that brings the largest gain, and either update a single hi, a single Jij , or
all V parameters. Subsequently, we again estimate the new feature functions using
MCMC sampling given the current estimate of λold ← λnew before we update again.
We initialised the algorithm assuming independent neurons (i.e. setting each hi using
the firing rate of each neuron, and leaving J and V zero). The algorithm then typically
first updated all V parameters, before proceeding to jump between different J , h and V
updates.
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Figure B. Quality of fits for K-pairwise maximum entropy model across
multiple populations and stimulus conditions a) Normalised MSEs for firing
rates, covariances and P (K) during parameter learning. Error values collapses across 10
subpopulations at n = 100, fit to simulated activity in response to natural images, one
point for each displayed iteration and each subpopulation. Lines are moving averages
(smoothing kernel width = 150 param. updates). b) Quality of fit after parameter
learning. Data vs. model estimates for firing rates, covariances and P (K), collapsed
over all 10 subpoplations with size n = 100. c) Quality of fit for different stimulus types.
Normalised MSEs after maximum entropy model fitting shown for 10 subpopulations
for natural images (nat) and 5 subpopulations each for checkerboard (cb) and full-field
flicker (fff). All subpopulations of size n = 100. Vertical bars give averages. Colours as
in a), b).

1.3 Effect of temperature on K-pairwise model statistics

We compute specific heat curves from the K-pairwise model by introducing a temperature
T that scales the learned parameters by 1

T , i.e. λT = λ/T . Temperature T = 1 corre-
sponds to the statistics of the empirical data. By changing T to other parameter values
one can perturb the statistics of the system [10]: For models fit to our simulated data,
increasing temperature leads to models with higher firing rates and weaker correlations
(Fig. C), with PT (x) approaching the uniform distribution for very large T . If the
temperature is decreased towards zero, PT (x) has most of its probability mass over
the most probable spike patterns. In many probabilistic systems, lowering T leads to
increasing correlations, as the systems then ’jumps’ between several different patterns
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and thus the activation probabilities of different elements are strongly dependent on each
other. However, for the simulated RGC activity, the qualitative behaviour is different,
and the sparsity of data leads to a decrease of correlations: At a bin size of 20 ms [11], the
most probable state is the silent state, followed by patterns in which exactly one neurons
spikes. In an example population of size n = 100, 53.8% of observed spike patterns
contain at most one spike. When decreasing the temperature to T < 1, patterns with at
most one spike dominate the systems even more strongly: For the same population and
temperature T = 0.8, we find 95.6% of observed patterns to contain at most one spike.
Thus, when the temperature is lowered, the shift in probability mass to single-spike
patterns decreases correlations.
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Figure C. Temperature and population statistics for K-pairwise models
Changing the temperature parameter scales firing rates (left), covariances (centre)
and population spike-counts (right) of samples x generated from temperature-perturbed
K-pairwise model fits.
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Figure D. Estimating specific heat via MCMC sampling MCMC estimates of
specific heat from a K-pairwise maximum entropy model fit to example population with
n = 100. For every investigated temperature 0.8 ≤ T ≤ 2, we run a Markov Chain to
sample from the temperature-perturbed maximum entropy model. Estimates were taken
from the average over first 4h computation time of sampling (dashed vertical line).

2 Supplementary Text: Specific heat in simple mod-
els

We refer to a maxmimum entropy model as ’flat’ if it is fully specified by the population
spike count distribution P (

∑n
i=1 xi = k), i.e. the model class studied in [12–14]. In

this model class, all neurons have the same firing rate µ and pairwise correlation ρ. As
neuron identities become interchangeable, all

(
n
k

)
possible patterns x with

∑n
i=1 = k are

8/27



assigned the same probability P (k) = P (x)
(
n
k

)
. In flat models, all relevant population

properties can be computed from summing over n+ 1 different spike counts, and one
never has to (explicitly) sum over the entire 2n possible spike patterns.

2.1 Independent neurons

A special case of a flat model is an independent model in which all neurons have the
same firing rates and zero correlations. Assuming independent spiking for each of the
n neurons and a shared probability q ∈ [0, 1] to fire in a time bin, the distribution of
population spike counts k =

∑n
i=1 xi is given by a binomial distribution,

P (x|q) = qk(1− q)n−k

P (k|q) =

(
n

k

)
qk(1− q)n−k.

To compute specific heat capacities for the underlying neural population of size n, we
can rewrite the binomial distribution in maximum entropy form

P (x|V ) =
1

Z(V )
exp (Vk)

P (k|V ) =
1

Z(V )

(
n

k

)
exp (Vk) .

Re-introducing parameters Vk, k = 0, . . . , n, we find

Vk = logP (k|q)− log

(
n

k

)
+ logZ(V )

= k log(q) + (n− k) log(1− q)),

and for the heat capacity, we get

Var[logP (x|V )] = Var[k log(q) + (n− k) log(1− q)]
= (log(q)− log(1− q))2 Var[k].

The binomial variance is Var[k] = nq(1 − q). We plug this in and see that at unit
temperature T = 1, the specific heat is given by

c(T = 1) =
1

n
Var[logP (x|V )] = q(1− q)(log(q)− log(1− q))2, (5)

which is independent of population size n.

When explicitly introducing temperatures other than T = 1, we add a factor 1
T = β that

scales the parameters V and renormalise, yielding

P (k|V, T ) =
1

Z(βV )

(
n

k

)
exp(βVk),

where Vk, k = 0, ..., n is defined w.r.t. q as above. This is the same functional form
as was given for the binomial distribution at T = 1, with only parameters V being
replaced by βV . We can also go back to the standard binomial parametrisation with

qβ = qβ

qβ+(1−q)β and obtain

P (k|V, T ) =

(
n

k

)
qkβ(1− qβ)(n−k).
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Changing the temperature T = 1
β retains the binomial form of the population model,

and we can generalise the expression for the specific heat (5) of the independent flat
model for any temperature T to be

c(T ) = qβ(1− qβ)(log(qβ)− log(1− qβ))2, (6)

which again is independent of the population size n. The independent flat model is a
case that does not show divergent specific heat, and for which the peak of the heat is
not necessarily at unit temperature. Later, we will derive why this makes the binomial
model one of only two non-critical special cases.

The independent model also allows to identify the location of the peak specific heat,
c(T ∗), for q 6= 0.5. We have

δc

δβ
= βqβ (1− qβ) log2

(
q

1− q

)(
2 + β log(

q

1− q
) (1− 2qβ)

)
,

which for a given q has a root at β such that

qβ + (1− q)β

qβ − (1− q)β
=

1

2
log

(
qβ

(1− q)β

)
.

An interesting question to ask is on which side of the unit temperature T = β = 1 the
peak of the specific heat is found. In this case, we seek a q such that the peak specific
heat is found at β = 1. Note that these specific values for q come in pairs q, 1− q. In
the context of binned spiking activity, we will focus on the smaller value in each such
pair. For the peak to be at unit temperature β = 1, we require

q = (1− q) exp

(
1

q − 1
2

)
≈ 0.0832. (7)

Assuming 20 ms temporal binning of activity data, this corresponds to an average firing
rate of 4.16 Hz – higher than any firing rate in our simulated RGC population. The
peak specific heat for independent populations (irregardless of the population size) with
a firing rate below this value are found for T ∗ > 1 (see Fig. 3f). Populations with higher
average firing rate have the peak specific heat at a temperature T ∗ < 1.

For the more general case of independent neurons but with different firing rates, we have

c(β) =
1

n

n∑
i=1

q
(i)
β (1− q(i)

β )(log(q
(i)
β )− log(1− q(i)

β ))2,

for q(i) = exp(hi)
1+exp(hi)

and q
(i)
β =

(
q(i)
)β
/(
(
q(i)
)β

+
(
1− q(i))β

)
.

2.2 Aside: Asymptotic entropy in flat models

To calculate the variance of log-probabilities, we first need the mean log-probability, i.e.
the (negative) entropy.
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Entropy: Recalling that P (k) = P (x)
(
n
k

)
, the entropy of the flat model for general

P (k) can be written as

Hn = −
∑
x

P (x) logP (x)

= −
∑
k

∑
x:

∑
i xi=k

P (x) logP (x)

= −
∑
k

P (k)

(
logP (k)− log

(
n

k

))
.

Thus, the entropy of a flat model is

Hn = −
∑
k

P (k)

(
logP (k)− log

(
n

k

))
.

Asymptotic entropy: We assume that P (k) has a limiting distribution f(r), where
r ∈ [0, 1] is the probability density of a proportion of r neurons spiking simultaneously.
Therefore, for large n

Hn = −
∑
k

P (k)

(
logP (k)− log

(
n

k

))
≈ −

∑
k

1

n
f

(
k

n

)(
logP (k)− log

(
n

k

))

≈ −
∫ 1

0

f(r)

(
log

f(r)

n
− log

(
n

nr

))
dr

= −
∫ 1

0

f(r) log f(r)dr + log(n) + n

∫ 1

0

f(r)η(r)dr.

Here, we used Stirling’s approximation to obtain, for large n,

log

(
n

nr

)
≈ n (−r log r − (1− r) log(1− r)) =: nη(r). (8)

As the first term is constant in n, the second term only grows with log(n), and the third
with n, we get that the entropy of a flat model, for large n, is given by

Hn = nh, (9)

with

h :=

∫ 1

0

f(r)η(r)dr. (10)

2.3 Asymptotic specific heat in flat models at unit temperature

Next, we calculate the specific heat, first exactly and then for large n, and finally for
weakly correlated models:

First, the specific heat is given by

c(T = 1) =
1

n
Var[logP (x)] =

1

n

∑
x

P (x) (logP (x)− E[logP (x)])
2

=
1

n

∑
k

P (k)

(
logP (k)− log

(
n

k

)
− E[logP (x)]

)2

.
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Using E[logP (x)] = −Hn, we get that

c(T = 1) =
1

n

∑
k

P (k)

(
logP (k)− log

(
n

k

)
+Hn

)2

or

=
1

n

∑
k

P (k)

(
logP (k)− log

(
n

k

))
− 1

n
H2
n.

For large n, we have that P (k) ≈ 1
nf
(
k
n

)
. We get that

c(T = 1) =
1

n

∑
k

P (k)

(
logP (k)− log

(
n

k

)
+Hn

)2

≈ 1

n

∑
k

1

n
f

(
k

n

)(
log

(
1

n
f

(
k

n

))
− log

(
n

k

)
+Hn

)2

≈ 1

n

∫ 1

0

f (r)

(
log f (r)− log n− log

(
n

nr

)
+Hn

)2

dr

≈ 1

n

∫ 1

0

f (r) (log f (r)− log n− nη(r) + nhn)
2
dr

=
1

n

∫ 1

0

f (r)
(

(log f (r)− log n)
2

+ n2 (η(r)− hN )
2

+ 2n (log f (r)− log n) (hn − η(r))
)
dr

=
1

n

∫ 1

0

f (r)
(
log2 f (r) + log f (r) (2n (hn − η(r))− 2 log n)

)
dr

+
1

n

∫ 1

0

f (r)
(
log2 n− n2 (hn − η(r))

)
dr.

For large n, this integral is dominated by the term in n2, and thus the specific heat is
asymptotically given by

c(T = 1) = n

∫ 1

0

f(r) (η(r)− h)
2
dr. (11)

Therefore, in general, the specific heat grows linearly, and hence diverges (see Fig.
G). The only exception to this are models for which η(r) − hn = 0 for almost all r.
This happens if f(r) is a delta-distribution, f(r) = δ(r − µ), in which case hn = η(µ)
and therefore the integral vanishes. This occurs whenever the pairwise correlations do
not grow proportionally with n2, as then the variance of the population spike count
collapses in the limit. One such special case is the binomial distribution over k, as
already demonstrated above using a more direct approach. There is a second special
case, namely if f(r) is a combination of two δ-peaks at µ and 1−µ (See [13] for details)–
this special case corresponds to a flat Ising model.

2.4 In flat models, specific heat does not diverge for tempera-
tures which are not equal to 1:

Above we showed that at unit temperature, the specific heat for flat models (almost)
always diverges. Now, we show that this is NOT true for any other temperature. This
explains that, for any f(r), we will find that the unit temperature is ’special’.
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First, we calculate the spike-count distribution at any inverse temperature β:

Pβ(x) =
1

Zβ
P (x)β

Pβ(k) =
1

Zβ

(
n

k

)1−β

P (k)β .

For large n,

fβ(r) ≈ nPβ(rn)

=
n

Zβ

(
n

nr

)1−β

P (rn)β

≈ n

Zβ
exp (n(1− β)η(r))P β(rn).

For large populations, this expression is dominated by the exponential exp (n(1− β)η(r)).
For β < 1, the exponential term is in turn dominated by the mode of η(r), which is at
r = 1

2 . Thus, for β < 1, fβ(r) = δ(r − 1
2 ), a delta-peak at r = 1

2 .

Conversely, for β > 1, the argument of the exponential has its peaks at r = 0 and r = 1,
and therefore fβ(r) = 1

2δ(r − 1) + 1
2δ(r − 0). In this case, we also have that the integral

in the specific heat vanishes, and that the specific heat does not diverge.

3 Specific heat divergence rate in flat models as func-
tion of correlation strength

In the next two sections, we will derive analytic expressions to predict the specific
heat divergence rate in flat models as a function of the correlation strength within the
population. Starting out from eq. (11), we will use two different approximations to
f(r) that will each yield results that allow us to better understand the behaviour of the
specific heat at unit temperature c(T = 1) in flat models.

3.1 Asymptotic entropy and specific heat in weakly correlated
flat models:

Next, we examine entropy and specific heat in models with weak correlations. If the
model is weakly correlated and its mode is not at 0 or 1 we can assume it to be
approximately Gaussian with mean µ and variance σ2,

f(r) =
1

Z
exp

(
− 1

2σ2
(r − µ)

2

)
.

We first calculate the entropy: We expand η(r) to second order around µ,

η(r) = η(µ+ δ) = η(µ) + η′(µ)δ +
δ2

2
η′′(µ) + ...,where

η′(r) = log

(
1− r
r

)
η′′(r) =

−1

r(1− r)
,
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hence

η(µ+ δ) = η(µ) + δ log

(
1− µ
µ

)
− δ2

2µ(1− µ)
+ ...

=: α+ δβ + δ2γ.

Thus, the asymptotic entropy-rate is given by

h =

∫
f(r)η(r)dr

= α+ 0β + γσ2

= η(µ)− 1

2µ(1− µ)
σ2.

We further investigate the variance, again neglecting all terms which are of higher order
than 2, obtaining

(η(µ+ δ)− h)
2

=
(
(α− h) + βδ + γδ2

)2
= (α− h)2 + δ2β2 + 2(α− h)βδ + 2(α− h)γδ2 + 2(α− h)γδ2 + . . .

= (α− h)2 + δ (2(α− h)β) + δ2
(
β2 + 2(α− h)γ

)
+ . . .

Integrating this expression over f(r), and dropping all terms in σ which are of order
higher than 2, we get∫

f(r)(η(r)− h)2 = (α− h)2 + σ2
(
β2 + 2(α− h)γ

)
=

σ4

µ2(1− µ)2
+ σ2

(
log2

(
1− µ
µ

)
− σ2

µ2(1− µ)2

)
≈ σ2 log2

(
1− µ
µ

)
.

In summary, we arrive at

c(T = 1) = nσ2 log2

(
1− µ
µ

)
, (12)

and for small µ

c(T = 1) = nσ2 log2(µ).

In other words, a population of a given size n at fixed firing rate µ that has a high specific
heat is simply a population which is very correlated. Inspecting the equations above,
we see that the final results do not critically depend on the Gaussian assumption—the
only requirement for the calculation to be accurate is that the distribution is reasonably
peaked around its mean.

3.2 Asymptotic specific heat in the beta-binomial population
model

For the beta-binomial model, we assume f(r) to be given by a beta distribution, i.e.

f(r) =
1

B(α, β)
rα−1(1− r)β−1.
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Such f(r) arise for large populations when the population spike count k is described by
a beta-binomial distribution, and the choice for the beta distribution as a model for f(r)
was motivated by the successful application of beta-binomial models P (k|α, β) to our
simulated RGC activity (see Fig. E, F).

For beta-distributed r, we have

E[r] =
α

α+ β
,

Var[r] =
αβ

(α+ β)2(α+ β + 1)
,

E[log r] = γ(α)− γ(α+ β),

where γ denotes the digamma function.
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Tkacik et al. 2015
Tkacik et al. 2012
Okun et al. 2012
Ioffe et al. 2016,

'water'

a b

Figure E. Beta-binomial models fit to spike-count distributions from litera-
ture and our retina simulation a) Spike-count distributions published in previous
studies (dotted) and corresponding beta-binomial fits. As respective population sizes for
the beta-binomial distribution, we used the reported n = 120 for Tkacik et al. (2015),
n = 40 for Tkacik et al. (2012), n = 96 for Okun et al. (2012), and n = 128 for Ioffe and
Berry (2016). b) Beta-binomial parameters α, β for population subsampled from our
RGC simulation with different sizes n. Means ± 1 standard deviation over 100 random
subsamples per population size.

The entropy can be calculated using known results on the expectation of the log,

h = γ(α+ β + 1)− α

α+ β
γ(α+ 1)− β

α+ β
γ(β + 1).

For the specific heat at unit temperature according to equation (11), we however also
require the expected values

E[r2 log2 r],E[(1− r)2 log2(1− r)],E[r(1− r) log r log(1− r)], (13)

i.e.

E[rk(1− r)l logm r logn(1− r)] =

∫ 1

0

f(r){rk(1− r)l logm r logn(1− r)}dr (14)

under beta-binomial distribution f(r), where k, l,m, n ∈ {0, 1, 2}.
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Figure F. (No) Influence of beta-binomial approximation on heat capacity
Specific heat capacities computed from population spike count distributions P (K). Spike
count distributions for population sizes n = 20, . . . , 300 were obtained from 50 uniformly
drawn subpopulations each. Simulated retinal activity was taken from of the retina
simulation with in total N = 316 RGCs that responded to natural image stimulation.
Resulting specific heat traces computed from a) beta-binomial approximations to the
spike count distributions and b) from raw P (K) (right) do not display strong qualitative
differences.

We begin the derivation of these terms by observing that

u(m,n)(r, α+ k, β + l) = log(r)mr(α+k−1) log(1− r)n(1− r)(β+l−1),

δ

δα
u(m,n)(r, α+ k, β + l) = log(r)m+1r(α+k−1) log(1− r)n(1− r)(β+l−1)

= u(m+1,n)(r, α+ k, β + l),

δ

δβ
u(m,n)(r, α+ k, β + l) = log(r)mr(α+k−1) log(1− r)n+1(1− r)(β+l−1)

= u(m,n+1)(r, α+ k, β + l),

for any k, l ∈ N. Note that the exponents k, l are readily absorbed into new effective
beta distribution parameters α′ = α+ k, β′ = β + l.

The triplets (u(m,n), u(m+1,n),u(m,n+1)) for any m,n ∈ N recursively express the inte-
grands of (14) as continuous derivatives, which allows us to repeatedly apply Leibniz’
rule to the integral. We first deal with E[rk logm r], where m = k = 2, n = l = 0,
α′ = α+ 2, β′ = β, which is the first of the three expected values we need to compute
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the specific heat at unit temperature:

Beta(α, β)E[r2 log2 r] =

∫ 1

0

rα−1(1− r)β−1 log2(r)r2dr

=

∫ 1

0

δ2

δα2
{rα+1(1− r)β−1}dr

=

∫ 1

0

δ

δα
{ δ
δα
{rα+1(1− r)β−1}}dr

=
δ

δα

∫ 1

0

δ

δα
{rα+1(1− r)β−1}dr

=
δ2

δα2

∫ 1

0

rα+1(1− r)β−1dr

=
δ2

δα2
Beta(α+ 2, β).

The first two derivatives of Beta(α′, β′) w.r.t. α are given by

δ

δα
Beta(α′, β′) = Beta(α′, β′)(ψ0(α′)− ψ0(α′ + β′)),

δ2

δα2
Beta(α′, β′) = Beta(α′, β′)

(
(ψ0(α′)− ψ0(α′ + β′))2 + ψ1(α′)− ψ1(α′ + β′)

)
.

We obtain the m-th derivative also for m > 2 using an iterative rule. The beta-binomial
normaliser Beta(α′, β′) furthermore cancels out with the denominator Beta(α, β) of the
original beta distribution through

Beta(α+ k, β + l) =

∏k−1
i=0 (α+ i)

∏l−1
j=0(β + j)∏k+l−1

i=0 (α+ β + i)
Beta(α, β).

Combining the previous results gives

E[r2 log2 r] =
1

Beta(α, β)

∫ 1

0

rα−1(1− r)β−1log2(r)r2dr (15)

=
1

Beta(α, β)

δ2

δα2
Beta(α+ 2, β)

=
α(α+ 1)

(α+ β)(α+ β + 1)

1

Beta(α+ 2, β)

δ2

δα2
Beta(α+ 2, β)

=
α(α+ 1)

(
(ψ0(α+ 2)− ψ0(α+ β + 2))2 + ψ1(α+ 2)− ψ1(α+ β + 2)

)
(α+ β)(α+ β + 1)

.

For m = 2, k = 1, n, l = 0 the result

E[r log2 r] =
α

α+ β
[(ψ0(α+ 1)− ψ0(α+ β + 1))2 + ψ1(α+ 1)− ψ1(α+ β + 1)]

is identical to the one from [15] in the appendix A.3, eq. (28).

We have Beta(α, β) = Beta(β, α), i.e. the above equations hold symmetrically for α
and β interchanged, and n, l instead of m, k. This gives us the second required term to
compute the specific heat at unit temperature,

E[(1− r)2 log2(1− r)] (16)

=
β(β + 1)

(
(ψ0(β + 2)− ψ0(α+ β + 2))2 + ψ1(β + 2)− ψ1(α+ β + 2)

)
(α+ β)(α+ β + 1)

.
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Including derivatives w.r.t. both α and β, we more generally arrive at

E[log(r)mrk log(1− r)n(1− r)l] =

∏k−1
i=0 (α+ i)

∏l−1
j=0(β + j)∏k+l−1

i=0 (α+ β + i)
g(m,n)(α+ k, β + l).

We get recursive formulas for g(m,n), starting at g(0,0)(α, β) = 1:

g(m+1,n)(α, β) = (ψ0(α)− ψ0(α+ β)) g(m,n)(α, β) +
δ

δα
g(m,n)(α+ β)

g(m,n+1)(α, β) = (ψ0(β)− ψ0(α+ β)) g(m,n)(α, β) +
δ

δβ
g(m,n)(α+ β).

To compute c(T = 1), we still require the case of m = k = n = l = 1 given by

E[r(1− r) log(r) log(1− r)] =
αβ

(α+ β)(α+ β + 1)
g(1,1)(α+ 1, β + 1), (17)

with

g(1,1)(α+ k, β + l) = ψ0(α+ k)ψ0(β + l)− ψ0(α+ β + k + l) (ψ0(α+ k) + ψ0(β + l))

+ ψ0(α+ β + k + l)2 − ψ1(α+ β + k + l). (18)

Combining the results of equations (15), (16), (17), (18) with eq. (11), we arrive at

c(T = 1)

n
=

∫ 1

0

f(r) (η(r)− h)
2
dr

=
α(α+ 1)ψ1(α+ 1) + β(β + 1)ψ1(β + 1)

(α+ β)(α+ β + 1)

+
αβ (ψ0(α+ 1)− ψ0(β + 1))

2

(α+ β)2(α+ β + 1)
− ψ1(α+ β + 1)

= Var[r] (ψ0(α+ 1)− ψ0(β + 1))
2 − ψ1(α+ β + 1).

3.3 Effects of firing rates

In our flat model analyses, we considered neural populations with various sizes and
average correlation strengths and usually treated firing rates as fixed, generally at the
rate of 1.5 Hz [16]. In general, however, different experimental stimuli may induce
different average firing rates within the populations. Our analytic predictions from 3.1
and 3.2 for the divergence rate of specific heat can be evaluated for various combinations
of average correlation and average firing rate (Fig. H). Our predictions show that for
the systems with firing rates around 1.5 Hz, the specific heat divergence rates indeed
depends on average firing rates for a wide range of correlations strengths, albeit weakly.
Thus comparisons of exact specific heat values across different experimental conditions
also need to take differences in firing rates into account.

3.4 Specific heat divergence at clamped firing rates

Changes in temperature T scale all model parameters of the maximum entropy model,
and thus in general affect firing rates, correlations and population spike count statistics.

For flat models, varying T during the specific heat analysis explores the behaviour
through one-dimensional family of models parametrised by 1

T V ∈ Rn+1. Moving along

18/27



pr
ob

ab
ili

ty

temperature

sp
ec

ifi
c 

he
at

0.7 1 1.2

pop. spike count

0.2

0.1

0
0 100 200 300

ytilibaborp

5

10 300
280
260
240
220
200
180
160
140
120
100
80
60
40
20

Figure G. Diverging specific heat for a non-natural spike-count distribution
The values of the population spike count distribution P (K) obtained from the retinal
simulation with N = 316 in response to natural image stimulation (orange, inset) were
shuffled (black trace, inset) across K, to yield a ’pathological’ P (K). We simulated data
for this P (K) from a flat model, and subsampled subpopulations of size n = 20, . . . , 300.
The specific heat traces computed from this data also diverges and has a peak at unit
temperature

this trajectory, we can explore a range of possible average correlation strengths ρ between
the entries of spike patterns x ∈ Rn: from the average correlation strength found in the
data at T = 1, to usually larger ρ for T → 0, and to ρ→ 0 for T →∞. However, not
only the correlations ρ change with T , but the firing rate 1

nE[K] is also affected.

We showed that the specific heat diverges whenever T = 1, and that it does not diverge
otherwise. Is this also true if one ’clamps’ firing rates such that they are not altered by
changing T?

Tkačik et al. [16] introduced a modified temperature analysis for the K-pairwise maximum
entropy model: After changing T , they numerically optimized the h parameters (h̃i(T ))
such that the firing rates were not affected by temperature:

logPT (x|λ) =
∑
i

h̃i(T )xi +
1

T

∑
ij

Jijxixj + Vk

− logZ(J, V, h̃(T )), (19)

for k =
∑n
i=1 xi. The adjusted firing rate parameters h̃i(T ) are recomputed for each

temperature T and for each neuron i to keep the resulting firing rates E λ
T

[xi] fixed to

those firing rates obtained at T = 1.

We here show that for flat models, this result will be generically true: Specific heat
diverges whenever T = 1, even for a modified analysis in which firing rates are clamped:
The flat model assumes all hi = h̄, Jij = J̄ to be identical. Hence we can achieve such
an altered temperature scaling for the flat model by introducing a linear term h̄(T )k to
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Figure H. Specific heat divergence and average firing rate in flat models
Specific heat divergence rates c̃ = c(T = 1)/n in flat models for fixed average correlation
strengths ρ and under various firing rates. Traces computed for general flat models using
the approximate asymptotic prediction (12) (red, valid for small correlation strengths
ρ), and for beta-binomial models using the asymptotically exact formula (19) (orange).
Dashed vertical line marks 1.5 Hz, corresponding to the average firing rate of our retina
simulation under stimulation with natural images.

the model log-likelihood,

logPT (k|V ) =
Vk
T
− h̄(T )k + log

(
n

k

)
− logZ(V, h̄(T )). (20)

The scalar factor h̄(T ) for temperature T is chosen such that that the average firing rate
1
nET [K] is identical to that of the data (at T = 1), i.e. ET [K] = E1[K].

We repeated the specific heat analysis on our simulated RGC data with this adjustment.
We found the same qualitative features in the specific heat traces obtained for different
population sizes n: The peak of the curves diverges as the population size n is increased,
and moves closer to unit temperature for increasing n (Fig. I). We also see that between
the different experimental stimuli, there is an increase in the slope of the specific heat
divergence from checkerboard stimuli (short-range spatial correlations, weak average
correlations, Fig. Ia) to full-field flicker (infinite-range correlations, strong average
correlations, Fig. Ic).

The derivations on specific heat divergence in section 2 also apply for the analysis with
clamped firing rates: In particular, the specific heat will still diverge at unit temperature
under the same conditions as before, since the original and the firing rate-preserving
temperature scalings coincide at T = 1, i.e. h̄(T = 1) = 0. For any other temperature
T = 1

β 6= 1, for fixed β, V , we can rewrite equation 20 as

Pβ(k) =
1

Zβ

(
n

k

)
exp(Vk)β exp

(
−h̄k

)
=

1

Zβ

(
n

k

)1−β

exp(−h̄k)1−βP (k)β ,

where we dropped explicit dependencies of PT (k|V ) on V and of h̄ on β, as well as those
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Figure I. Signatures of criticality in flat models with clamped firing rates
Specific heat capacities computed from beta-binomial approximations to population
spike-count distributions P (K) with clamped firing rates. For each temperature T , we
adjusted the model to keep the average firing rate fixed to the average firing rate of
T = 1. Spike-count distributions for population sizes n = 20, . . . , 300 for each n were
obtained from 50 subpopulations drawn uniformly from our RGC simulation. Specific
heat values are averages over subpopulations. Panels show averaged specific heat traces
as a function of 1

T for each population n (left), and average specific heat values at peak
and at T = 1 (right), for a) checkerboard stimuli, b) natural stimuli and c) full-field
flicker stimuli.

of Z for notational clarity. In the large-n approximation k = rn, the above becomes

fβ(r) ≈ n

Zβ
exp

(
n(1− β){η(r)− h̄r}

)
P (rn)β .
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The latter equation for large n again is dominated by the exponential term

exp
(
n(1− β){η(r)− h̄r}

)
= exp (n(1− β)η̄(r)) .

The inner function in r, η̄(r) = η(r)− h̄r, has its mode at r̄ = 1
1+exp(h̄)

∈]0, 1[.

Plugging r̄ into η̄(r) shows that the value attained at the mode is

η̄(r̄) = −h̄+ log
(
1 + exp h̄

)
,

which is zero if and only if h̄ = log
(
1 + exp h̄

)
, i.e. if and only exp h̄ = 1+exp h̄ or 1 = 0.

Hence, η̄(r̄) 6= 0 for all h̄ ∈ R and all β 6= 1. Thus, for large n, either fβ(r) ≈ δ(r − r̄),
or fβ(r) ≈ 1

2δ(r − 1) + 1
2δ(r − 0), and the integral in the specific heat vanishes in either

case.

4 Correlations under uniform subsampling

In previous sections, we derived the dependence of the specific heat divergence on
correlation strength in populations.

For the methods developed in [16], uniformly random subsampling of n many neurons
from a large fixed recording of size N was used to obtain several subpopulation at each
population size. In terms of average correlations, we can formulate this subsampling
process as selecting n × n principal submatrices from a large fixed N × N matrix
describing the correlations of N many random variables. The average correlation of the
subpopulation is the average over the respective selected entries. We denote the full index
set for N many random variables as [N ] = {1, . . . , N}. Let In = {I ⊆ [N ] : |I| = n}
be the set of all size-n subpopulations of the full size-N recording. Let ρij be the
correlation between variables indexed with i, j ∈ [N ]. We define the average correlation
of a subpopulation I ∈ In as

ρn(I) :=
2

n(n− 1)

∑
i,j∈I,i<j

ρij =
1

n(n− 1)

∑
i,j∈I,i6=j

ρij .

We exclude diagonal entries ρii = 1 ∀i ∈ I.

In the following sections, we derive some basic results on the behaviour of average
correlation ρn(I) for uniformly sampled subsets I of N many random variables. We are
primarily interested in the mean E[ρn] and variance Var[ρn] of the average correlation

with respect to the uniform distribution over subsets Pn(I) =
(
N
n

)−1
. We will see that

the mean E[ρn] is equal to the average correlation of the full recording ρn([N ]) for all
subpopulation sizes n– this is not surprising, as the entries of the sub-matrix are randomly
sampled from ρij, and characterize how the Var[ρn] decreases to zero with increasing
n. Taken together, this predicts that in terms of average correlation, uniformly drawn
subpopulations will quickly all behave like the full recording with increasing population
size n, and the conditions for linear divergence of the specific heat derived in 2 are
well-met even for sizes n that are actually experimentally accessible.

4.1 Scaling of average correlation with population size under
uniform subsampling

Expected mean correlation: Under uniform subsampling, the expected mean corre-
lation strength E[ρn] of populations of any size n ≤ N is equal to the average correlation
ρN ([N ]) of the entire recording [N ], regardless of the exact correlation structure structure
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{ρij}ij , i 6= j. This is simply a consequence of the fact that the entries of the submatrix
are randomly (but not independently) drawn from the big correlation matrix. More
formally:

Proof: The expected mean correlation across populations of fixed size n for uniformly

drawn populations
(
∀I ∈ In : Pn(I) =

(
N
n

)−1
)

is given by

E[ρn] =
∑
I∈In

Pn(I)ρn(I)

=

(
N

n

)−1 ∑
I∈In

ρn(I)

=

(
N

n

)−1
2

n(n− 1)

∑
I∈In

∑
i,j∈I,i<j

ρij

=

(
N

n

)−1
2

n(n− 1)

∑
i,j∈[N ],i<j

(
N − 2

n− 2

)
ρij (21)

=
2

N(N − 1)

∑
i,j∈[N ],i<j

ρij

= ρN ([N ]). (22)

For line 21, we used that there are exactly
(
N−2
n−2

)
many subsets I ⊆ [N ] of size n that

contain a fixed pair of distinct variables i, j ∈ [N ], i 6= j.

Variance of mean correlation: Characterising the variance is a bit more involved,
as subsampling a principal matrix is not the same as drawing entries independently,
so it is not a-priori clear that the variance will drop as 1/n. However, under uniform
subsampling, the variance of mean correlation Var[ρn] decreases with population size n
at least as Var[ρn] ∝ 1

n .

Proof: We begin with the second moment,

E[ρ2
n] =

∑
I∈In

Pn(I)ρ2
n(I)

=

(
N

n

)−1 ∑
I∈In

ρ2
n(I)

=

(
N

n

)−1 ∑
I∈In

 2

n(n− 1)

∑
i,j∈I,i<j

ρij

2

=

(
N

n

)−1
4

n2(n− 1)2

∑
I∈In

∑
i,j,k,l∈I:i<j,k<l

ρijρkl. (23)

The four-index inner sum in 23 is problematic because the number of unique indices
|{i} ∪ {j} ∪ {k} ∪ {l}| =: q for any valid quartet i, j, k, l can range between two (if
i = k, j = l) and four. We split the set of index quartets i, j, k, l depending on how many
of the indices are unique. Let

S2
q (I) =

∑
i,j,k,l∈I,i<j,k<l,|{i}∪{j}∪{k}∪{l}|=q

ρijρkl.
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Conveniently, ∑
i,j,k,l∈I,i<j,k<l

ρijρkl = S2
2(I) + S2

3(I) + S2
4(I)

and∑
I∈In

∑
i,j,k,l∈I:i<j,k<l

ρijρkl =
∑
I∈In

S2
4(I) +

∑
I∈In

S2
3(I) +

∑
I∈In

S2
2(I)

=

(
N − 4

n− 4

)
S2

4([N ]) +

(
N − 3

n− 3

)
S2

3([N ]) +

(
N − 2

n− 2

)
S2

2([N ]).

(24)

For the last equality, we again used that there are
(
N−q
n−q

)
possible size-n subsets of [N ]

that contain a specific set of q many unique indices.

Assuming n ≥ 4, plugging 24 into 23 yields

E[ρ2
n] =

4

n(n− 1)N(N − 1)

(
(n− 2)(n− 3)

(N − 2)(N − 3)
S2

4([N ]) +
(n− 2)

(N − 2)
S2

3([N ]) + S2
2([N ])

)
.

Rewriting the squared first moment as

E[ρn]2 =
4

N2(N − 1)2

(
S2

4([N ]) + S2
3([N ]) + S2

2([N ])
)

(25)

allows to obtain

Var[ρn] = E[ρ2
n]− E[ρn]2

= m2
4([N ])γ4,N (n) +m2

3([N ])γ3,N (n) +m2
2([N ])γ2,N (n), (26)

with

m2
4([N ]) =

4

N(N − 1)(N − 2)(N − 3)
S2

4([N ]),

m2
3([N ]) =

1

N(N − 1)(N − 2)
S2

3([N ]),

m2
2([N ]) =

2

N(N − 1)
S2

2([N ]),

γ4,N (n) =
(n− 2)(n− 3)

n(n− 1)
− (N − 2)(N − 3)

N(N − 1)
,

γ3,N (n) =
4(n− 2)

n(n− 1)
− 4(N − 3)

N(N − 1)
,

γ2,N (n) =
2

n(n− 1)
− 2

N(N − 1)
.

The space of variance traces Var[ρn] ∈ RN lies within the span of the vectors γq,N (n), q ∈
{2, 3, 4}. It is γ2,N + γ3,N + γ4,N ≡ 0 for all N > 1. The respective coordinates for a
given N ×N correlation matrix are given by the normalised summary statistics m2

q([N ])
of that particular correlation matrix (see Fig. J).

For a coarse bound on the scaling of variance of the mean correlation, we once more
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rewrite

Var[ρn] = d+
e

n− 1
+

f

n(n− 1)
, (27)

d =
4

N − 3

(
E[ρij ]

2 −m2
3([N ])

)
− 2Var[ρij ]

(N − 2)(N − 3)
,

e =
4(N + 1)

N − 3

(
m2

3([N ])− E[ρij ]
2
)

+
8Var[ρij ]

(N − 2)(N − 3)
,

f =
8N

N − 3

(
E[ρij ]

2 −m2
3([N ])

)
+

2N(N − 5)Var[ρij ]

(N − 2)(N − 3)
,

where we expressed m2
4([N ]) through E[ρij ],Var[ρij ] and m2

3([N ]) via eq. 25. The exact
scaling behaviour of Var[ρn] for n << N thus depends on the values for d, e, f , which for
any given correlation structure {ρij} are fixed constants independent of n. The variance
in any case decreases with n at least as fast as 1

n−1 . For

m2
3([N ]) ≈ E[ρij ]

2 − 2Var[ρij ]

(N + 1)(N − 2)
, (28)

we have e ≈ 0 and obtain Var[ρn] ∝ N(N−1)
n(n−1) − 1, which initially decays as just as

independent sampling of correlation matrix entries (i.e. ∝ 1
n(n−1) ) before eventually

decreasing to exactly zero for n = N . Decay accelerates as n approaches N because the
uniform subsampling scheme draws variables without replacement. See figure J for an
example with N = 100 and an exponentially decaying spatial correlation profile that
leads to d = −7.25e-7, e = −5.84e-5, f = 0.013, i.e. e << f .
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Figure J. Variance of mean for uniformly subsampled population of size n a)

Example correlation matrix for N = 100 neurons, ρij = 1
0.2527 exp

(
− |i−j|

2

0.125

)
(diagonal

removed for displaying purposes). b) Variance of average correlation Var[ρn]. Predictions
from 4.1 with statistics E[ρij ],Var[ρij ],m

2
3([N ]) computed from the matrix in a. Black

circles give variance over empirical average correlations for 10000 populations uniformly
drawn for each n = 2, 10, 20, 30, . . . , 90.

4.2 Specific heat and non-random subsampling for the full K-
pairwise model

We asked whether our analytical results on effects of the subsampling scheme for flat
models also hold empirically for the more powerful K-pairwise models. To this end, we
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trained K-pairwise models to in total 36 different populations obtained from ordered
subsampling of our simulated RGCs (2 for each population size n = 20, 40, . . . 120 for each
of three stimulus conditions). As the K-pairwise model strongly restricts the maximal
population size that we can feasibly work with, we did not use our full simulation for
this analysis. Instead, we once randomly subsampled N ′ = 120 neurons out of the
N = 316 simulated RGCs and subsequently treated this smaller subset as a proxy to the
full recording. We point out that the largest population at n = N ′ thus approximately
shares the average firing rates and correlations of the full N = 316 recording (see section
4.1).

As with the flat models before, we then ordered the 120 remaining neurons according
to their spatial location within the simulated patch of retina and subsequently added
neighboring neurons to grow the populations, taking n = 20, 40, . . . 120 for fitting
K-pairwise models on the simulated RGC activity under checkerboard, natural and
full-field flicker stimulation. We obtained two populations per populations size this way
by once subsequently adding neurons traversing the retinal patch ’left-to-right’ and once
’right-to-left’.

We summarise our results in Fig. K. As with the flat models before (Fig. 5f), the
specific heat capacity at T = 1 no longer appears to diverge linearly for all three stimulus
conditions. In particular, specific heat capacity growth slows down with larger n for the
two conditions (checkerboard and natural images) that exhibit finite-length correlations
within the stimuli. This again is consistent with decreasing average correlations within
larger populations obtained by ordered subsampling (compare Fig. 5e).
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Figure K. Specific heat for K-pairwise models and ordered subsampling Spe-
cific heat capacity computed from K-pairwise models fit to subpopulations obtained
from subsequently adding neighboring neurons (compare Fig. 5f). Colored lines give
specific heat traces for populations of sizes n = 20, 40, . . . 120. For each population
size, two subpopulations were generated with ordered subsampling (corresponding to
traversal of the simulated retinal patch once left-to-right and right-to-left). Grey lines
give individual traces for 10 uniformly sampled populations for each of the six different
population sizes (same as Fig. 4d), Insets: Specific heat at unit temperature.
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