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2Graduate Training Centre of Neuroscience, University of Tübingen
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Abstract

Neural population activity in cortical circuits is not solely driven by ex-
ternal inputs, but is also modulated by endogenous states which vary on
multiple time-scales. To understand information processing in cortical cir-
cuits, we need to understand the statistical structure of internal states
and their interaction with sensory inputs. Here, we present a statistical
model for extracting hierarchically organised neural population states from
multi-channel recordings of neural spiking activity. Population states are
modelled using a hidden Markov decision tree with state-dependent tuning
parameters and a generalised linear observation model. We present a varia-
tional Bayesian inference algorithm for estimating the posterior distribution
over parameters from neural population recordings. On simulated data, we
show that we can identify the underlying sequence of population states and
reconstruct the ground truth parameters. Using population recordings from
visual cortex, we find that a model with two levels of population states out-
performs both a one-state and a two-state generalised linear model. Finally,
we find that modelling of state-dependence also improves the accuracy with
which sensory stimuli can be decoded from the population response.

1 Introduction

It has long been recognised that the firing properties of cortical neurons are not constant
over time, but that neural systems can exhibit multiple distinct firing regimes. For example,
cortical circuits can be in a ‘synchronised’ state during slow-wave sleep, exhibiting synchro-
nised fluctuations of neural excitability [1] or in a ‘desynchronised’ state in which firing is
irregular. Neural activity in anaesthetised animals exhibits distinct states which lead to
widespread modulations of neural firing rates and contribute to cross-neural correlations
[2]. Changes in network state can be brought about through the influence of inter-area
interactions [3] and a↵ect communication between cortical and subcortical structures [4].

Given the strong impact of cortical states on neural firing [3, 5, 4], an understanding of the
interplay between internal states and external stimuli is essential for understanding how pop-
ulations of cortical neurons collectively process information. Multi-cell recording techniques
allow to record neural activity from dozens or even hundreds of neurons simultaneously,
making it possible to identify the signatures of underlying states by fitting appropriate
statistical models to neural population activity.

It is thought that the state-dependence of neocortical circuits is not well described using a
global bi-modal state. Instead, the structure of cortical states is more accurately described
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Figure 1: Illustration of the model. A) Generative model. At time t, the cortical state st
is determined using a Hidden Markov Decision Tree (HMDT) and depends on the previous
state st�1, population activity yt�1 and on the current stimulus xt. In our simulations,
we assumed that the first split of the tree determined whether to transition into an up
or down-state. Up-states contained transient periods of high firing across the population
(up-high) as well as sustained periods of irregular firing (up-low). Each cortical state is
then associated with di↵erent spike-generation dynamics, modelling state-dependence of
firing properties such as ‘burstiness’. B) State-transition probabilities depend on the tree-
structure. Transition matrices are depicted as Hinton diagrams where each block represents
a probability and each column sums to 1. Each row corresponds to the possible future state
st (see colour), and each column to the current state.
(1) A model in which transition-probabilities in the first level of the tree (up/down) are
biased towards the up-state (green squares are bigger than gray ones), and weakly depend on
the previous state st�1. In this example, both high/low phases are equally likely within up-
states (second level of tree, depicted in second column) and do not depend on the previous
state (all orange/red squares have same size). The resulting 3 ⇥ 3 matrix of transition
probabilities across all states can be calculated from the transition-probabilities in the tree.
(2) Changing the properties of the second-level node only leads to a local change in the
transition matrix: It a↵ects the proportion between the orange/red states, but leaves the
green state unchanged.

using multiple states which vary both between and within brain regions [6]. In addition,
the ‘state’ of a neural population can vary across multiple time scales from milliseconds to
seconds or more [6]: For example, cortical recordings can switch between up- and down-
phases. During an up-phase cortical activity can exhibit ‘volleys’ of synchronised activity
[7]—sometimes referred to as population bursts—which can be modelled as transient states.

These observations suggest that the structure of cortical states could be captured by a
hierarchical organisation in which each state can give rise to multiple temporally nested
‘sub-states’. This structure naturally yields a binary tree: States can be divided into sub-
classes, with states further down the tree operating at faster time-scales determined by
their parent node. We hypothesise that other cortical states also exhibit similar hierarchical
structure. Our goal here is to provide a statistical model which can identify cortical states
and their hierarchical organisation from recordings of population activity. As a running
example of such a hierarchical organisation we use a model in which the population exhibits
synchronised population bursts during up-states, but not during down-states. This system
is modelled using a first level of state (up/down), and for which the up-state is further
divided into two states (transient high-firing events and normal firing, see 1A).

We present an inhomogeneous hidden Markov model (HMM) [8] to model the temporal
dynamics of state-transitions [9, 10]. Our approach is most closely related to [10], who
developed a state-dependent generalised linear model [11] in which both the tuning prop-
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erties and state-transitions can be modelled to depend on external covariates. However,
our formulation also allows for hierarchically organised state-structures. In addition, pre-
vious population models based on discrete latent states [10, 12] used point-estimation for
parameter learning. In contrast, we present algorithms for full Bayesian inference over the
parameters of our model, making it possible to identify states in smaller or noisier data
[13]. This is important for neural population recordings which are typically characterised
by short recording times relative to the dimensionality of the data and by high variability.
In addition, estimates of posterior distributions are important for visualising uncertainty
and for optimising experimental paradigms with active-learning methods [14, 15].

2 Methods

We use a hidden Markov decision tree (HMDT) [16] to model hierarchically organised states
with binary splits and a generalised linear observation model (GLM). An HMDT combines
the properties of a hidden Markov model (to model temporal structure) with a hierarchical
mixture of experts (HME, to model a hierarchy of latent states) [17]. In general the hierar-
chical approach can represent richer dependence of states on external covariates, analogous
to the di↵erence between multi-class logistic regression and multi-class binary decision trees.
For example, a two-level binary tree can separate four point clouds situated at the corners
of a square whereas a 4-class multinomial regression cannot. We use Bayesian logistic regres-
sion [18] to model transition gates and emissions. In the following, we describe the model
structure and propose a variational algorithm [8, 19] for inferring its parameters.

2.1 Hierarchical hidden Markov model for multivariate binary data

We consider discrete time-series data of multivariate binary1 neural spiking events yt 2
{0, 1}C where C is the number of cells. We assume that neural spiking can be influenced
by (observed) covariates xt 2 RD. The covariates xt could represent external stimuli,
spiking history of neurons or other measures such as the total population spike count. In
our analyses below, we assume that correlations across neurons arise only from the joint
coupling to the population state, and we do not include couplings between neurons as is
sometimes done with GLMs [11]. Dependence of neural firing on internal states is modelled
by including a 1-of-K latent state vector st, where K is the number of latent states. The
emission probabilities for the observable vector yt (i.e. the probability of spiking for each
neuron) are thus given by

p (yt|xt, st,�) =
KY

i=1

CY

c=1

p
⇣
y(c)t |x(c)

t ,�(c)
i

⌘s(i)t

, (1)

where � is a set of model parameters. We allow the external covariate xt to be di↵erent for
each neuron c.

To model temporal dynamics over st, we use a hidden Markov model (HMM) [10], where
the state transitions take the form

p (st|st�1,xt, ) =
KY

i=1

KY

j=1

p
⇣
s(i)t |s(j)t�1,xt, 

⌘s(i)t s(j)t�1

, (2)

where  is a set of parameters of the transition model. The model allows state-transitions
to be dependent on an external input xt— this can e.g. be used to model state-transitions
caused by stimulation of subcortical structures involved in controlling cortical states [20].
Moving beyond this standard input output HMM formulation [21], we introduce hierarchi-
cally organised auxiliary latent variables zt which represent the current state st through a
binary tree. Using HME terminology, we refer to the nodes representing zt as ‘gates’. Each
of the K leaves of the tree (or, equivalently, each path through the tree) corresponds to one
of the K entries of st and we can thus represent st in the form

s(k)t =
LY

l=1

⇣
z(l)t

⌘A(l,k)
L

⇣
1� z(l)t

⌘A(l,k)
R

, (3)

1All derivations below can be generalised to model the emission probabilities by any kind of
generalised linear model.
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where AL and AR are adjacency matrices which indicate whether state k is in the left or
right branch of gate l, respectively (see [19]). Using this representation, st is deterministic
given zt which significantly simplifies the inference process. The auxiliary latent variables

z(l)t are Bernoulli random variables and we chose their conditional probability distribution
to be

p(z(l)t = 1|x(l)
t , st�1,vl) = �

⇣
v>
l u

(l)
t

⌘
. (4)

Here, �(·) is the logistic sigmoid, vl are the parameters of the l-th gate and ut represents
a concatenation of the previous state st�1, the input xt (which could for example represent
population firing rate, time in trial or an external stimulus) and a constant term of unit

value to model the prior probability of z(l)0 = 1. This parametrisation significantly reduces
the number of parameters used for the transition probabilities as compared to [10]. To
enforce stronger temporal locality and less jumping between states we could also reduce
this probability to be conditioned only on previous activations of a sub-tree of the HMDT
instead of all population states.

2.2 Learning & Inference

For posterior inference over the model parameters we would need to infer the joint distri-
bution over all stochastic variables conditioned on X,

p (Y,S,�, ,�,⌫|X) =p (Y|S,X,�) p (S|X, ) p (�|�) p (�) p ( |⌫) p (⌫) (5)

where Y is the set of yt’s, � and  are the sets of parameters for the emission and gating
distributions, respectively, and � and ⌫ are the hyperparameters for the parameter priors.
Since there is no closed form solution for this distribution, we use a variational approximation
[8]. We assume that the posterior factorises as

q (S,�, ,�,⌫) =q (S) q (�) q ( ) q (�) q (⌫) (6)

=q (S)
KY

k=1

CY

c=1

q
⇣
�(c)

k

⌘
q
⇣
�(c)
k

⌘ LY

l=1

q ( l) q (⌫l) , (7)

and find the variational approximation to the posterior over parameters, q (S,�, ,�,⌫),
by optimising the variational lower bound L(q) to the evidence

L(q) :=
X

S

ZZZZ
q (S,�, ,�,⌫) ln

p (Y,S,�, ,�,⌫|X)

q (S,�, ,�,⌫)
d�d d�d⌫ (8)

 ln
X

S

ZZZZ
p (Y,S,�, ,�,⌫|X) d�d d�d⌫ = ln p (Y|X) . (9)

We use variational Expectation-Maximisation (VBEM) to perform alternating updates on
the posterior over latent state variables and the posterior over model parameters. To infer
the posterior over latent variables (i.e. responsibilities), we use a modified forward-backward
algorithm as proposed in [22] (see also [8]). In order to perform the forward and backward
steps, they propose the use of subnormalised probabilities of the form

p̃
⇣
s(i)t |s(j)t�1,xt, 

⌘
:= exp

⇣
E 

h
ln p

⇣
s(i)t |s(j)t�1,xt, 

⌘i⌘
(10)

p̃ (yt|xt,�i) := exp (E�i [ln p (yt|xt,�i)]) (11)

for the state-transition probabilities and emission probabilities. Since all relevant probabili-
ties in our model are over discrete variables, it would be straightforward to normalise those
probabilities, but we found that normalisation did not noticeably change results.

With the approximations from above, the forward probability can thus be written as

↵
⇣
s(i)t

⌘
=

1

C̃t

p̃
⇣
yt|s

(i)
t ,xt,�

⌘ KX

j=1

↵
⇣
s(j)t�1

⌘
p̃
⇣
s(i)t |s(j)t�1,xt, 

⌘
, (12)

where ↵(s(i)t ) is the probability-mass of state s(i)t given previous time steps and C̃t is a
normalisation constant. Similar to the forward step, the backward recursion takes the form
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�
⇣
s(i)t

⌘
=

1

C̃t

KX

j=1

�t

⇣
s(j)t+1

⌘
p̃
⇣
yt+1|s

(j)
t+1,xt+1,�

⌘
p̃
⇣
s(j)t+1|s

(i)
t ,xt, 

⌘
. (13)

Using the forward and backward equation steps we can infer the state posteriors [8]. Given
the state posteriors, the logarithm of the approximate parameter posterior for each of the
nodes takes the form

ln q? (!n) =
TX

t=1

⌘(n)t ln p
⇣
µ(n)
t |x(n)

t ,!n, (. . . )
⌘
+ E�n

[ln p (!n|�n)] + const. (14)

where !n are the parameters of the n-th node and p (!n|�n) is the prior over the param-

eters. Here, ⌘(n)t is the posterior responsibility or estimated influence of node n on the tth

observation and µ(n)
t denotes the expected output (known for state nodes) of node n (see

supplement for details). This equation also holds for a tree structure with multinomial gates
and for non-binary emission models such as Poisson and linear models. The above equations
are valid for maximum likelihood inference, except that all parameter priors are removed,
and the expectations of log-likelihoods reduce to log-likelihoods We use logistic regression
for all emission probabilities and gates, and a local variational approximation to the logistic
sigmoid as presented in [18].

As parameter priors we use anisotropic Gaussians with individual Gamma priors on each
diagonal entry of the precision matrix. With this prior structure we can perform automatic
relevance determination [23]. We chose shape parameter a0 =1⇥ 10�2 and rate parameter
b0 = 1⇥ 10�4, leading to a broad Gamma hyperprior [19]. In many applications, it will
be reasonable to assume that neurons in close-by states of the tree show similar response
characteristics (similar parameters). The hierarchical organisation of the model yields a
natural structure for hierarchical priors which can encourage parameter similarity2.

2.3 Details of simulated and neurophysiological data

To assess and illustrate our model, we simulated a population recording with trials of 3 s
length (20 neurons, 10ms time bins). As illustrated in Fig. 1 A, we modelled one low-firing-
rate down state (down, base firing rate 0.5Hz) and two up states (up-low and up-high, with
base firing rates of 5, and 50Hz respectively). The root node switched between up and
down states, whereas a second node controlled transitions between the two types of up-
states. Up-high states only occurred transiently, modelling synchronised bouts of activity.
In the down state, neurons have a 10ms refractory period, during up states they exhibit
bursting activity. Transitions from down to up go mainly via up-high to up-low, while down-
transitions go from up-low to down; stimulation increases the probability of being in one of
the up states. A pulse-stimulus occurred at time 1 s of each trial. Each model was fit on a
set of 20 trials and evaluated on a di↵erent test set of 20 trials. For each training set, 24
random parameter initialisations were drawn and the one with highest evidence was chosen
for evaluation. State predictions were evaluated using the Viterbi algorithm [24, Ch. 13].

We analysed a recording from visual cortex (V1) of an anaesthetised macaque [2]. The
data-set consisted of 1600 presentations of drifting gratings (16 directions, 100 trials each),
each lasting 2 s. Experimental details are described in [2]. For each trial, we kept a segment
of 500ms before and after a stimulus presentation, resulting in trials of length 3 s each. We
binned and binarised spike trains in 50ms bins. Additional spikes (present in (5.45± 1.56)%
of bins) were discarded by the binarisation procedure. We chose the representation of
the stimulus to be the outer product of the two vectors [1, sin(#), cos(#)], where # is
the phase of the grating, and [1, sin(✓), cos(✓), sin(2✓), cos(2✓)] for the direction ✓ of the
grating. This resulted in a 15 dimensional stimulus-parametrisation, and made it possible to
represent tuning-curves with orientation and direction selectivity, as well as modulation of
firing rates by stimulus phase. The only gate input was chosen to be an indicator function
with unit value during stimulus presentation and zero value otherwise. Post-spike filters
were parametrised using five cubic b-splines for the last 10 bins with a bin width of 50ms.

2See supplement for an example of how this could be implemented with Gaussian priors.
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Figure 2: Performance of the model on simulated data. A) Example rasters sam-
pled using ground truth (GT) parameters, colors indicate sequence of underlying population
states. B) For the sample from (A), the state-sequence decoded with our variational Bayes
(VB) method matches the decoded sequence using GT parameters. C) Comparison of state-
decoding performance using GT parameters, VB and maximum likelihood (ML) learning
(Wilcoxon ranksum, * p < 0.05; *** p ⌧ 0.001). D) Model performance quantified using
per-data-point log-likelihood di↵erence between estimated and GT-model on test-set. Our
VB method outperforms ML (Wilcoxon ranksum, *** p ⌧ 0.001), and both models con-
siderably outperform a 1-state GLM (not shown). E) Estimated post-spike filters match
the GT values well (depicted are the filters from one of the cross-validated models). F)
Comparison of the autocorrelation of the ground truth data and samples drawn from the
VB fit as in (E). G) GT (top) and VB estimated (bottom) transition matrices in absence
(left) or presence (right) of a stimulus.

3 Results

3.1 Results on simulated data

To illustrate our model and to evaluate the estimation procedure on data with known ground
truth, we used a simulated population recording of 20 neurons by sampling from our model
(details in Methods, see Fig. 2 A). In this simulation, the up-state had much higher firing
rates than the down-state. It was therefore possible to decode the underlying states from
the population spike trains with high accuracy (Fig. 2 B). For the VB method, we used
the posterior mean over parameters for state-inference. In addition, we compared both of
these approaches to state-decoding based on a model estimated using maximum likelihood
learning. All three models showed similar performance, but the decoding advantage of the
3-state VB model was statistically significant (using pairwise comparisons, Fig. 2 C).

We also directly evaluated performance of the VB and ML methods for parameter estimation
by calculating the log-likelihood of the data on held-out test-data, and found that our VB
method performed significantly better than the ML method (Fig. 2 D). Finally, we also
compared the estimated post-spike filters (Fig. 2 E), auto-correlation functions (Fig. 2 F)
and state-transition matrices (Fig. 2 G) and found an excellent agreement between the GT
parameters and the estimates returned by VB.

To test whether the VB method is able to determine the correct model complexity, we
fit an over-parameterised model with 3 layers and potentially 8 states to the simulation
data. The best model fit from 200 random restarts (lower bound of �2.24⇥ 104, no cross-
validation, results not shown) only used 3 out of the 8 possible states (the other 5 states
had a probability of less than 0.5%). Therefore, in this example, the best lower bound is
achieved by a model with correct, and low, complexity.
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Figure 3: Results for population recordings from V1. A) Raster plot of population
response to a drifting grating with orientation 67.5�. Arrows indicate stimulus onset and
o↵set, colours show the most likely state sequence inferred with the 3-state variational Bayes
(3S-VB) model. B) Cross-validated log-likelihoods per trial, relative to the 3S-VB model.
C) Stimulus decoding performance, in percentage of correctly decoded stimuli (16 discrete
stimuli, chance level 6.25%), using maximum-likelihood decoding.
D) Tuning properties of an example neuron. i) Orientation tuning calculated from the
tuning-parameters of 3S-VB (red, orange, green) or 1-state GLM (purple). iii) Temporal
component of tuning parameters. ii) Orientation tuning measured from sampled data of the
estimated model, each line representing one state. Note that the firing rate also depends
on state-transitions and post-spike filters. iv) Peri-stimulus time-histograms (PSTHs) es-
timated from samples of the estimated models. v) Post-spike filters for each state, and
comparison with 1-state GLM (purple). E) Distributions of times spent in each state, i.e.
inter-transition intervals (ITIs), estimated from the empirical data using 3S-VB. F) Compar-
ison between distribution of ITIs in samples from model 3S-VB and in the Viterbi-decoded
path (from E).
G) Histogram of population rates (i.e. number of synchronous spikes across the popula-
tion in each 50ms bin) for 3S-VB (blue), 1S (purple), and data (gray). H) Histograms of
population rate for each state.

3.2 Results on neurophysiological recordings

We analysed a neural population recording from V1 to determine whether we could success-
fully identify cortical states by decoding the activity of the neural population, and whether
accounting for state-dependence resulted in a more accurate statistical model of neural firing.
While neurons generally responded robustly to the stimulus (3 D), firing rates were strongly
modulated by internal states [2] (Fig. 3 A). We fit di↵erent models to data, and found that
our 3-state model estimated with VB resulted in better cross-validation performance than
either the 3-state model estimated with ML, the 2-state model or a 1-state GLM (i.e. a
GLM without cross-neural couplings, Fig. 3 B). In addition we fit a fully coupled GLM
(with cross-history terms as in [11, 13]), as well as one in which the total population count
was used as a history feature using VB. These models were intermediate between the 1-state
GLM and the 2-state model, i.e. both worse than the 3-state one. A ’flat’ 3-states model
with a single multinomial gate estimated with ML performed similarly to the hierarchical
3S-ML model. This is to be expected, as any di↵erences in expressive power between the
two models will only become substantial for a di↵erent choice of xt or larger models.
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We also evaluated the ability of di↵erent models to decode the stimulus, (i.e. the direction
of the presented grating) from population spike trains. We evaluated the likelihood of each
population spike train for each of the 16 stimulus directions, and decoded the stimulus which
yielded the highest likelihood. The 3-state VB model shows best decoding performance
among all tested models (3 C), and all models with state-dependence (3-state VB, 3-state
ML, 2-state) outperformed the 1-state GLM. We sampled from the estimated 3S-VB model
to evaluate to what extent the model captures the tuning properties of neurons (Fig. 3 D(ii
& iv)). The example neuron shows strong modulation of base firing rate dependent on the
population state, but not a qualitative change of the tuning properties (Fig. 3 D i-iv). The
down-state post-spike filter (Fig. 3 D v) exhibits a small oscillatory component which is not
present in the post-spike filters of the other states or the 1-state GLM.

Investigation of inter-transition-interval (ITI) distributions from the data (after Viterbi-
decoding) shows heavy tails (Fig. 3 E). Comparison of ITI-distribution estimated from the
empirical data and from sampled data (3S-VB) show good agreement, apart from small
deficiencies of the model to capture the heavy tails of the empirical ITI distribution (Fig.
3 F). Finally, population rates (i.e. total number of spikes across the population) are often
used as a summary-measure for characterizing cortical states [6]. We found that the dis-
tribution of population rates in the data was well matched by the distribution estimated
from our model (Fig. 3 G) with the three states having markedly di↵erent population rate
distributions (Fig. 3 H). Although a 1-state GLM also captured the tuning-properties of
this neuron (Fig. 3 D) it failed to recover the distribution of population rates (Fig. 3 G).

4 Discussion

We presented a statistical method for extracting cortical states from multi-cell recordings of
spiking activity. Our model is based on a ‘state-dependent’ GLM [10] in which the states are
organised hierarchically and evolve over time according to a hidden Markov model. Whether,
and in which situations, the best descriptions of cortical states are multi-dimensional, dis-
crete or continuous [25, 2] is an open question [6], and models like the one presented here
will help shed light on these questions. We showed that the use of variational inference
methods makes it possible to estimate the posterior over parameters. Bayesian inference
provides better model performance on limited data [13], uncertainty information, and is
also an important building block for active learning approaches [14]. Finally, it can be used
to determine the best model complexity: For example, one could start inference with a
model containing only one state and iteratively add states (as in divisive clustering) until
the variational bound stops increasing.

Cortical states can have a substantial impact on the firing and coding properties of cortical
neurons [6] and interact with inter-area communication [4, 3]. Therefore, a better under-
standing of the interplay between cortical states and sensory information, and the role of
cortical states in gating information in local cortical circuits will be indispensable for our
understanding of how populations of neurons collectively process information. Advances in
experimental technology enable us to record neural activity in large populations of neurons
distributed across brain areas. This makes it possible to empirically study how cortical
states vary across the brain, to identify pathways which influence state, and ultimately to
understand their role in neural coding and computation. The combination of such data with
statistical methods for identifying the organisation of cortical states holds great promise for
making progress on understanding state-dependent information processing in the brain.
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